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QUADRATIC FORMS AND POWER SERIES FIELDS

LAWRENCE BERMAN

The goal of this paper is to explore the connection
between three properties of a field F of characteristic not
2. Roughly speaking, these are:

(a) the Witt ring W(F) is a group ring R[G] with G
an Abelian group of exponent 2.

(b) the Witt ring W(F) is isomorphic to W(K) where
K is a power series field (i.e., F is equivalent to K with
respect to quadratic forms).

(c) there are "enough" rigid elements in F.
Our purpose is to show that the connection is in some

sense "quantitative", by showing that (a) and (b) can be
"measured" by the index of a certain subgroup A(F) in F.

Preliminaries• (For proofs or details see [2] and [4]).

If q is a quadratic form over F, then DF(q) consists of the
elements in F = F — {0} which are represented by q. We denote
by (xlf •• , α θ = # a diagonalization of an ^-dimensional form q.
The group DF((1, cc», xeF, may be seen as the nonzero image of
the norm map from FiV^x) to F. If DF((1, 6» = F2 U bF2 (as
small as is possible) then we say that 6 is rigid in F. Denote by
A(F) the set of all elements xeF such that x or — x is nonrigid,
together with the group F2 U -F2 Then A{F) is a subgroup of F.
Note that b#A(F) if and only if b and — b are rigid nonsquares.

Recall that the Witt ring W{F) is a ring whose elements are
equivalence classes of nonsingular quadratic forms, where q is equi-
valent to q\ written q = q\ if and only if q±( — V)qr is hyperbolic.
Each equivalence class is represented by a unique anisotropic form.
To avoid cumbersome notation, it is customary to refer to a form
q e W(F) and mean any form equivalent to q. By qan we mean the
unique anisotropic form qan = q. Set

T(F) = {qe W(F) I DF(q*n) £ A(F)} .

Then (see [2]), T(F) is an excellent subring of W(F) which is
additively generated over Z by the one-dimensional forms {(a) ( a e
A(F)}. Moreover

THEOREM 1.1 [2]. W(F) = T(F)[F/A(F)]. More precisely, if
{btA(F)9 iel} is a ZβZ-basis of F/A(F) and B is the multiplica-
tive subgroup of W(F) generated by the unary forms {<&,), ieJ} ,
then W(F) - T(F)[B].
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(In general, if G is a multiplicative group, and {gi9 i e 1} a subset
of G, we denote by ({gif i e I}) the subgroup of G generated by

REMARK. The definition of A(F) given in [2] differs slightly
from that which we give here. It is not difficult to see that this
does not affect the validity of the results there cited. We prefer
the above definition since for the field F5 with five elements one
obtains A(F5) = Fξ gΞ F5, i.e., there are "enough" rigid elements.
And, in fact, W(Fδ) is a group ring.

Our motivation was an old result of T. A. Springer on fields of
formal Laurent series [5] (see also [4, Ch. 6]). Specifically, let
F((x)) denote such a field, with F-coefficients, which may be obtained
as the quotient field of the ring of formal power series .F[[ίc]]. We
refer to F((x)) as a power series field.

THEOREM 1.2 [4]. Let F be a field (of characteristic not 2).
Then

( i ) W(F((x))) - W(F)[{(1), (x)}] (a group ring).
(ii) x $ A(F((x))) (power series fields have enough rigid elements).

In what follows we will consider fields produced by iterating
the method of obtaining a power series field. One obtains thus
fields of the type F((x,))((x2)) ((xn)) which we denote F{((x,))9 i =
1, --',n}. Let now / be any set. We define the iterated power
series field K = F{((Xi)), iel} as follows. First well-order /. Then
K is the union (composite) of the iterated power series fields of the
form F{((Xj)), j e J) where J ranges over all finite (ordered) subsets
of / (with respect to the fixed ordering of /).

It is now possible to make precise the main results to be
demonstrated in this paper, and to show what we meant above by
"quantitative" equivalence:

A. THEOREM 4.1. For any field F, if W(F) = R[G] and G has
exponent 2, then there is a canonical injection of G into F/A(F).

B. COROLLARY 3.2. For any field F, there is an extension
field k of F with W(F) = W(k{((xi))f iel}) - W(k)[{(xί>, iel})]9

where the cardinality of I equals the Zj2Z-dimension of F/A(F).

