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THE TORSION GROUP OF A RADICAL EXTENSION

DAVID GAY AND WILLIAM YSLAS VELEZ

The torsion group of a radical field extension is defined
and its structure determined using a theorem of Kneser. In
the case of a number field, a representation theorem is proved
characterizing all abelian groups that can appear as torsion
groups of a radical extension.

Let F be a field with multiplicative group F*. Let K be an
extension of F and let T(K*/F*) be the torsion subgroup of K*/F*.
In this paper we will determine the structure of the group T(K*/F*)
in case K = F(a) where a is a root of irreducible xm — a e F[x] and
char F\m. In particular, we shall prove the following:

THEOREM A. For a positive integer q, let ζq denote a primitive
gth root of unity. Let xm — a e F[x] be irreducible with root a and
m = 2nm0 with m0 odd. For p a prime let Tp denote the p-torsion
of T = T(F(a)*/F*). Let η2n = ζ2n + ζ£. Define N to be the largest
integer, if such exists, so that 7}2N e F; otherwise, let N= °o. Then

T = (a2nF*) x Γ2 x H

where
(a) H = ({ζkeF(a):if p is prime and p\k, then ζp$F}F*};
(b) // ζ4$F(a)\F, then T2 = (am*F*);
(c) // ζ4 G F(a)\F, then
( i ) if N = co, τ2 = (am«ζ2n+iF*) x <{ζ2r. all t}F*) = Z2 -i x Z2~;
(ii) if n ^ N< oo, T2 = (am\l + ζ 2 ^ ~ % F * > x <(1 + ζ2x)F*} =

Z2n-\ X Z2N]

(iii) ΐ/ΛΓ< n, T2 = <αm°î *> x <αwo2Λ"^(l + ζ2.v)F*> = Z2n x Z2N-U

The following questions concerning the group T(K*(F*) have
already been examined for various extensions K/F:

(1) Let M be a subgroup of T containing F* such that M/F*
is finite. When is it the case that [M: ί7*] = [F(M): F]Ί Kummer
theory [6, p. 218] says that this equation holds when the exponent
of M/F* is m and a primitive mth root of unity ζm is an element
of F. Besicovitch [1], Mordell [9], and Siegel [13] found necessary
and sufficient conditions for this equation to hold in case the only
roots of unity in F(M) are ± 1 . Kneser [5] has generalized all of
these results by proving the

THEOREM. The equation [M: F*] = [F(M): F] holds iff, for every
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prime p, ζp 6 M implies ζpeF and l + ζ 4 e M implies ζ4e F.

(2) Let Θ 6 T. What is the general relationship between
[ΘF*: JF7*] and [F(θ): F]Ί (The former is called the order of θ over
F; the latter, the degree of θ over F.) Risman [11] has shown the

THEOREM. There exist integers n and t so that nt — [ΘF*: F*],
n\[F{θ): F], (n, t) = 1 and, if p is prime with p\t, then ζ2peF(θ)\F.

( 3 ) Suppose ζ4 ί F. Then what is the two-torsion T2 of
T(F(ζ4)*/F*)Ί May [8] has answered this with

THEOREM. Suppose ζ 4 ? F and char F Φ 2. Then N = oo implies
T2 = <{ζ2™: all m}F*> ^ Z2~; N< oo implies T2 = <(1 + ζ2*)F*> = Z2N.

The remainder of this paper is organized as follows. In § 1 we
prove Theorem A using the theorem of Kneser above. Along the
way, we will also characterize Tp(F(ζ2P)*/F*) and obtain some results
relating [aF*: F*] with [F(a): F], Moreover, we will give a new
proof of the exact version of Kneser's theorem that we need here.
This should make § 1 relatively self-contained.

In the final section (§ 2), we will characterize for a given algebraic
number field F those abelian groups that can arise as T(F(a)*/F*)
for a a root of irreducible xm — aeF[x].

!• Kneser's theorem and proof of Theorem A* We assume
the notation of the introduction. In addition, for a e K we denote
o(a) = oF(a) = [αF*: F*]. For p a prime, we recall that TP(K*/F*)
denotes the ^-primary subgroup of T(K*/F*).

