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QUADRATIC FORMS AND POWER SERIES FIELDS

LAWRENCE BERMAN

The goal of this paper is to explore the connection
between three properties of a field F' of characteristic not
2. Roughly speaking, these are:

(a) the Witt ring W(F') is a group ring R[G] with G
an Abelian group of exponent 2.

(b) the Witt ring W(F') is isomorphic to W(K ) where
K is a power series field (i.e., F' is equivalent to K with
respect to quadratic forms).

(¢) there are ‘‘enough’ rigid elements in F.

Our purpose is to show that the connection is in some
sense ‘‘quantitative’’, by showing that (a) and (b) can be
“measured’’ by the index of a certain subgroup A(F) in F.

Preliminaries. (For proofs or details see [2] and [4]).

If ¢ is a quadratic form over F, then D.(q) consists of the
elements in F = F — {0} which are represented by q. We denote
by <z, ---, x,> = q a diagonalization of an n-dimensional form gq.
The group D.({1, ), € F, may be seen as the nonzero image of
the norm map from F(/—z) to F. If D,({1,b)) = F*UbF? (as
small as is possible) then we say that b is 7igid in F. Denote by
A(F) the set of all elements x € F' such that z or —z is nonrigid,
together with the group F?U —F2 Then A(F) is a subgroup of F.
Note that b¢ A(F') if and only if b and —b are rigid nonsquares.

Recall that the Witt ring W(F') is a ring whose elements are
equivalence classes of nonsingular quadratic forms, where ¢ is equi-
valent to ¢, written ¢ = ¢/, if and only if ¢ 1 (—1)>q¢’ is hyperbolic.
Each equivalence class is represented by a unique anisotropic form.
To avoid cumbersome notation, it is customary to refer to a form
g€ W(F') and mean any form equivalent to q. By ¢,, we mean the
unique anisotropic form ¢,, = q. Set

T(F) = {ge W(F) | Dp(qun) S A(F)} .

Then (see [2]), T(F') is an excellent subring of W{(F') which is
additively generated over Z by the one-dimensional forms {{a) |ae
A(F)}. Moreover

THEOREM 1.1 [2]. W(F) = T(F)[F"/A(F)]. More precisely, if
{b,A(F), 1€l} is a Z[2Z-basis of FJA(F) and B is the multiplica-
tive subgroup of W(F') generated by the unary forms {<(b), iel},
then W(F') = T(F)[B].
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(In general, if G is a multiplicative group, and {g;, 1€ I} a subset
of G, we denote by {{g,, i€I}) the subgroup of G generated by

REMARK. The definition of A(F) given in [2] differs slightly
from that which we give here. It is not difficult to see that this
does not affect the validity of the results there cited. We prefer
the above definition since for the field F, with five elements one
obtains A(F,) = F: S F,, i.e., there are “enough” rigid elements.
And, in fact, W(F,) is a group ring.

Our motivation was an old result of T. A. Springer on fields of
formal Laurent series [5] (see also [4, Ch. 6]). Specifically, let
F((z)) denote such a field, with F-coefficients, which may be obtained
as the quotient field of the ring of formal power series F'[[z]]. We
refer to F((x)) as a power series field.

THEOREM 1.2 [4]. Let F be a field (of characteristic not 2).
Then

(1) W(EF(x) = WE){D, {z>}] (a group ring).

(ii) =z¢ A(F((x))) (power series fields have enough rigid elements).

In what follows we will consider fields produced by iterating
the method of obtaining a power series field. One obtains thus
fields of the type F((x))((,))---((x,)) which we denote F{((x,), 7 =
1, --.,n}. Let now I be any set. We define the iterated power
series field K = F{((x,)), 1€ I} as follows. First well-order I. Then
K is the union (composite) of the iterated power series fields of the
form F{((xz;)), j€J} where J ranges over all finite (ordered) subsets
of I (with respect to the fixed ordering of I).

It is now possible to make precise the main results to be
demonstrated in this paper, and to show what we meant above by
“quantitative” equivalence:

A. THEOREM 4.1. For any field F, +f W(F)=R[G] an.d G has
exponent 2, then there is a camonical injection of G into F/A(F).

B. COROLLARY 3.2. For any field F, there is an extension
field k of F with W(F) = Wk{((x)), tel}) = Wkl zy, 1eIPl,
where the cardinality of I equals the Z/2Z-dimension of F|A(F).