This explains the terminology "enough rigid elements" in (c)
and the "quantitative equivalence" we claimed. Namely, the group
F/A(F) acts as a true measure of the extent to which W(F) is a
group ring over a group of exponent 2, as well as a measure of
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the equivalence of F to a power series field, with respect to quad-
ratic forms.

2* Rigid elements under quadratic extension* In this section
we discuss the relation between A{F) and A(F(Λ/ a)) for general
quadratic extensions F(Λ/ a) over F, and in particular, when a £
A{F). In the particular case, it will be seen that A(F) remains
"invariant" under quadratic extension. I.e., if b&A(F) and K —
F(VT) then A(K) = A(F) K2. We need a result found in [1]:

LEMMA 2.1. Let K= F(V~a), aeF. Then for any xeF,

Dκ«l, x))ΠF= DF«1, ax}) DF(<X, x»

The next result also holds for general quadratic extensions:

PROPOSITION 2.2. Let K = F(VΊι), aeF. Then A(K) n F£
{1, a}A(F).

Proof. Let xeA(K)f]F. Since a; or — x is not rigid over K
and {±1} £ A(F), we may assume that x is nonrigid over K. Let
seZ^Kl, x» - {1, %W- By the Norm Principle [4, p. 208], or by
direct computation, if N is the norm from K to F, then N(z) e
DF((1, x)). Suppose x £ A{F). We will show that x ea A(F). Since
xZA(F), x is rigid, i.e., D*(<1, a» = {1, α} F 2 , so JSΓ(«) 6{1, x}F2.
If N(z)exF\ then since JV(#) = JD F «1, - α » , x e DF((1, - α » . So
aeDF((l, —x)). But ̂ ί A(F) implies that —x is rigid also, so αe
{1, — x}F2. Now if aeF2, the proposition is trivially true. And if
a e —xF2, then x ea( — F2) £ αA(F), as was desired. The only other
possibility is that N(z) e F2.

By [4, p. 202], N(z)eF2 implies that zeF-K2; in fact, we may
assume that z e F 0 Dκ((l, x)). Since xeF, the last lemma applies,
and we find that zeDF((l, ax))'DF((l, x)). If ax is rigid, then ze
{I, a, x, ax}-F2 (x is rigid). So ze{l, x}-K2, a contradiction. Hence,
ax cannot be rigid, in other words, xeaA(F).

A much better result can be obtained under the assumption
that a$A(F):

THEOREM 2.3. Let bίA(F), K = F(i/T). Then A{K) = A{F)
K2.

Proof. Let x be nonrigid in F and z e DF((l, x)) - {1, x}F2. If
x is rigid in K, then zeDκ«l, x}) = {1, ̂ }iP. By [4, p. 202], K2 n
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F = {1, b}F\ so z 6 {1, δ, a?, δα;}F2. Thus, z e {6, δa JF2, so 6 e D,«l, a»
(a group). This implies that -xeDF((l, - δ » = {1, -b}F2 (as δg
A(F), - δ is rigid). So a 6 ±K2 £ A(ϋQ if x is rigid in ίΓ. Hence
in general, xeA(K). We have just shown that A(F)-K2 £ A(K).

In the light of the last proposition it suffices to show that
A(K) £ F-K2 to complete the proof. For if this holds, then A(K)Q
F K2f) A(K) = (A(K) π F). if2 £ A(F) if2. Extend bF2 e F/F2 to a
Z/2Z-basis of ifyF2, say {δF2} U {a3F\ j e J}. Since - δ is rigid,
DF«1, - δ » = N(K) = {1, -δ}F2, so by [3, Theorem 8] a Z/2Z-basis
of iΓ/if2 is given by

{ajK2, jeJ}[J{zK2}

where z is any element in i f - F-K2 (for such « ί F iΓ2, N{z)$F2,
in fact N{z)e-bF2).

Suppose z e K-F K2 and s is nonrigid. Then {1, z}K2^Dκ((lf z)).
We have seen above that F - K2 has index 2 in K, so Z?*«l, s» Π
F K2^K2. Thus there exists some y e Dκ((l, z)) n -F with a/ ί if2. So
—z 6 Z?x«l, — 2/». By the Norm Principle again, N(—z) e DF((1, -y}).
But -zZF K2, so N(-z)e-bF2 and - δ eD,« l , - » » . Finally,
yeDF((l, δ» = {1, δ}F2 (δ is rigid), i.e., y eK2, which is a contradic-
tion. So each ziF-K2 is rigid.