Both Kneser's theorem and Risman's theorem suggest that special
things happen when ζ2peF(a)/F. Accordingly, our first results are
concerned with the group Tp(F(ζ2p)*/F*). This group plays a major
role in the final determination of the torsion group of a radical
extension.

LEMMA 1.1. (a) Suppose p is odd, ζp£F and aeF(ζp) with
o(a) = pr. Then aeζprF*.

(b) Suppose ζ4 e F and a e F(ζ4) with o(a) = 2r. Then r = 1
implies α e ζ 4 F * and r ^ 2 implies ζ2rβF(ζ4) and ae(l + ζ2r)F*.

Proof, (a) We prove this by induction on r. For r — 1, a is
a root of xp — ap e F[x] which must be reducible since ([F(ζp): F], p) = 1.
Thus a = ζpb, for some beF. If r > 1, then o(av) = pr~ι and by the
inductive hypothesis ap — ζpr-ic for some ce F. Let σ be a generating
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automorphism of the Galois group G(F(ζp)/F). Then (a/σ(a))p =
(ζp*/σ(ζpr))p so that a/σ(a) — ζp(ζpr/σ(ζpr)). Since there exists a primitive
pth root of unity ζp such that ζP/σ(ζp) = ζp, we have a/σ(ά) — ζPr/σ(ζpr)
for some primitive prth root of unity ζpr. Thus aeζ'prF*.

(b) Suppose r = 1. Then α is a root of irreducible x2 — a2 e JF^CC].

Thus F(α) = F(ζ4) so that aeζ,F\
For r ^ 2, we prove this by induction. In case r = 2, o(a) = 4

and a is a root of the new reducible polynomial x4 — a*eF[x].
Thus by Capelli's theorem ([4], p. 60f), a' = -46 4 for some beF

or α = ζ8ι/"2"δ e (1 + ζ 4 )F*. For r > 2, a2 = (1 + ζ2r-i)c, for some
ce F, by the inductive hypothesis. Thus, if <J is complex conjugation
(where <7(ζ2r-i) ζ2r-i = 1), we have (a/σ(a))2 = (1 + ζ2r-i)/σ(l + ζ2r-i) =
ζ2r-i. Therefore a/σ(a) = ζ2r = (1 + ζ2r)/σ(l + ζ2θ and consequently
α e ( l + ζ2r)F*. Π

As an immediate consequence of this lemma we have the follow-
ing result characterizing the structure of Tp(F(ζ2p)*/F*).

COROLLARY 1.2. Let Tp= Tp(F(ζ2p)*/F*) and suppose ζ2pgF.
Then

(a) Tp is infinite iff Tp = ([ζpr\ r > 0}F*), in which case Tp = Z%\
(b) if Tp is finite and R is largest such that ζpκ e F(ζ2p), then
( i ) p odd implies Tp = (ζpRF*) = ZPR and
(ii) p = 2 implies

Proof. The proof is obvious from Lemma 1.1 except for (b)(ii).
The proof of the latter follows from (1 + ζ2β)2 = ζ2n(r)2R + 2) and from
the fact that 37 -̂1 e F. •

The next result tells the complete story about the relationship
between the order of an element and its degree in the extreme case
when the two numbers are relatively prime. We will use the fol-
lowing result.

1.3 (Norris-Velez, [3] or [10]). Suppose aeK and o(a) = [αί 7*:
Jfr*j = m . Let k = max{n:n\m and ζΛ 6 F(a)} and suppose F{a) 2
L 2 F(ζk) with I = [F(a): L]. Then L = F(aι).

COROLLARY 1.4. Suppose (o(α), [F(a): F]) = 1. ΓΛew ae ζ0{a)F*,
i.e., α is "essentially" a root of unity.

Proof. Let m = o(α) and w = [F(α): ί 7 ] . We claim that (n, m) — 1
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entails m odd. For if m were even, then n would also be even con-
tracting (n, m) — 1. Thus m must be odd.

