ASYMPTOTIC PROPERTIES OF NONOSCILLATORY SOLUTIONS OF HIGHER ORDER DIFFERENTIAL EQUATIONS

W. J. Kim

Abstract

A classification of the nonoscillatory solutions based on their asymptotic properties of the differential equation $y^{(n)}+p y=0$ is discussed. In particular, the number of solutions belonging to the Kiguradze class A, is determined.

We investigate asymptotic properties of the nonoscillatory solutions of the differential equation

$$
\begin{equation*}
y^{(n)}+p y=0, \tag{E}
\end{equation*}
$$

where p is a continuous function of one sign on an interval $[a, \infty)$. Various aspects of Eq. (E) have been investigated by a number of authors [1-15]; in most cases, under the condition that the integral

$$
\begin{equation*}
I(r) \equiv \int_{a}^{\infty} x^{r}|p(x)| d x \tag{1}
\end{equation*}
$$

is either finite or infinite for some constant r. For instance, Eq. (E) is oscillatory on $[a, \infty$) if the integral (1) is infinite with $r=n-1-\varepsilon$ for some $\varepsilon>0[4,8]$. On the other hand, if $I(n-1)$ is finite, (E) is nonoscillatory; in fact, it is eventually disconjugate [9, 14, 15]. Under the same condition, results on the existence of a fundamental system of solutions possessing certain asymptotic properties have also been obtained $[5,13]$. Of particular interest to the present work, however, is the notion of class A_{p} introduced by Kiguradze [4] with the help of inequalities in Lemma 1.

A solution of (E) is said to be nonoscillatory on $[a, \infty)$ if it does not have an infinite number of zeros on $[a, \infty$). (Unless the contrary is stated, the word "solution" is used as an abbreviation for "nontrivial solution.") Eq. (E) is said to be nonoscillatory on [a, ∞) if every solution of (E) is nonoscillatory on $[a, \infty)$. If there exists a point $b \geqq a$ such that no solution of (E) has more than $n-1$ zeros on $[b, \infty)$, Eq. (E) is said to be eventually disconjugate on $[a, \infty)$.

As previous studies of Eq. (E) indicate, asymptotic properties of the solutions strongly depend on the parity of n and the sign of p. For this reason, it is convenient to classify Eq. (E) into the following four distinct classes:

$$
\begin{equation*}
n \text { even, } \quad p \geqq 0 \text {, } \tag{i}
\end{equation*}
$$

(iv)

$$
\begin{array}{ll}
n \text { odd, } & p \geqq 0 \\
n \text { even, } & p \leqq 0 \tag{iii}\\
n \text { odd, } & p \leqq 0
\end{array}
$$

Eq. (E) satisfying condition (i), for example, is denoted by (E_{i}); (E_{ii}), (E_{ii}), and (E_{iv}) are similarly defined.

We state important inequalities which will be used in defining the class A_{p} and also in some proofs.

Lemma 1. Let y be a nonoscillatory solution of (E) such that $y \geqq 0$ on $[b, \infty)$ for some $b \geqq a$, and let $p \not \equiv 0$ on $\left[b_{1}, \infty\right)$ for every $b_{1} \geqq a$. Define $[C]$ to be the greatest integer less than or equal to C.

If y is a solution of $\left(\mathrm{E}_{\mathrm{i}}\right)$ or $\left(\mathrm{E}_{\mathrm{iv}}\right)$, there exists an integer j, $0 \leqq j \leqq[(n-1) / 2]$, such that

$$
\begin{equation*}
y^{(i)}>0, \quad i=0,1, \cdots, 2 j, \tag{2}
\end{equation*}
$$

on $\left[b_{2}, \infty\right)$ for some $b_{2} \geqq b$, and

$$
(-1)^{i+1} y^{(i)}>0, \quad i=2 j+1, \cdots, n-1,
$$

on $[b, \infty)$.
If y is a solution of (E_{ii}) or ($\mathrm{E}_{\mathrm{iii}}$), there exists an integer j, $0 \leqq j \leqq[n / 2]$, such that

$$
\begin{equation*}
y^{(i)}>0, \quad i=0,1, \cdots, 2 j-1 \tag{3}
\end{equation*}
$$