Since T(.F) is defined in terms of A(F), it is not surprising to
find that T(F) is also "invariant" under a "rigid extension". This
will be the key result in our proof of Theorem 3.1 below.

THEOREM 2.4. Let 6 e A{F), K = F ( v T ) . // r*: W{F) -
is ί/ie map induced by the inclusion of F—>K, then the restriction
of r* to T{F) is a canonical isomorphism onto T{K).

Proof. Note that by Theorem 2.3, A(K) = ^(i^) ^ 2 so T(K) is
additively generated by forms {<α>, ae A{K)} = {r*«α», αe A(i^)}.
Thus, it is clear that the map r*: TΓ(JP) -> W(JS:), induced by the
inclusion F->ίΓ, maps T{F) onto Γ(X), i.e., r*(Γ(F)) = T(K). It
suffices to show that the restriction of r* to T(F) is injective.
Suppose φ is an anisotropic form in T(F) and r*(<ρ) is isotropic.
Then by a result of Scharlau [4, p. 200], there is an isometry

for some 7 6 W{F) and a? e F. So {#, -δa;} £ DF{φ). But ?> e
so {x, —bx} £ JDy(9) £ A(F) (as 9> is anisotropic). Since A(F) is a
group, this implies that — beA(F) so beA(F), which contradicts
the hypothesis. Hence, if φ 6 Γ(F), r*(?>) is anisotropic if and only
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if φ is anisotropic. So φ = 0 if and only if r*(<p) = 0 for any φ e
T(F).

REMARK. Although A(F) and T(F) are invariants with respect
to "rigid extensions" there does not exist a natural isomorphism of
W(F) and W(K) for K= F(VT), b$A(F). From the proof of 2.3
we have that

canonically. Since (F K2)/A(K) is a subgroup of K/A(K) of index
2, F/{1, a}A(F) embeds into KJA(K) with the same index. So
FjA(F)^K/A(K) but this is not natural, as it depends on the choice
of a Z/2Z-basis of KjA(K), specifically, on the choice of the basis
element zA(K) where z GK - F K2.

COROLLARY 2.6. Let F be a field, bgA(F) and K=F{VT).
Then W{F) and W(K) are ring isomorphίc (not canonically).

Proof. We have T(K) = T(F) and K/A(K) = F/A(F). So by
Theorem 1.2, W(F) = W(K).

3. Finding power series fields. We are now prepared to
construct a field k^F such that W{k) = T{F) for any field F.
Once this is accomplished, we can adjoin to k the requisite number
of iterated power series variables, to produce a field K such that
W(K) = W(F). Specifically, the number of iterated power series
variables we must adjoin to k is equal to the if/2ί!Γ-dimension of
F/A(F). That is, if F/A(F) has a basis {biA(F)\ieI}f then we
will take K = &{((&*)), i e I}.

Now such a field K is the union of power series fields Kj =
k{((Xj)), j 6 J}, where / ranges over all finite ordered subsets of /
(which has been well-ordered). By inductively applying Theorem
1.2, we find that

W(Kj)= WikMix^jeJ}}].

Since any form in \W(K) may be represented by a diagonalization
whose entries lie in some Kj9 J finite,

W(K)= Ό(W(Kj) ® K)

J finite c / .

In fact, we may identify W(Kj) with its image (WKj)QkK. For
suppose φ G W(Kj) is anisotropic and φ (x) K is isotropic. Then also
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φ (x) Kj, is isotropic, where / 2 e / ' 2 / and J ' is finite. Since KJf =
Kj{((%j)), j eJ' — J} and J' — J is finite, by again applying Theorem
1.2, we have that the map φ-^φ® KJf takes anisotropic forms to
anisotropic forms. So φ (x) K must be anisotropic. Using this
identification

W(K)= U
J finite

J finite £ I

- TF(fc)[<{<^>,i

Thus, if k is chosen so that W(Jc) = T(F), then

- W(F) .

Recall that a 2-extension of a field .F is a field extension k of
i*7 which lies in a quadratic closure of F.

THEOREM 3.1. For any field F, there exists a field k extending
F (a 2-extension) such that

( i ) A(K) = fc = A(F)'ίc\
(ii) Wik) = T(F).