We will prove the corollary by induction on the number of dis-
tinct primes dividing m. If m = pk, then it follows from 1.3 that
F(a) = F(ζpι) for some I ^ k. Since [F(ζpi): F]\(p - l)pι~ι and
([F(a): F], p) = 1, it follows that F(ζpι) = F(ζp). The lemma then
implies the truth of the corollary in this case.

Now suppose m — mop
k with (m0, p) = 1. By what we have just

seen αm° = cζpk for some ce F. Let ζpk be a primitive pkth root of
1 as well as an moth root of ζp*. Then (a/ζpk)m° = c and o(a/ζ'p>c) = m0.
Thus by the inductive hypothesis a/ζpk = ζmjb for some b e F so that

We begin the proof of Kneser's theorem by deriving another
result concerning the relationship between the order of an element
and its degree. This is a sufficient condition for the two numbers
to be equal, a result at the opposite extreme from the one just
proved.

LEMMA 1.5. For every prime p dividing o(a) suppose that
ζ2p ί F(a)\F. Then [F(a): F] = o(α).

Proof. It is sufficient to prove this in case o(a) = pk for some
prime p.

Suppose p is odd. If [i^α^"1): F] < p, then i^α^""1) - F(ζp),
k

contradicting ζ2p & F(a)\F. Thus xp — apk is irreducible and con-
sequently so is xpk — ap\ Hence [F(a): F] = o(ά).

Let p = 2. If k = 1, then the conclusion is immediate. Assume
k ^ 2. Then x2k - a2k is reducible iff x4 - a2k is reducible iff a2k =
—464 for some δ e ί 7 by Capelli (loc. cit.) iff α2fc"2 = ±(1 ± ί)b, con-
tradicting either o(α) = 2fc or i = ζ4 e F(a)\F. Thus α;2'" - α2fc must
be irreducible and [i^(α): F] = o(a). Π

The next result is of a more general nature; under certain con-
ditions it characterizes the p-torsion group of an extension given by
adjoining radicals. The proof is a modification of Kneser's [5].

LEMMA 1.6. Let p be a prime, K an extension of F and N a
subgroup of K* such that F* £ N and N/F* is a finite p-group.
Suppose that ζ2p $ F(N)\F. Then

[F(N): F] = [N: F*] and TP(F(N)*/F*) = N/F* .

Proof. Let <yT £ F(ΛQ* so that Λ^jF* = TP(F(N)*/F*). Since
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,yV\F* is an abelian p-group, there exists a sequence of subgroups
F* = NQ £ N, £ £ ^ T such that [A :̂ iV,_J = p. Consequently, for
every i, there exists β* e N^N^ such that /Sf e JV^.

We claim that for all n, [F(Nn): F] = pn and Tp{F{Nn)*IF*) = JVn/F.
We prove this by induction on n. In case n — 0 this is obvious.
Assume that [F(Nk^): F] = p"-1 and Tp(F(Nk^)*/F*) = Nk_JF*.

To prove the claim in case n = fc, we first show that /3* £ F(Nk^).
For otherwise, since O(/3A.) is also a power or 2?, we would have
βkF* 6 Tp(F(Nk^)*/F*) = NkJF*, a contradiction. Thus βk £ ^(iV^O
and, by Lemma 1.5, [ίWfc): ^(iV^O] = p. Hence fF(iV,): ί7] =
[F(Nk): F(Nk^)]'[F(Nk^): F] = pk.

To prove the remainder of the claim, let βF* e Tp(F(Nk)*/F*).
By Lemma 1.5 either β £ F(Nk^) and βp e F^N^) or β e F^N^). We
claim that in either case β = /3Ϊ7 for some 7 £F{Nk_λ). This is cer-
tainly true in the latter case with j — p. To show it so in case
β 0 F(Nk^) and βp e FiN^), let σ be an isomorphism of F(Nk) into an
extension field of F(iVfc_1) fixingeve ry element of î ί(ΛΓ

Λ_1) but not βk.
Since [F(Nk)ι F(Nk_0] = V, it follows that F(Nk_x) = {δ e F(Nk): σ(δ) = δ).
Thus σ(β) Φ β, σ(βk) = ζpβk, σ(βp) = βp and σ(β) = ζ3

pβ for some
(j, p) = 1. Thus σiβ-'βζ) = β~ιβi so that /3 = /3J7 for some 7 6
F(Nk_ϊ). Because o(/S) and o(βί) are ^-powers, it follows that yF* e
Tp(F(Nk^)*/F*) - Nk_JF*. Thus βF*eNk/F*. This completes the
induction and the proof of the original claim.