This explains the terminology “enough rigid elements” in (¢)
and the “quantitative equivalence” we claimed. Namely, the group
FJ/A(F) acts as a true measure of the extent to which W(F) is a
group ring over a group of exponent 2, as well as a measure of
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the equivalence of F' to a power series field, with respect to quad-
ratic forms.

2. Rigid elements under quadratic extension. In this section
we discuss the relation between A(F) and A(F(v"a)) for general
quadratic extensions F(1”a) over F, and in particular, when a¢
A(F'). In the particular case, it will be seen that A(F) remains
“invariant” under quadratic extension. I.e., if b¢ A(F) and K =
F(1/b) then A(K) = A(F)-K*. We need a result found in [1]:

LEMMA 2.1. Let K= F1 a), acF. Then for any xwcF,
DK(<17 x)) N F = DF(<17 ax>)'D1«'(<]—’ %)) .

The next result also holds for general quadratic extensions:

PROPOSITION 2.2. Let K= F(/a), ackF. Then AK)NF <
(1, a}A(F).

Proof. Let ze A(K)N F. Since » or —a is not rigid over K
and {1} & A(F), we may assume that = is nonrigid over K. Let
zeDy({1, ) — {1, z}K2 By the Norm Principle [4, p. 208], or by
direct computation, if N is the norm from K to F, then N(z)e
D,({1, z)). Suppose z¢ A(F'). We will show that x ca-A(F). Since
v¢ A(F), z is rigid, ie., D1, x>) = {1, 2}-F2, so N(z)e{l, z}F™
If N(z)exF? then since N(K) = D,({1, —a)), xcD.({1, —a)). So
acD.({1, —x)). But x¢ A(F') implies that —z is rigid also, so a €
{1, —x}F* Now if ac F?, the proposition is trivially true. And if
ae —xF? then zca(—F? C aA(F), as was desired. The only other
possibility is that N(z)e F™.

By [4, p. 202], N(z) € F"* implies that ze F-K? in fact, we may
assume that ze F N Dx(<1, ). Since x € F', the last lemma applies,
and we find that ze D,(<1, ax))-D({1, x)). If ax is rigid, then z¢
{, a, , ax}-F* (x is rigid). So ze(l, z}-K?, a contradiction. Hence,
ax cannot be rigid, in other words, x € a A(F).

A muech better result can be obtained under the assumption
that a ¢ A(F):

THEOREM 2.3. Let bg A(F), K= F1/b). Then AK)= A(F)-
K.

Proof. Let x be nonrigid in F and z e D({1, x>) — {1, x}F2. If
z is rigid in K, then ze D({1, z)) = {1, 2}K*. By [4, p. 202], K2 n
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F ={1,b}F? soze{l,b,x, bx}F?. Thus, z{b, ba}F™, so be Dy(<1, x))
(a group). This implies that —x e Dy({1, —b)) = {1, —b}F" (as b¢
A(F), —b is rigid). So xe +K?Z A(K) if # is rigid in K. Hence
in general, x ¢ A(K). We have just shown that A(F)-K* < A(K).

In the light of the last proposition it suffices to show that
A(K) € F-K* to complete the proof. For if this holds, then A(K )<
F.K*nAK)=(AK)NF)-K*< A(F)-K*. Extend bF?c F/F* to a
Z/2Z-basis of F/F? say {bF% U {a,;F"? jeJ}. Since —b is rigid,
Dy({1, —b)) = N(K) = {1, —b}F", so by [3, Theorem 8] a Z/2Z-basis
of K/K* is given by

{a;K*, jeJ} U {zK?)

where z is any element in K — F.K® (for such zeF.K% N(z)séﬁ'z,
in fact N(z) e —bF™). '

Suppose z € K— F-K? and z is nonrigid. Then (1, 2} K*S De(<1, 2)).
We have seen above that F'- K? has index 2 in K, so Dx(<1, 2)) N
F.-K*2K*® Thus there exists some y € D ({1, 2))N Fwithye K2 So
—z € Dx({1, —y)). By the Norm Principle again, N(—z) € Dz({1, —¥)).
But —z¢ F-K? so N(—z)e —bF? and —beDy({1, —y)). Finally,
y € Dp({1, b)) = {1, b}F™ (b is rigid), i.e., y € K?, which is a contradic-
tion. So each z¢ F-K? is rigid.