COROLLARY 3.2. Let F be any field. Then there exists a field
K of iterated power series over a 2-extension k of F such that

( i ) the number of power series variables is equal to the cardi-
nality of a set I indexing a ZβZ-basis of F/A(F).

(ii) W(F) ^ W{K) = TΓ(fc)[<{<aj<>, i e

Proof of 3.1. Let ά?" denote the set of all 2-extensions L of
F in a fixed quadratic closure of F with the following properties:

(1) A(L) = A(F) L\
(2) if r\lF\ W(F) —> W(L) is the canonical map induced by the

inclusion F—>L then r*/F restricted to T{F) is an injection, i.e.,
T(F)®FL = T(F) via r*Llr.
Let us observe that F e ^ , so J?" is a nonempty set.

Suppose {Lβ, βeB} is a chain in &~ (totally ordered by inclu-
sion) and L = U {Lβ, β e B}. We claim that Le^. First note that
(2) is clear. For suppose that φe T(F) is anisotropic and φ®FL —
0. Then the L-isometry of φQ$FL and a hyperbolic form is effected
by invertible matrices of finite size with coefficients in L. Since
L = U {Lβ, βeB}, these matrices actually have coefficients in some
Lβ, where βeB. I.e., for that βeB, φ®FLβ = 0. But r*β/F injects
T(F) into W(Lβ), so φ = 0 and (2) holds for L.
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Next, we need to show that A(L) - A(F)-L\ Let zeA(L).
We may assume that z is not rigid since both A(L) and A(F) contain
- 1 . Take y e DL((1, z)}L2 — {1, z}L2, and write y = χ* + χ\z where xu

x2eL. Now choose β e B such that {xl9 x2, z}QLβ. Clearly y g {1, z}
L*β^{l,z}L2, so since y e DLβ((l, z)), ze A(Lβ) = A(F)-L2

β Q A{F)Ί\
Conversely, take xeA(F), x$ ±F2 and choose x' e DF((1, x)) — {l, x}-
F2 (we may assume x is nonrigid). Then x'e DL«1, x) ® F L) — {1,
x}L2. For if x'e{l,x}L2, then <1, -a; ')®,.!/ or <1, -xx')®FL is
hyperbolic. But <1, — x'} and <1, — xxf) are in T(F) since xf (and x)
is in A(F). (Since x£ ± F 2 , - a e Z ) F « l , -V»-{1, -x'}F2, so - a ' e
A(F).) So by (2), <1, -«'> or <1, -xx'} is F-hyperbolic; thus xf e
{1, x}F2, a contradiction. Hence #eA(L), and so A(L) = A(F) L2.

By Zorn's lemma, we may pick a maximal element kej^. We
need only show, to conclude the proof, that rtiF maps T(F) onto

This will be clear if we prove that A(k) = k. For then, Γ(&) =
Combining this with the fact that A(k) = A(F)-ίc2 we have

that T(k) = T(F) ®Fk= T(F), so W(k) = Γ(F) via n V _Suppose,
by way of contradiction, that zek — A (A). Let &0 = yfc(τ/^). Then
by Theorem 2.3 we have A(ko) = A(k) kl = A(F) k2 kt = A(F)'fcl Also,
by Theorem 2.4, r*Q/F is an injection on T(k). Since rί)*. is an
isomorphism of T(F) onto Γ(&), the composition T*OIF = rkQik°r*iF is an
injection of T(F) into W(k0). I.e., kQe^f contradicting the maxi-
mality of k among all 2-extensions of F. Thus, A{k) = & and
W{k) =

REMARK. It is possible to give a more constructive proof of
(3.1). Say a finite 2-extension K/F is "admissible" if

K - F% 2 F ^ 2 2 F, 2 Fo = F

are quadratic extensions, F< + 1 = F^l/ά"), with ate Fi — A{F^). Then
by 2.3 and 2.4 we have inductively that A(K) = A{F)-K2 and
T(K) = Γ(F) (g),, ίΓ ^ T(F).