on $\left[b_{2}, \infty\right)$ for some $b_{2} \geqq b$, and

$$
(-1)^{i} y^{(i)}>0, \quad i=2 j, \cdots, n-1
$$

on $[b, \infty)$.
Various versions of Lemma 1 appear in the literature [2, 5, 6, 12]. However, the important features of the present version are that the inequalities in Lemma 1 are strict and that the inequalities (2^{\prime}) and (3^{\prime}) hold on [b, ∞)-rather than on $\left[b_{2}, \infty\right.$) for some $b_{2} \geqq b$ if $y \geqq 0$ on $[b, \infty)$. Following Kiguradze [4], we shall say that a nonoscillatory solution y of (E_{i}) or (E_{iv}) belongs to class A_{j} if y or $-y$ satisfies the inequalities (2) and (2 ') for $0 \leqq j \leqq[(n-1) / 2]$. Similarly, a nonoscillatory solution y of $\left(\mathrm{E}_{\mathrm{ii}}\right)$ or $\left(\mathrm{E}_{\mathrm{iii}}\right)$ is said to belong to class A_{j} if y or $-y$ satisfies the inequalities (3) and (3^{\prime}) for $0 \leqq$ $j \leqq[n / 2]$. In view of the above definition, we may restate Lemma 1 as follows: The family $\left\{A_{0}, A_{1}, \cdots, A_{[(n-1) / 2]}\right\}$ forms a partition of the nonoscillatory solutions of $\left(\mathrm{E}_{\mathrm{i}}\right)$ and (E_{iv}), and the family $\left\{A_{0}, A_{1}, \cdots, A_{[n / 2]}\right\}$ forms a partition of the nonoscillatory solutions of
$\left(\mathrm{E}_{\mathrm{ii}}\right)$ and $\left(\mathrm{E}_{\mathrm{iii}}\right)$.
Lemma 2. If the class A_{k} contains three solutions v_{1}, v_{2}, and v_{3} of which every nontrivial linear combination again belongs to A_{k}, where $0 \leqq k \leqq[(n-2) / 2]$ for $\left(\mathrm{E}_{\mathrm{i}}\right)$ and $\left(\mathrm{E}_{\mathrm{iv}}\right)$ and $1 \leqq k \leqq[(n-1) / 2]$ for (E_{ii}) and ($\mathrm{E}_{\mathrm{iii}}$), then A_{k} contains three solutions y_{1}, y_{2}, and y_{3}, each a linear combination of v_{1}, v_{2}, and v_{3}, such that

$$
\lim _{x \rightarrow \infty} \frac{y_{j}(x)}{y_{i}(x)}=\infty, \quad 1 \leqq i<j \leqq 3
$$

Proof. Without loss of generality, we may assume that $v_{3}>$ $v_{2}>v_{1}>0$ on $[c, \infty)$ for some $c \geqq a$. The quotient $v_{j} / v_{i}, 1 \leqq i<j \leqq 3$, cannot assume a fixed value γ an infinite number of times on $[c, \infty)$, for otherwise $v_{j}-\gamma v_{i}$ would be an oscillatory solution contrary to the hypothesis. Therefore,

$$
\limsup _{x \rightarrow \infty} \frac{v_{j}(x)}{v_{i}(x)}=\liminf _{x \rightarrow \infty} \frac{v_{j}(x)}{v_{i}(x)}=\lim _{x \rightarrow \infty} \frac{v_{j}(x)}{v_{i}(x)}=K_{i j}
$$

$1 \leqq K_{i j} \leqq \infty, 1 \leqq i<j \leqq 3$. At first there appear to be eight different possibilities we must consider, depending on $K_{i j}=\infty$ or $K_{i j}<\infty, 1 \leqq i<j \leqq 3$. But note that if two of the constants $K_{i j}$, $1 \leqq i<j \leqq 3$, are finite, the third also must be finite. Furthermore, it is impossible to have $K_{12}=K_{23}=\infty$ and $K_{13}<\infty$. Hence we need only to consider the following four cases.
(a) $K_{i j}=\infty, 1 \leqq i<j \leqq 3$. Put $y_{i}=v_{i}, i=1,2,3$.
(b) $K_{12}<\infty, K_{13}=K_{23}=\infty$. In this case

$$
\lim _{x \rightarrow \infty} \frac{v_{2}(x)-K_{12} v_{1}(x)}{v_{1}(x)}=0, \quad \text { i.e., } \lim _{x \rightarrow \infty}\left|\frac{v_{1}(x)}{v_{2}(x)-K_{12} v_{1}(x)}\right|=\infty
$$