Since T(F') is defined in terms of A(F'), it is not surprising to
find that T(F') is also “invariant” under a “rigid extension”. Thig
will be the key result in our proof of Theorem 3.1 below.

THEOREM 2.4. Let b¢ A(F), K=F'b). If r*: W(F)— W(K)
18 the map induced by the inclusion of F — K, then the restriction
of r* to T(F) is a canonical isomorphism onto T(K).

Proof. Note that by Theorem 2.3, A(K) = A(F)-K® so T(K) is
additively generated by forms {<a), a € A(K)} = {r*({a}), a € A(F)}.
Thus, it is clear that the map »*: W(F) — W(K), induced by the
inclusion F'— K, maps T(F) onto T(K), i.e., r*(T(F)) = T(K). It
suffices to show that the restriction of »* to T(F') is injective.
Suppose @ is an anisotropic form in T(F') and r*(@) is isotropic.
Then by a result of Scharlau [4, p. 200], there is an isometry

=<1, =byx) L,

for some ve W(F) and zeF. So {x, —bx} C D.(®). But ®e T(F),
so {x, —bx} S Dy(®) < A(F) (as @ is anisotropic). Since A(F') is a
group, this implies that —be A(F') so be A(F'), which contradicts
the hypothesis. Hence, if @ € T(F'), »*(®) is anisotropic if and only
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if @ is anisotropic. So @ = 0 if and only if »*(®) = 0 for any @e
T(F).

REMARK. Although A(F) and T(F') are invariants with respect
to “rigid extensions” there does not exist a natural isomorphism of
W(F) and W(K) for K=F1/b), b¢ A(F). From the proof of 2.3
we have that

FI{1, a}A(F) = (F-K»/A(K)

canonically. Since (F-K?)/A(K) is a subgroup of K/A(K) of index
2, FJ/{1, aJA(F) embeds into K/A(K) with the same index. So
FJA(F)=K/A(K) but this is not natural, as it depends on the choice
of a Z/2Z-basis of K/A(K), specifically, on the choice of the basis
element 2zA(K) where ze K — F-K.

COROLLARY 2.6. Let F be a field, b¢ A(F) and K = F1/b).
Then W(F') and W(K) are ring isomorphic (not canonically).

Proof. We have T(K)= T(F) and K/A(K) = FJA(F). So by
Theorem 1.2, W(F') = W(K).

3. Finding power series fields. We are now prepared to
construet a field £ 2 F such that W(k) = T(F') for any field F.
Once this is accomplished, we can adjoin to %4 the requisite number
of iterated power series variables, to produce a field K such that
W(K) = W(F'). Specifically, the number of iterated power series
variables we must adjoin to %k is equal to the Z/2Z-dimension of
FJA(F). That is, if FJA(F) has a basis {b,A(F)|ieI), then we
will take K = E{((x,)), 1€ I}.

Now such a field K is the union of power series fields K, =
kE{((x;)), j€J}, where J ranges over all finite ordered subsets of I
(which has been well-ordered). By inductively applying Theorem
1.2, we find that

W(K;) = WkI{{z;, jeIP].

Since any form in ;W(K) may be represented by a diagonalization
whose entries lie in some K, J finite,

WEK)=U(WK) & K
J finitecC I .

In fact, we may identify W(K,) with its image (WK, @, K. For
suppose @ € W(K,) is anisotropic and @ @ K is isotropic. Then also
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® ® K, is isotropic, where I 2 J' 2 J and J' is finite. Since K, =
K {((x;), jed" — J}and J' — J is finite, by again applying Theorem
1.2, we have that the map ¢ — ®» ® K, takes anisotropic forms to
anisotropic forms. So »® K must be anisotropic. Using this
identification

W(K) = U Wk{((z), 5€J}
J finite & I

= U Wk)[{Kz, e IP]
J finite £ I

= WkI{Kz, ieIP] .
Thus, if k& is chosen so that W(k) = T(F'), then
W(K) = T(F)[{{x:), i e IPD] = TFENFJIAF)] = W(F) .

Recall that a 2-extension of a field F' is a field extension % of
F which lies in a quadratic closure of F.

THEOREM 3.1. For any field F, there exists a field k extending
F (a 2-extension) such that

(i) AK) =k = AF)-k,

(ii) W) = T(F).