Let & be the composite of all admissible extensions within a
fixed algebraic closure. Then we claim that A(k) = A(F)-k2=k and
T7(AO = T(k) = Γ(F) ®Fk= Γ(F). Observe that if a? e £, then a; lies
in a composite if = Kx-K2' - Kr where each ίQ is admissible, so also
K is admissible. The proofs that A{k) = A(F) fc2 and that Γ(F) ^
Γ(F) ® F fc = Tik) all follow by arguments similar to those used in
(3.1). All that remains then is to show, as above, that k = A(k).
But if xeίc — A(fc), then xeK — A(K) for some admissible K over
F (since A(K) = A{F)-K2 C A(F);A:2 - A{k)). So ίΓ(τ/"5") is admis-
sible. Thus K(i/ x)S=k, so xek2 Q A(k), a contradiction. Thus,
fc - A(k), so Γ(F) ^ W{k).
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4* Group rings and rigid elements* The point of Theorem
1.1 is that when one knows the 2-group F/A(F), one also knows
that W(F) is a group ring over this same group. In this section
we answer the opposite question: does knowing that W{F) — R[G]
for a 2-group G tell us anything about F/A(F)t Our main result is:

THEOREM 4.1. For any field F, if W(F) = R[G] and G is a

2-group, then there is a canonical injection det: G —> F/A(F).

In the case that \G\ —2, this result was already demonstrated
in [2]. Since we will make use of this, we produce it here:

THEOREM 4.2. Let F be a field.
( i ) // W(F) = i2[<l>, <a?>] for some xeϊ1, then x £ A(F).
(ii) If W(F) = R[G\ and \G\ = 2, then W{F) = Λ[<1>, <6>] for

some beF. In fact, by (i), b&A(F), so G injects into F/A(F).

Now it is possible, when \G\ = 2n < oo to prove 4.1 by induc-
tion on n. Namely, one writes G = Z?=1{<1>, g j in terms of a Z/2Z-
basis {ql9 , qn). Set H± = XU{<Ϊ>, ?,}. Then by 4.2, W{F) -

, ?J] - (Λ[-ffJ)[{<l>, <&!>}] with ba A(F). Next set H2 =

with b2&A(F). Continuing in this fashion we obtain elements
{δi, , U all not in A{F) such that if G = JΉU{<1>, <6,», TF(F) =
i?[G]. Then fact that W(F) is a free ϋί-module on |G|-generators
implies that \G\ — \G\ •= 2n, so G and G are isomorphic as Z\2Z-
vector spaces. This implies that {bl9 * ,&J represent independent
cosets of A(F) in F (otherwise 4.2 (i) would give a contradiction).
So there is an obvious injection of G into F/A(F). However we
have not obtained a canonical injection of G into F/A(F). We sum-
marize this result:

COROLLARY 4.3. Let F be a field and W(F) = R[G] where
Q\ == 2n < oo. Then there exists a multiplicative subgroup G of
W(F) such that

( i ) |δ| = 2\
(ii) W(F) = R[G].
(iii) G is generated by certain one-dimensional forms {<&<>, i =

1, , n} with {&!, •• , y s f and independent modulo A(F).
(iv) G injects naturally into F/A(F).

In a sense, 4.1 is weaker than 4.3, in that one cannot in general
produce a group G satisfying (ii) and (iii) above. Clearly, the
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inductive argument fails if \G\ is not finite. However, by means
of another approach it is possible to show that there is always a
canonical injection of G into F/A(F).

In order to do this, we consider first the ordinary determinant
det: W(F) -> F\F\ Since det «1, - 1 » = - F\ the map det does
not induce a group homomorphism det: W(F) —> F/F2. But by
considering a "coarser" invariant det: W(F)-+F/±F2, namely det (q) =
±det (q)F2, one obtains an additive group homomorphism on W(F).

An even coarser invariant det: W(F) -»F/A(F) may be constructed

by setting det (q) = det (g) A(JF7) (note that ±F2 £ A(F)).
Let us note that if qx and q2 are odd-dimensional quadratic

forms, then det (q1 (x) q2) = det (gj det (q2). A similar equality holds

for det. We next consider the group G in 4.1; if q e G, then q2 =

? 0 ? = <1>, so g is odd-dimensional. Consequently, det: G-+F/A(F)
is a multiplicative homomorphism.

