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TWO APPLICATIONS OF THE SCHUR-NEVANLINNA
ALGORITHM

ARNE STRAY

Two applications of the Schur-Nevanlinna algorithm are
given. The first application gives new information about
the Nevanlinna-Pick interpolation problem. The second ap-
plication concerns the constructive approximation to bound-
ed measurable functions on the unit circle by functions
from H°°.

1* Introduction* The Schur-Nevanlinna algorithm was deve-
loped by I. Schur [7] and refined by R. Nevanilnna [6] in the study
of certain interpolation problems for bounded analytic functions.

The main idea in the first application is to combine Nevanlinna's
algorithm with a certain uniqueness criterion due to Den joy. This
gives new information about solutions of the Nevanlinna-Pick inter-
polation problem.

The second application concerns the constructive approximation
to bounded measurable functions on the unit circle T = {z: \z\ 5s 1},
by functions from iϊ0 0. As usual, H°° consists of the bounded ana-
lytic functions in the unit disc D = {z: \z\ < 1}. They are extended
to D U T by taking radial limits, thanks to a well known theorem
of Fatou. The main tool here is Schur's algorithm [7]. Assuming
the recent result about duality between H1 and BMO [1], our method
also yields a constructive decomposition of functions / in the class
BMO (functions of bounded mean oscillation). This has recently been
done by P. Jones [4], using entirely different methods.

2* Nevanlinna's algorithm and Denjoy's criterion* It will
be necessary to describe the results and ideas in Nevanlinna's fun-
damental paper [6], in some detail.

The space H°° introduced above, is a Banach space with the
norm | | / | | — sup{|/(s)|, zeD}. Let {zυ} be a sequence of distinct
points in D, and consider the interpolation problem

( * ) w(zj) = wu , v = 1, 2,

where {wv} is a specified sequence of complex numbers, and weH°°,

IMI^i.
We assume that (*) has at least two solutions. Then R.

Nevanlinna [6] has shown that all solutions to (*) are given by the
following formula
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(**)
R —

where Woo is an arbitrary function in the unit ball of H°°9 and P,
Q, R and S are certain analytic functions in D. If we only con-
sider interpolation at the N first points zίf , zNf the corresponding
functions in (**) will be denoted by PN, QNf RN and SN respectively.

Nevanlinna used a normal family argument to show that PNf

QN, RN and SN converge uniformly on compact subsets of D, to
their respective units P, Q, R and S. Recently M. Heins [2] has
treated such convergence questions in a more general situation.

Using Den joy's criterion, we deduce stronger convergence pro-
perties on PN, QN, RN and SN than previously known.

Let W= C\J{°o}\E, where E is the closure of the set (zv'\
v = 1, 2, •}. We assume that T\E is nonempty.

THEOREM. The functions P, Q, R and S extends to be analytic
in W, and the convergence of PN, QN, RN and SN, to P, Q, R and
S respectively, is uniform on compact subsets of W.

To prove this theorem, we have to combine various formulas
from Nevanlinna's paper [6]. Some of these formulas will also be
useful in § 3.

Nevanlinna gives a representation of all functions w in the unit
ball of H°°, such that

w(zμ) = wμ , 1 ^ μ ^ v .

The formula is

(1) w =
Cv - Aw.

where Au, Bv, Cv and Dv are polynomials of degree not greater than
v, and Woo is an arbitrary function in the unit ball of H°°.

These polynomials are obtained from a recursive set of equations
which will be important to us. Before describing these equations,
we remark that Av, Bvy Cv and Όv differ from Pu9 QVJ Rv and Sv by
a common rational factor λv which we define below. If we put Ao =
Do = 0, Bo = 1, and Co=—1, the recursive equations can be written
in matrix form

( 2 )
Bu

M
v,

where Mv is a 2x2 matrix depending more or less on the original
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interpolation data for the problem (*). In fact we have

- τvzev) (qy + p^ej

225

Mv =
— svzev

where

= a, -

The numbers ay, 6, and cv belong to the interval [0, 1] and we have

where w»] is a certain well defined rational function of the inter-
polation data wl9 , wυ ([6], p. 37). The numbers {cυ} can be chosen
freely from [0, 1] but in the following we assume cv — aX, v =
1, 2, . This is the so called Denjoy normalization ([6], page 39)
which has many advantages.

The rational functions Pv, Qy, Ru and Su are now defined by

( 3 )

where Xv(z) - Π U ( ( 1 - ί>2,)(l - 4))"1/2(1 - M ) " 1 -
These rational functions are more convenient to work with than

Av, Bv, Cu and Dv for several reasons.
For example, it is not hard to show that AUDU — BVCV vanishes

at zu , zυ ([6], page 32), but the factor \υ has the effect that

where πv — ΠA*=I («/» — zeμ)/(l — aμzεμ) is the Blaschke product corre-
sponding to {zμ}μz=ί. The Blaschke product corresponding to {zv}?=1 is
denoted by π.