Since F(Nt) £ F(N) for all i and [F(iSΓ): iV] < c>o, it follows that
the chain No Q N, Q £ ^ is finite. Thus iV̂  = .^^" for some k.
Hence

TP{F(N)*/F*) = TP(F(^T)*/F*) = ^K/F*

and [ ί V r ) : F] = [^T: F*]. Consequently, [F(N): F] = [F(Λ"): F] =
\ΛT\ F*\ ^ [N: F*]. But since [N: F*] ^ [F(N): F] in all cases, we
have [F(N): F] = [N: F*] and TP(F(N)*/F*) = N/F*. The proof is
complete. •

Just as Lemma 1.6 considered the p-torsion group, so does the
following theorem consider the whole torsion group.

THEOREM 1.7. Let K be an extension of F and M a subgroup
of K* satisfying F* £ M and [M: K*] < oo. If9 for all primes p,
ζ2p$F(M)\F, then [F(M): F] = [M: F*] and T(F(M)*/F*) = M/F*.

Proof. Let p be a prime and suppose p*||[Λf: F*J. Let
TP(M/F*) = MJF*. Then by Lemma 1.6, [Mp: F*] = p* = [F(MP): F].
Thus p*\[F(M):F] and therefore [M: F*]\[F(M): F]. Since we have
in general (with no hypothesis) [M: F*] ^ [F(M): F]f it follows that
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[M: F*] = [F(M): F\.
To prove the second part of the theorem, we show that

TP(F(M)*/F*) = TP(M/F*). Thus, let βF* e TP(F(M)*/F*). As a
consequence of the equality proved in the preceeding paragraph,
we have

p> = [Mp: F*\ g [</3, Mp): F*] = [F(MP, β): F\ £ pt

thus [Mp: F*] £ [</9, Mp): K*] and hence βF* e MJF*. Π

We now apply these results to the determination of T(F(M)*/F*)
in case M— aF* where xm — am is irreducible in F[x]. It is clear
that Theorem 1.7 implies Theorem A for the case ζ2p $ F(a)\F for all
primes p. Thus we turn to an examination of the case when ζ2p e
F(a)\F for some prime p.

THEOREM 1.8. Let m = mQpk with (m0, p) = 1 and suppose ζ2p e
F(a). Then

(a) F(amQ2k~ι) = F(ζ4) - F([/~a) in case p = 2 and k ^ 1;
(b) Tp{F(a)*/F*) = <a"*F*9 Tp(F(ζ2PΠFηy;

(c) (am°F*) Π Tp(F(ζip)*/F*) = F* if p is odd;
(d) (a™»F*y Π T2(F(ζA)*/F*) = (ζ<F*) if p = 2 and k ^ 1.

Proof, (a) Let m = 2kmQ with mQ odd. If ζ4 e F(a)\F, then
ar/c — α is reducible over F(ζA). The latter is true iff x4 — α is re-
ducible over F(ζ4) iff α = -46 4 for some heF(ζ4). Thus α •= (262ζ4)

2

and α2fr~lm° = cζ4 for some ceF{ζi). Since the square of cr/f~lm° is in
F, it follows that ceF.

(b) First we claim that pk\\ [F(ζ2p, a
m°): F\. Indeed, in case p is

odd, this follows from the facts that ([F(ζ2p): F], [F{amή: F]) = 1,
F(ζ2p)/F is Galois and pk = [F(am°): F]. In case p = 2, we have seen
from (a) that F(ζ4) S i^(αw°); furthermore [^(α^0): F ] = 2*.