Proof o/4.1. By the above discussion, it suffices to show that

det: G -> F/A(F) is injective
We may clearly assume that G is a nontrivial group. For each

q e G, q Φ <1>, we will define a homomorphism τq from F into the
additive group Z/2Z. Fix one such # e G, <? ̂  <1>. Choose some
s u b r i n g S o f W(F) s u c h t h a t W(F) = S[{(1), q}]. If xeF a n d < » =

8χ + s2g with Sj, s2 e S, define τff(a;) = dim0 (s2) (recall that dimo(s2) = 0
if dim(β2) is even and = 1 if dim (s2) is odd). As in the proof of
4.2 (ii) (see [2]), if τq{x) = 1, then s2 is a unit in W(F), and more-
over W(F)^S[{(1), <»>}]. So if rg(α0 = l, then by 4.2 (i), xϊA(F).
Thus, A(F) £ ker(τ g ). Observe that τq:F->Z/2Z is a homomor-
phism, for if (x) — sλ + s2^ and <x'> = s[ + s[q, then (xxf) = (β^ί +
s2s2) + (5^2 + s2sί)^ (since q2 — <1». And dimofe^ + s2s[) = 1 if and
only if dim0 (s2) Φ dim0 (s2), so τ g (xxf) = τff(a?) + rff(α?0-

We wish to show for any q e G, g Φ <1>, that det g £ A(F). Thus
it will be enough to show that τg(det q) Φ 0, as A(F) C ker (rβ).
Consider a diagonalization <ίc1# , xn) ~ q. We have, in Z/2Z,

τq(άet q) = τ / Π «i) = Σ

Write now, for each ί = 1,

β< + s g, Si, si 6 S

(where S is the subring of W(F) used to define τq). Then
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so by the group ring property, Σ?=i«ί = <1>. Hence, in Z/2Z,

1 = dim0 ( Σ si) = Σ dim0 (sj) - Σ ^fo)

Hence, rg(detg) = l, so detffgA(JF), and det: G -> F/A(F) is injec-
tive.

ΛΓoίe. The definition of τq in the above proof is not inde-
pendent of the choice of a subring S £ W{F) satisfying W(F) —
S[{<1>, ff}]. For example, let ί7 = C((aO)((2/)) and take S = W(C((x))),
S' = W(C((xy))). Then

W(F) = S[{<1>, <y>}] = S'[{<1>, <»>}] .

So on the one hand, with respect to S, we have T(y> (x) = 0 as
(x) e S. And on the other hand, with respect to S\ we have τ'<y>(x) =
1 as (x) = (xy) (y) and (xy) eS'.

If 2 ^ 0 in ^( ί 1 ) (i.e., -1$F2) then (4.3) may be put in a
simpler form:

COROLLARY 4.4. Lei F be a field with -l$F\ If W(F) =
R[G] where G is a finite group of exponent 2, then W(F) = R[G]
where G consists of unary forms {<6g>, geG} with detq =

Proof. For a given qeG— <1>, we may decompose, via Theorem
1.1:

Σ

where each φt e Γ(i^) and {bl9 •••,&»} represent distinct cosets of
A(F) in F. As q2 = <1>, whenever 1 ^ i < i ^ fc, 2 ^ ^ = 0. Since
q is odd-dimensional, some φί9 say 9>x, is odd-dimensional, so is not
a zero-divisor [4, p. 250]. Hence, 2φi = 0 for i = 2, , k. So since
2 ^ 0 , each ^ , i > 1, is even-dimensional. Now each ^ may be

diagonalized by elements of A(F), so for each i, det«6i>9>i) = 5<*.

A(F), where dt = dim0 (φt). Hence det (g) = ft^jp7). Set bq = 62.
Observe that 6g<gA(.F). In the proof given above of 4.3 if we
replace each generator q of G with the unary form (bq), then we
obtain our result.

For suppose that G = if x {1, q} where if is a subgroup of index
2 of G. Then TF(.F) = S[{<1>, g}] with S = Λ[Jff]. We claim that
W(F) = S[{<1>, <6ff)}], which is what is necessary to complete the
proof as in 4.3. Recalling the proof of 4.1, it suffices to show that
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(bq) = r + sq with r, s e S and s odd-dimensional, i.e., to show that
τq{bq) = 1.

Now for each i = 1, , k, write {b^φt — rt + sτq with rl9 st e
S. Then for all i,

dim0 (st) = (dim 9>

i)τί(6i) (mod 2) ,

since ?>< e Γ(F) may be diagonalized over A(F) and τq(abx) = rg(δt)
for any α e A(F) Q ker rβ. But for i ^ 2, d i m ^ is even, so for
such ί, dim0 (sj = 0. Finally,

k k

q = Σ rt + g Σ st ,

so Σί=i s* — l Hence dim0 (sj must be odd, so not only is dim φ1

odd, but also τq(bq) = 1.
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