We need the following additional equations from [6], (see pages
36 and 43):

( 4 )

( 5 )

= (-iy+1etθ»z»Cu(V)

^ 1 and max{|P,(z)|, \Qv(z)\, \Su(z)\) £
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REMARK. In (4), ^=-Σ?«=i«/<=-Σ^=i &τgzμ. The factor (-1)"
seems to be missing in the corresponding formula in [6]. Both (4)
and (5) reflect the fact that for fixed zeD, the transformation

w .PXz) - QXz)w

carries D into D, and that the mapping is onto if \z\ = 1.
We can now give the proof of Theorem 1.
If we combine equations (3) and (4), it is easy to verify that

( 6 )

If we express the recursive equation (2) in terms of Pv, Qv, Ru, S>,
we can write it in the form

( 7 )
R.

(I

where I is the identity matrix, and εu is a matrix whose size is
easy to estimate thanks to the following result due to Denjoy ([6],
P. 42).

Denjoy's criterion. The problem (*)has more than one solution
if and only if Σ^i(l - αj(l - δj" 1 < oo.

Instead of estimating the norm of εu, let us be content to con-
sider the left lower corners in (7) only. We then get

(8) Λ ^ d + t X - i + t ^ - !

where

" v / (1 - 65)1/2(1 - alb

and

Since (1 - albl)/(l - bl) = 1 + b%l - oi)/(l - bξ), it follows that the
inequality

( 9 ) I ίv(z) I + I t[{z)\ < Cκ — ~ a"

1 _ ,
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holds uniformly on any compact subset K of W, with Cκ depending
on K, but not on v.

From (8) we have

In light of (5), we conclude that

—ϋ- (z) = 1 + 0
l~

holds uniformly in K Π {z: \z\ ̂  1}. By Den joy's criterion RV—>R
uniformly on compact subsets of W f){z: \z\ ^ 1}.

Let us assume that K has the symmetry property z e K — z~ι e K.
If zeKΓ){z:\z\^l}, (5) and (6) gives

where Cκ depends only on K and R, since πvR^ —> πR uniformly on
K f]{z: \z\ ̂  1}. Since W is connected, the last inequality implies
that {Ru} converges uniformly on compact subsets of W.

The convergence of {QJ follows easily from (6). From (7) we
also have the identity

P. - (1 + QP^ + tlQ,-!

which implies (in light of (5)) that

\PU - P^\ ^ IKWP^I + lίίHQ-,! ύ \RΛ\tA + ]*:Ϊ) .

Using what we just have proved about {R,}, we see that
XV(PV — P,_)) converges uniformly on compact subsets on T̂ Π
{z\\z\^l}. The convergence of {P,} and {Sv} in W now follows
easily.

We recall that an inner function in H00 is characterized by
having unimodular radial limits almost everywhere on T.

COROLLARY. Assume there are at least two solutions to the in-
terpolation problem (*) with minimal norm. Then there is a mini-
mal solution which is a constant times an inner function analytic
across T/E.

Proof. We may assume that the minimal norm is one. If we
choose Woo = ζ in (**), where ζ e T is a constant, Nevanlinna ([6],
p. 48) showed that w given by (**), is an inner function. The an-
alyticity across T\E follows from the above theorem. The above
corollary was apparently proved first by D. Hejal [3], and he even
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proved such a result for finitely connected domains with smooth
boundary.

Let us finally remark that if the assumption about non-unique-
ness is dropped in the corollary, no conclusion can be drawn. In
fact, it was recently proved by K. 0. 0yma and the present author
(and independently by D. Marshall) that any extreme point in the
unit ball of H°°, is the unique minimal solution to an interpolation
problem (*), where {zj\ has only one limit point on T. (See [8].)

Clearly such a function h may not satisfy any of the conclusions
in the above corollary. On the other hand, if h is not extreme, it
can never be a unique minimal solution to a problem like (*).

3* Schur's algorithm, and a problem in constructive approx-
imation* Consider a polynomial

and associated with it, the set

Let SN = {pN - zN+1h: h e EN). Then Schur [7] showed that if EN Φ φ,
then SN could be parametrized by the formula (1) given above:

(10) pN - zN+1h = j*N ~ BNWCO

CN - DNWoo

REMARK. Actually Schur's formula looks a little bit different
from the above one, since his notation is slightly different from
Nevanlinna's. We shall not write out Schur's formulas in detail,
but be content to mention the following.

Schur's algorithm (a simpler, limiting case of the recursive equa-
tions (2) mentioned above) provides the following, after a finite
number of computations involving the coefficients Cu -—,CN of pN:

( i ) It shows whether the set EN is empty or not;
(ii) It gives an explicit construction of the polynomials ANf

BN, CN and DN in (10), and in particular we mention: CN(0) > 0,
DN(0) = 0, and ANDN — BNCN = 7NzN+1, where j N is a positive con-
stant computed in terms of the coefficients of pN.