COROLLARY 3.2. Let F be any field. Then there exists a field
K of iterated power series over a 2-extension k of F such that

(i) the number of power series variables is equal to the cardi-
nality of a set I indexing a Z/2Z-basis of F’/A(F).

(ii) W(F) = W(K) = Wk[{{ Kz, 1€ IP].

Proof of 8.1. Let # denote the set of all 2-extensions L of
F in a fixed quadratic closure of F' with the following properties:

(1) A(L) = A(F)-L?

(2) if r¥,,: W(F)— W(L) is the canonical map induced by the
inclusion F'— L then 7%, restricted to T(F) is an injection, i.e.,
T(F)Q@r L = T(F) via ¥ 5.

Let us observe that FFe &, so & is a nonempty set.

Suppose {L;, 3€ B} is a chain in & (totally ordered by inclu-
sion) and L = U {Ls; B€B}. We claim that L e.&# . First note that
(2) is clear. For suppose that @ € T(F') is anisotropic and ¢ @, L=
0. Then the L-isometry of # @. L and a hyperbolic form is effected
by invertible matrices of finite size with coefficients in L. Since
L = U{L,, B € B}, these matrices actually have coefficients in some
L;, where Be B. I.e., for that e B, @y L; = 0. But Piyr injects
T(F) into W(L,), so » =0 and (2) holds for L.
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Next, we need to show that A(L) = A(F)-L*. Let ze A(L).
We may assume that z is not rigid since both A(L) and A(F) contain
—1. Take ye D, ({1, 2>}L*— {1, 2}, and write y = 2% + 2% where 2,,
x,e L. Now choose B¢ B such that {z,, &, 2}SL;. Clearly y¢e({l, 2}-
L: = {1, 2}, so since y e D, (<1, 2)), z€ A(L;) = A(F)-Ly S A(F)- L.
Conversely, take x ¢ A(F'), x ¢ = F* and choose 2’ € D ({1, x))—{1, x}-
F* (we may assume z is nonrigid). Then ' e D, ({1, ) @, L) — {1,
x)L2. For if ' efl, x}L?, then 4, —2> @, L or {1, —z2’) @, L is
hyperbolic. But <1, —2') and <1, —a«") are in T(F') since «’ (and z)
is in A(F). (Since x¢ £F?, —xeDy((1, —a'))—{1, —a'}F", so —a'¢
AF).) So by (2), 4, —a'> or {1, —zx’) is F-hyperbolic; thus 2’ ¢
{1, z}F?, a contradiction. Hence x € A(L), and so A(L) = A(F)- L2

By Zorn’s lemma, we may pick a maximal element ke . We
need only show, to conclude the proof, that »}, maps T(F) onto
W(k). This will be clear if we prove that A(k) =k. For then, T(k)=
W(k). Combining this with the fact that A(k) = A(F)-k* we have
that Tk) = T(F) @y k = T(F'), so W(k) = T(F') via r§,. Suppose,
by way of contradiction, that zek — A(k). Let k, = k(1 %). Then
by Theorem 2.3 we have A(k)=A(k)-ki=A(F)-k*-l2=A(F)-i2. Also,
by Theorem 2.4, »},, is an injection on T(k). Since #}, is an
isomorphism of T'(F") onto T'(k), the composition 7, = 7¢ o7 is an
injection of T(F') into W(k,. l.e., k,€.%, contradicting the maxi-
mality of %k among all 2-extensions of F. Thus, A(k) =k and
Wk) = T(F).

REMARK. It is possible to give a more constructive proof of
(3.1). Say a finite 2-extension K/F' is “admissible” if

K=F,2F, , 2---2F2F,=F

are quadratic extensions, F.,, = Fi(V/a,), with a, e F;—A(F,). Then
by 2.3 and 2.4 we have inductively that A(K)= A(F)-K® and
T(K)=TF)®; K = T(F).