Now let /3JF7* 6 Tp(F(a)*/F*). We claim that /5 e J^(C2p, α
m°). Other-

wise, we would have [βF(ζ2p, amψ\ F(ζ2p, αw°)*] = pι,l^ 1. Thus from
Lemma 1.5 it would follow that [F(ζ2p, a

m\ β): F(ζ2p, amή] = p\ im-
plying pι+k\[F(a)\ F], a contradiction. So β e F(ζ2p, amή and con-
sequently

py e Tp(F(ζ2p, cr°)*IF{ζ9p)*) .

By Theorem 1.7, Tp(F(ζ2p, am°)*/F(ζ2p)*) - (am»F(ζ2pY). Thus /5 -
j(amήj for some i 6 Z and 7 6 ίχζ 2 p ). Hence yF* e Tp(F(ζ2p)*/F*) and
(b) follows.

(c) If p is odd, then the degrees \F(amή: F] and [F(ζ2p): F] are
relatively prime implying that (am°F*) n Tp(F(ζ2p)*/F*) = F*.

(d) From (a), F ^ 2 ^ 1 ) - F(ζ4). Thus α^2*""1 = ζ4c for some ceF.
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The conclusion then follows from the fact that [αF(ζ4)*:

An immediate consequence of this theorem is

COROLLARY 1.9. Let m — mo2
k where m0 is odd. Then

T2(F(a)*/F*) =

We also have the following bonus.

COROLLARY 1.10. Suppose p is odd and ζp, ζpS e F(ά)\F. Then
Cp. e F(ζp).

Proof. Since ζpS e Tp(F(a)*/F*)f Corollary 1.2 and part (b) of the
theorem imply ζpS = (am°)jplζprb for some b e F * and integers j , I,
r such that (j, p) = 1 and ζpr e F(ζ2p). Thus (am°Ypl = ζp ζ ? * - 1 = ζ^b'1

where q = k - I. By 1.8(c), we have <αw°F*> n Tp(F(ζp)*/F*) = F*
implying j = 0 and ζpS e JP(Cp). D

The proof of Theorem A will be complete once we determine the
structure of T2(F(am°)*IF*) (m = 2km0, m0 odd). This we accomplish
in the following technical lemma.

LEMMA 1.11. (a) Let G be a group with G = (p} x <σ>,
< » = Z2a, O> ^ Z2b, b^a^ 1. Let H = ((p2<ι~\ a2"'1)) and p, σ the
images of p, σ respectively in G/H. Then G/H = (ρσ2b~a} x (σ}9

(pσ2h~a) = Z2a-i, and <<τ> = Z2ι.

(b) Let G — <|θ) x Z$x> where (p) = Z2n. Let σ e Z2™ be the unique

element of order T. Then G = (pa) x Z2oo. Let H = {{p2%~\ σ271"1)).

Let p, σ, Z2oo be images of p, σ, Z2™ respectively in G/H. Then

G/H = (pσ) x Z2oo where (pσ) = Z2n-i and Z2°o ̂  Z2oo.

Proof, (a) The element (p, σ2h~a) is of order 2a in G. Also
(p, a2*'*)2*'1 = (p2a~\ σ26"1). It is easy to see that {p, σ2b~a) and (1, σ)
generate G and that ((p, σ2b~a)) Π <(1, σ)) = 1. Thus G = ((p, σ2h~a)) x
<(1, σy>.

(b) Analogous to (a) since H < (pσ). Π

Proof of Theorem A. We only need to prove (c). If N < °°,
let 6 = max (n, N), a = min (n, N). Then (ii) and (iii) follow from
Lemma 1.11 (a) and Theorem 1.8 (d).

If JV = oo, then (i) follows from Lemma 1.11 (b) and Theorem
1.8 (d) with (p) = <αw°F*> and Z,- = {ζ2tF*: all t}. Q

2* A characterization of H for algebraic number fields* As
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in the previous sections let xm — ae F[x] be irreducible with root a
and char F\m. Let & — {p: p prime and ζpeF}. For an integer
n let ά?(n) be the set of primes dividing n.