Now let FeL°°. We assume F <£ H°°, and shall construct HeH°°,
such that

\\F - H\U^U{FyH-)

where d(F, H°°) = inf{\\F - h\\~,heH~). The norm considered here,
is the usual essential supremum norm on L°°(T). We recall that H°°
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can be viewed as a w*-closed subalgebra of L°°(T), and that the sup
norm on D coincides with ||ft||«> if heH°°.

Let F be expanded in its Fourier series

F{eίθ) Σ ^eikβ

k — — oo

and form FN = F*σN9 where σN denotes the iVth Fejer kernel.
Then

FN{eίθ) = Σ ( l -
N

Now let pN be the polynomial related to FN by putting

pN(eiθ) = e«N+ι)°

Then clearly

d{Fm H-) =

If we apply Schur's algorithm to 2npN, where n runs through the
integers, we can determine a unique integer kN such that

(11) 2** < d ( | ^ H~) ^ 2*^+i .

Note that since d{FN, H°°) —> d(i^, iί°°) as i V ^ CXD, there will exist an
integer k such that kN = k eventually, and such that (11) holds with
kN replaced by k and FN by F.

Let us put FN = 2-k»-2FNf such that 2~2 ^ d(F^, iϊTO) ^ 2"1, and
apply the Schur algorithm to pN — 2~kχ~2pN.

The set {heH°°: \\pN - ZN+1h\\~ ^ 1), will still be denoted by EN.
Formula (10) above, and the remarks (i) and (ii) about Schur's

algorithm, applies to pN, and we have for heEN:

(ANDN -

CN CN(CN — DNWoo) CN CN(CN — DNWoo)

If we consider max{Re h(0), h e EN), the last expression shows
that this maximum is attained by a unique function hN correspond-
ing to WcoΞΞ - 1 . (Note that C*(0) > 0 and DN(0) = 0.)

Define now HN e H°° by the relation

ft ft _ 1 * _ h

•Γ N ^N W+ϊ-^N N '

z

Then \\FN — HN\\oo ̂  1, and ReHN is maximal among all heH°° such

t h a t ||i?V - h\\oo^ 1.
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Let H be any w* cluster point of HN. Then clearly || F — HH*, <̂  1.
We claim that Re β(0) is maximal among all h e H°° such that
\\F - hWoo^l. This follows since HN(0) -> H(0), and from our choice
of Sff.

But then \F — H\ = 1 almost everywhere on Γ as Garnett has
shown [5]. This implies that H is unique, since a convex combina-
tion of two different unimodular functions fails to be unimodular.

So the sequence {HN}, given by HN — 2k*+2HN, converges uni-
formly on compact subsets of {z: \z\ < 1} to a function HeH°°, such
that \\F-H\\o0£4d(F,H'*).

Final remarks* Recently P. Jones [4] gave a constructive proof
of the fact that any functions / in the class BMO (Functions of
bounded mean oscillation) can be decomposed as

f=u + v

where u9 v e L°°, and v denotes the harmonic conjugate of v.

This decomposition appeared first in the fundamental paper [1]
ba C. Fefferman and E. Stein, but no constructive proof was known.
Jones' proof is constructive and geometrical in nature, and combines
the theory of interpolation by bounded analytic functions with re-
cent work by N. Th. Varopoulos [9], [10].

As Jones points out [4], this problem is much related to the
broblem of estimating the distance a functions FeL00, to H°°.

We want to indicate briefly how the decomposition / = u + v
can be obtained constructively using our approach above. For basic
properties and definition of BMO, see [1] and [4].

Using either the results of Varopolous [9], [10] or Fefferman-
Stein's result that BMO can be realized as the dual of the Hardy
space H\ we have the inequality

d(F,H-)£C\\F\\*

where C is an absolute constant and " | | (I*" denotes the BMO-norm.

So let /eBMO be real valued, with | |/ |U ^ 1. If σN is the APth
Fejer kernel, let fN = f*σN. Since the norm " | | H*" is rotation in-
variant
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and hence

for all N.
We now construct hN eH°° with ||/Λ, ~ feΛr||oo ̂  Ad(fN, H°°) <; AC,

and with Re hN(0) maximal among all h e H00 satisfying the last in-
equality.

We now write

U = (f* ~ K) + K .

Since Irn/z,̂  is bounded, we can use a compactness argument and
obtain that {hN} has a subsequence converging uniformly on compact
subsets of {| z | < 1} to a function h analytic in D, such that

This does not seem very constructive, but we are saved by the fact
that Ee h(0) is maximal among all holomorphic functions b in
{\z\ < 1} satisfying \\f — 6|| <Ξ AC, and this specifies h uniquely as it
did in § 3 where we dealt with a bounded function F instead of /.

So hN —> h uniformly on compact subsets of D, and if we take
real part in the decomposition

f=f-h+h,

we have

/ - Re(/ - h) + (l£ΓΛ) ,

which gives the desired decomposition.
Our decomposition is constructive, but not geometrical. On the

other hand, there are BMO-functions which can be given rather ex-
plicitely in terms of certain lacunary Fourier series, and for such
functions, the above construction may be of some use.
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