Put $y_{1}=v_{2}-K_{12} v_{1}, y_{2}=v_{1}$, and $y_{3}=v_{3}$.
(c) $K_{12}=K_{13}=\infty, K_{23}<\infty$. Here we have

$$
\lim _{x \rightarrow \infty} \frac{v_{3}(x)-K_{23} v_{2}(x)}{v_{2}(x)}=0 .
$$

Suppose that

$$
\lim _{x \rightarrow \infty} \frac{v_{3}(x)-K_{23} v_{2}(x)}{v_{1}(x)}=K .
$$

If $|K|=\infty$, put $y_{1}=v_{1}, y_{2}=v_{3}-K_{23} v_{2}$, and $y_{3}=v_{2}$. On the other hand, if $|K|<\infty$, then

$$
\lim _{x \rightarrow \infty} \frac{v_{3}(x)-K_{23} v_{2}(x)-K v_{1}(x)}{v_{1}(x)}=0
$$

and we put $y_{1}=v_{3}-K_{23} v_{2}-K v_{1}, y_{2}=v_{1}$, and $y_{3}=v_{2}$.
(d) $K_{i j}<\infty, 1 \leqq i<j \leqq 3$. For this case

$$
\lim _{x \rightarrow \infty} \frac{v_{2}(x)-K_{12} v_{1}(x)}{v_{1}(x)}=\lim _{x \rightarrow \infty} \frac{v_{3}(x)-K_{13} v_{1}(x)}{v_{1}(x)}=0
$$

Suppose that

$$
\lim _{x \rightarrow \infty} \frac{v_{2}(x)-K_{12} v_{1}(x)}{v_{3}(x)-K_{13} v_{1}(x)}=K .
$$

If $|K|=\infty$, let $y_{1}=v_{3}-K_{13} v_{1}, \quad y_{2}=v_{2}-K_{12} v_{1}$, and $y_{3}=v_{1}$. If $|K|<\infty$, then

$$
\lim _{x \rightarrow \infty} \frac{v_{2}(x)-K_{12} v_{1}(x)-K\left(v_{3}(x)-K_{13} v_{1}(x)\right)}{v_{3}(x)-K_{13} v_{1}(x)}=0
$$

and we put $y_{1}=v_{2}-\left(K_{12}-K K_{13}\right) v_{1}-K v_{3}, y_{2}=v_{3}-K_{13} v_{1}$, and $y_{3}=v_{1}$. The solutions $y_{i}, i=1,2,3$, defined in (a)-(d) belong to A_{k} and satisfies

$$
\lim _{x \rightarrow \infty}\left|\frac{y_{j}(x)}{y_{i}(x)}\right|=\infty, \quad 1 \leqq i<j \leqq 3
$$

Since we may take $-y_{i}$ if y_{i} is eventually negative as $x \rightarrow \infty$, the proof is complete.

Lemma 3. Suppose that Eq. (E) has there nonoscillatory solutions y_{1}, y_{2}, and y_{3} such that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{y_{j}(x)}{y_{i}(x)}=\infty, \quad 1 \leqq i<j \leqq 3 \tag{4}
\end{equation*}
$$

and $y_{3}>y_{2}>y_{1}>0$ on $[\xi, \infty)$. If η is an arbitrary point on $[\xi, \infty)$, there exists a solution $v \equiv \sum_{k=1}^{3} \alpha_{k} y_{k}$ such that $v \geqq 0$ on $[\xi, \infty)$ and $v(\zeta)=v^{\prime}(\zeta)=0$ for some point ζ on $[\eta, \infty)$.