Let k& be the composite of all admissible extensions within a
fixed algebraic closure. Then we claim that A(k) = A(F)-k*=Fk and
Wk) = T(k) = T(F) @k = T(F). Observe that if x ek, then z lies
in a composite K = K,-K,---K, where each K, is admissible, so also
K is admissible. The proofs that A(k) = A(F)-k* and that T(F) =
T(F)@rk = T(k) all follow by arguments similar to those used in
(3.1). All that remains then is to show, as above, that ki = A(k).
But if xek — A(k), then ze K — A(K) for some admissible K over
F (since A(K)= A(F)-K*< A(F)-k* = A(k)). So K/ z) is admis-
sible. Thus KW/ z) <k, so xek* < A(k), a contradiction. Thus,
k= A(k), so T(F) = W(k).
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4. Group rings and rigid elements. The point of Theorem
1.1 is that when one knows the 2-group F"/A(F), one also knows
that W(F') is a group ring over this same group. In this section
we answer the opposite question: does knowing that W(F) = R[G]
for a 2-group G tell us anything about F/A(F)? Our main result is:

THEOREM 4.1. For any field F, if W(F) = R[G] and G is a
2-group, then there is a canonical injection det: G—»F‘/A(F).

In the case that |G| = 2, this result was already demonstrated
in [2]. Since we will make use of this, we produce it here:

THEOREM 4.2. Let F be a field.

(i) If W(F) = R[{L), {(x)] for some xcF, then x¢ A(F).

(ii) If W(F) = R[G] and |G| = 2, then W(F) = R[<1), (b>] for
some be F. In fact, by (i), be& A(F), so G injects into F/A(F).

Now it is possible, when |G| = 2" < « to prove 4.1 by induec-
tion on n. Namely, one writes G = X {1}, ¢,} in terms of a Z/2Z-
basis {q, ---, ¢.}. Set H, = X[,{<1),¢;}. Then by 4.2, W(F) =
(RIH.DI<L, ¢.}1 = (R[HD{<L), <b)}] with b,¢ A(F'). Next set H, =
X {<1), ¢.}) X {<1), <bp}, so W(F)=(R[H,DI{<1), ¢.}]=R[H][{<1), <b)}]
with b,¢ A(F'). Continuing in this fashion we obtain elements
{b, ---, b} all not in A(F) such that if G = X7 {<1), b}, W(F) =
R[G]. Then fact that W(F) is a free R-module on |G |-generators
implies that |G| =|G|=2" so G and G are isomorphic as Z/2Z-
vector spaces. This implies that {b, ---, b,} represent independent
cosets of A(F) in F (otherwise 4.2 (i) would give a contradiction).
So there is an obvious injection of G into FJ/A(F). However we
have not obtained a canonical injection of G into F/A(F). We sum-
marize this result:

COROLLARY 4.3. Let F be a field and W(F) = R[G] where
|G| = 2" < 0. Then there exists a multiplicative subgroup G of
W(F") suchjhat

(i) |G| =2~

(ii) W(F) = R[G].

(iii) G is gemerated by certain one-dimensional forms {{b.>, i=
1, -, n} with {b, -+, b} S F and independent modulo A(F).

Gv) G injects naturally into FJA(F).

In a sense, 4.1 js weaker than 4.3, in that one cannot in general
produce a group G satisfying (ii) and (iii) above. Clearly, the
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inductive argument fails if |G| is not finite. However, by means
of another approach it is possible to show that there is always a
canonical injection of G into F/A(F).

In order to do this, we consider first the ordinary determinant
det: W(F') — F/F*. Since det ({1, —1)) = —F, the map det does
not induce a group homomorphism det: W(F)— F/F2% But by
considering a “coarser” invariant det: W(F)—F/=+ F namely det (¢)=
+det (q)F’z, one obtains an additive group homomorphism on W(F').
An even coarser invariant det: W(F)— F/A(F) may be constructed
by setting det (¢) = det (¢)- A(F) (note that +F* < A(F)).

Let us note that if ¢, and ¢, are odd-dimensional quadratic
forms, then det (¢, ® q,) = det (q,)-det (¢,). A similar equality holds

for det. We next consider the group G in 4.1; if g€ G, then ¢* =

q&®q = <1), so q is odd-dimensional. Consequently, det: G — FJA(F)
is a multiplicative homomorphism.