In general, the group H = ({ζq e F(a): 0{q) Π 3? = Φ)F*) of Theo-
rem A can be quite large. For example, if F is the field of real
numbers and a = ζ4, then H = <{ζ/. q odd}F*>. However, if F is an
algebraic number field, then H is a finite cyclic group. Henceforth,
we assume F is an algebraic number field. Thus we have H = (ζqF*)
for some q satisfying 0{q) Π 0* — φ. In fact, H = Zq. We can show
more: Let S denote the set defined by q e S iff

(1) 0(q)f]0=φ;
(2) F(ζg) (respectively, F(ζ4q)) is the splitting field of an irre-

ducible binomial;
( 3 ) if ζr e F{ζq) (respectively, ζr e F(ζJ) and ^ ( r ) n 0 = Φ, then

r\q.
Then we can prove the following.

THEOREM B. Let H = <ζ^*> be the group of Theorem A with
^%q) Π 0 = φ. Then qeS.

Theorem B is an immediate consequence of the following.

LEMMA 2.1. Let K/F he abelίan with F(a) 2 K 2 F and n -
[K: F].

(a) // ζ4 ί F(a)\F, then K is the splitting field of xn — a.
(b) // ζ4 e F(a)\F, then if (ζ4) is the splitting field of xn — a or

x2n - a.

Proof, (a) Let k = max {I: l\m and ζ,ei^(α)}. By 1.3, K(ζk) is
the splitting field of xι — a where I = [̂ (ζfc): J?7]. The group of xι — a
is abelian so that, by a theorem of Schnizel ([12], Theorem 2) and
the fact that ζ±£F(a)\F, its Galois group is also cyclic. Thus K is
the splitting field of xn — α.

(b) By Theorem 1.8 (a), F(ζ4) = F(]/~a) and a is a root of the
irreducible binomial xm/2 — ι/α over JFXζJ. Let ^ ' = [ϋΓ(ζ4): F(ζ4)].
By (a) if(ζ4) is the splitting field of xn> - V~a over F(Q. Thus K(Q
is the splitting field of x2n' — α over F. It is easy to see that 2nr = n
or 2n. Π

If g' e S and ^(ζ^) is the splitting field of irreducible xn — 6, then
call xn — 6 an associated binomial for g. If F(ζiq) is the splitting field
of an irreducible binomial αf' — c and ζ r e jP(4g) with &(r) [\ 0J — φ
implying r\qf then call xn' - c a n associated binomial for #. Then
we have the following converse to Theorem B.
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THEOREM C. Let q e S with xn — b an associated binomial for q.
Let K be the splitting field of xn — b. For any positive integer s,
there exists cβ F so that

( i ) xsn — bcn is irreducible;
(ii) the group H of Theorem A for xsn — bcn is equal to <ζgJP*>;
(iii) ζ

Theorem C is an immediate consequence of the following more
general result.

LEMMA 2.2. As above, assume F is an algebraic number field.
Let xn — b e F[x] be irreducible with root β. Then for any integer
s there exists ce F so that (1) xns — bcn is irreducible; (2) if j is a
root of the latter with j s = βc, then F(β) £ F(j) and ζk e F(y) implies
ζkeF(β).

Proof. Let s be an integer, s > 1. For every rational prime p,
the binomial xs — p is irreducible over Q. Moreover, for distinct
primes plf .., Vk, [Q(8/^, , Wk): Q] = sk by [1]. Thus, if F is
an algebraic number field, there are infinitely many primes so that
xs — p is irreducible over F.

Now, if Ύ] is an algebraic number with [F(η, β): F(β)] = s and
ζk e Fir]), then [F(β, ζk): F(β)] \ s. Thus let ̂  = {ζk: [F(ζk, β): F(β)] \ s}
and consider the field L = F(β, &*). Because the number of solutions
to φ(x) g χQ for fixed x0 is finite, the set S^ is finite and thus L is
an algebraic number field, (φ is Euler's ^-function.)

Choose p to be a prime so that xs — p is irreducible over L(V β).
Then we claim that xsn — bpn is irreducible over F. We will prove
the claim by showing that the degree of a root is sn. Let 7 be a
root with 7s = βp. Then 7 is also a root of xs — βp over L(Mβ).
Furthermore, there exists a root 7 of xs — p so that L(Vβ, 7) =
L(V~β, 7). Thus [L(V]f, 7): L(V~β~)] = s, xs - βp is irreducible over
L, and hence [L(rr)ι L] = [F(y): F(β)] = s. Since [F(β): F] = n, the
degree of 7 over F is sn. This proves the claim.

Now let ζkeF(j). Then by the definition of L, ζkeL. But by
the fact that [L(τ): L] = [F(y): F(β)]9 it follows that ^(7) Π L = F(β).
Thus ζkeF(β). This completes the proof of the lemma. •

Our final result is a characterization of the set S.

PROPOSITION 2.3.

(1) If r,seS and &>(r) = ̂ ( s ) , then r = s.
( 2 ) | S | < 00.

Proof. (1) follows from the fact that if q e S and p e
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t h e n p*\\q implies (by Corol lary 1.8) ζpteF(ζp) a n d ζpt+i$F(ζp).

(2) Let &*(S) = {p:pe^(q) for some qeS}. By Lemma 2.1,
p G ̂ ( S ) implies that either F(ζp) or F(ζ,p) is the splitting field of
an irreducible binomial. We can show that F(ζ4p) is always the
splitting field of an irreducible binomial. For, suppose xn — b is
irreducible, has splitting field F(ζp) and that ζ±£F{ζp). Since F(ζp)
is abelian, xn — b must be a normal polynomial. Hence ζn e F(ζp) and
thus 4 X n. If n is odd, then x2n + 62 is irreducible with splitting
field F(ζ4p). If 21| w, then x2n + 2nb2 is irreducible with splitting field
JF(ζ4p). Thus

= {p: p prime, pg*^, F(ζip) is the splitting field
of an irreducible binomial}.

We claim that ^(S) is finite. This and (1) would show |S | < °o.
To prove this claim, let n be the number of roots of unity in

i*Xζ4). By the argument in the proof of Lemma 2.2, the set {p: p prime
[F(ζip): F(ζ4)] ^ n} is finite. Thus let p e &>(S) so that [F(ζJ: F(ζ4)] =
m > n. Therefore F(ζip) is the splitting field of an irreducible and
abelian binomial xm — b for some b eF. Thus ζm e F(ζip) and, by [3;
Proposition 1], ^(m)Q^Q^(n). Hence, since m > n, we have
f i U f i F i W S T O . Thus also F(ζ<p) ΓΊ F(ζn*) ^ F(ζ4). But the
number of primes p so that the latter occurs must be finite since
[F(ζn2): Q] < oo. Thus ^%S) is finite. . Π

REMARK. The set S is closely related to the set N = {̂ : there
exist beF so that x% — b normal}. In fact, if neN, then there
exist n0, q0 with n — nQq0, &*(n0) £ ^ , g019 for some ? e S.

More precisely, suppose ζ4eF. If p e ^ , define A(p) ^ 1 by
ζpA(P)eF9 ζpAiV)^i£F. For geS, p e ^ , define B(p, q), a(p, q) by

) and p*^ \\[F(ζq): F]. Let ^ =
p and m(q) = Rpe^ p**.*-*.*. Then a

typical element of N is of the form

qo[F(ζq): F]mM^(Q)

where $ e S, go| 9 with F(ζQo) - F(ζ?), ^(m^?)) £ ^V^ g and m2(g) | m(g).
The case ζ4 ί ί7 is similar (modulo 2!). See [2] for details and proof.

We conclude with some examples of the set S for various alge-
braic number fields:

(1) F=Q, S={1,3} (see [7]);
(2) F= Q(ζ4), S = {1, 3, 5} (see [14]);
( 3) F= Q(ζa), S = {^7} (see [2]); _
(4 ) F = Q(l/(5 + l/ 5 )/2). Since Q(ζ5) - Q(ζ4l/(5 + V 5 )/2), it
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follows that jP(ζ4) = F(ζΰ). Thus x* + 36 is irreducible with splitting
field F(ζ60) = F(ζ15). Hence S = {1, 3, 5, 15}.
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