Proof of 4.1. By the above discussion, it suffices to show that
det: G — FJA(F) is injective

We may clearly assume that G is a nontrivial group. For each
q€@G, q# (1), we will define a homomorphism 7, from F into the
additive group Z/2Z. Fix one such ge€G, g+ {1). Choose some
subring S of W(F') such that W(F)=S[{{1), ¢}]. If zeF and {(x)=
s, + s, with s, s,€ 8, define 7,(x) = dim, (s,) (recall that dimy(s,) =0
if dim (s,) is even and =1 if dim(s,) is odd). As in the proof of
4.2 (ii) (see [2]), if 7, (x) = 1, then s, is a unit in W(F'), and more-
over W(F)=S8[{{1), {x)>}]. So if 7z, (x)=1, then by 4.2 (i), x ¢ AF).
Thus, A(F) < ker (z,). Observe that z,: F'— Z/2Z is a homomor-
phism, for if {x) = s, + s,¢ and <{&') = s] + sig, then {xx’) = (s;8] +
$,85) + (8,8 + 8,819 (since ¢* = <1>). And dim, (s,s; + s,s1) = 1 if and
only if dim, (s,) # dim, (s}), 80 7, (x2') = 7,(&) + 7,(&').

We wish to show for any ¢e@, g+ (1), that detg¢ A(F'). Thus
it will be enough to show that r,(detq) + 0, as A(F) < ker (z,).
Consider a diagonalization {z, ---, z,) = ¢q. We have, in Z/2Z,

n

7,(det @) = Tq< II xl> = g{ T(%;) .

i=1
Write now, for each ¢ =1, ---, n,
() = 8, + siq, s, 8:€8

(where S is the subring of W(F') used to define z,). Then

=5 @ = () + (B
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so by the group ring property, >.r,s; = (1). Hence, in Z/2Z,
1= dim, (350 = 3 dim, () = 3 7,() -
i=1 =1 i=1

Hence, 7,(detq) =1, so detq¢ A(F'), and det: G — FJA(F) is injec-
tive.

Note. The definition of 7, in the above proof is not inde-
pendent of the choice of a subring S & W(F') satisfying W(F') =
S[{<1), q}]. For example, let F' = C((x))((y)) and take S = W(C((x))),
S’ = W(C((zy))). Then

W) = S[{<L), <y}l = ST, <l .

So on the one hand, with respect to S, we have 7¢,(x) =0 as
{x) € S. And on the other hand, with respect to S’, we have z{,,(x) =

1 as (&) = {xy)-{y) and {xy) e S’.

If 20 in W(F) (.e., —1¢ F? then (4.3) may be put in a
simpler form:

COROLLARY 4.4. Let F be a field with —1¢F*. If W(F)=
R|G] where G is a finite group of expoment 2, then W(F) = R[G]
where G consists of unary forms {(b,, q € G} with dgtq = b,A(F).

Proof. For a given ¢qe G—{1), we may decompose, via Theorem
1.1:

k
7 =3 b0,

where each @,e T(F') and {b, ---,b,} represent distinct cosets of
A(F) in F. As ¢> = (1), whenever 1<i < j <k, 29, =0. Since
q is odd-dimensional, some ®;, say ®,, is odd-dimensional, so is not
a zero-divisor [4, p. 250]. Hence, 29, = 0 for ¢ =2, ---, k. So since
20, each @, 1> 1, is even-dimensional. Now each @, may be
diagonalized by elements of A(F'), so for each 1, d’eﬁ;(<bi>¢i) = bf.
A(F), where d, = dim,(®,). Hence det (@) = bA(F). Set b, =b,.
Observe that b,¢ A(F). In the proof given above of 4.3 if we
replace each generator ¢ of G with the unary form <{b,>, then we
obtain our result.

For suppose that G = H x {1, ¢} where H is a subgroup of index
2 of G. Then W(F) = S[{{1), q}] with S = R[H]. We claim that
W(F) = S[{<L), <b,>}], which is what is necessary to complete the
proof as in 4.3. Recalling the proof of 4.1, it suffices to show that
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by =1+ sq with 7, s€ S and s odd-dimensional, i.e., to show that
7,(b) = 1.

Now for each 1 =1, ---, k, write <b,)®, =7, + s,¢ with », s, €
S. Then for all <,

dim, (s,) = (dim ®;)7,(b,) (mod 2) ,

since @, € T(F') may be diagonalized over A(F) and 7,(ab,) = 7,(b,)
for any ac A(F) < kerz,. But for ¢ =2, dimo, is even, so for
such 4, dim,(s,) = 0. Finally,

k ke
q:Z{/'oi—i‘qZSz’

i=1

so >k s, =1. Hence dim,(s,) must be odd, so not only is dim ¢,
odd, but also 7,0, = 1.
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