Proof. Choose a constant $K>0$ such that $u \equiv y_{2}-K y_{1}<0$ on $[\xi, \eta]$. Since $u<0$ on $[\xi, \eta]$ and eventually $u(x)>0$ as $x \rightarrow \infty, u$ vanishes at some point of (η, ∞). Let σ be the first zero of u on (η, ∞). Define $K_{1}=\sup G$, where G is the set of real numbers $\beta \geqq 1$ such that $y_{3}-\beta u \geqq 0$ on $[\sigma, \infty)$. Evidently, G is bounded above and it is nonempty because $y_{3}-u>0$, i.e., $1 \in G$. Let $\beta \in G$ and $\tau \in[\sigma, \infty)$. If $u(\tau) \leqq 0$, then $y_{3}(\tau)-K_{1} u(\tau) \geqq y_{3}(\tau)>0$. On the other hand, if $u(\tau)>0$, then $y_{3}(\tau) / u(\tau) \geqq \beta$ for all $\beta \in G$, and thus $y_{3}(\tau) / u(\tau) \geqq K_{1}$. Since τ is arbitrary, the solution $v \equiv y_{3}-K_{1} u \geqq 0$ on $[\sigma, \infty)$. Therefore, if $v(\zeta)=0$ for some $\zeta \in(\sigma, \infty)$, then $v^{\prime}(\zeta)=0$. Hence, the proof is complete if we can show that $v(\zeta)=0$ for some $\zeta \in(\sigma, \infty)$. Assume
to the contrary that $v>0$ on (σ, ∞). Let $\varepsilon_{1}>0$ be given. There exists $\rho>\sigma$ such that $u>0$ on $[\rho, \infty)$ and $v(x) / u(x)>\varepsilon_{1}, x \in[\rho, \infty)$, since

$$
\lim _{x \rightarrow \infty} \frac{v(x)}{u(x)}=\infty
$$

by (4). Choose an $\varepsilon_{2}>0$ so that $v(x)>\varepsilon_{2} u(x), x \in[\sigma, \rho]$. Put $\varepsilon=$ $\min \left(\varepsilon_{1}, \varepsilon_{2}\right)$. Then $v-\varepsilon u>0$ on $[\sigma, \infty)$, i.e., $y_{3}-\left(K_{1}+\varepsilon\right) u>0$ on $[\sigma, \infty)$, contradicting the choice of K_{1}. Thus, $v(\zeta)=0$ for some $\zeta \in(\sigma, \infty)$. Finally, it is evident that $v>0$ on $[\xi, \sigma]$ and $v \geqq 0$ on $[\xi, \infty)$.

We are ready to consider the problem of determining the number of solutions belonging to class A_{j}. Let $q\left(A_{j}\right)$ be the maximum number of linearly independent solutions belonging to A_{j} with the property that every nontrivial linear combination of them again belongs to class A_{j}.

Theorem. Assume that Eq. (E) is nonoscillatory on $[a, \infty)$ and that $p \not \equiv 0$ on $\left[a_{1}, \infty\right)$ for every $a_{1} \geqq a$. Then
$q\left(A_{j}\right)=2, j=0,1, \cdots,(n-2) / 2$, for $\left(\mathrm{E}_{\mathrm{i}}\right)$;
$q\left(A_{0}\right)=1, q\left(A_{j}\right)=2, j=1,2, \cdots,(n-1) / 2$, for $\left(\mathrm{E}_{\mathrm{i}}\right)$;
$q\left(A_{0}\right)=1, q\left(A_{j}\right)=2, j=1,2, \cdots,(n-2) / 2, q\left(A_{n / 2}\right)=1$, for $\left(\mathrm{E}_{\mathrm{iii}}\right)$;
$q\left(A_{j}\right)=2, j=0,1, \cdots,(n-3) / 2, q\left(A_{(n-1) / 2}\right)=1$ for $\left(\mathrm{E}_{\mathrm{iv}}\right)$.
Proof. We shall prove the theorem for $\left(\mathrm{E}_{\mathrm{iii}}\right): q\left(A_{0}\right)=1, q\left(A_{j}\right)=2$, $j=1,2, \cdots,(n-2) / 2$, and $q\left(A_{n / 2}\right)=1$. Suppose that the class A_{j} contains a set B_{j} of $q\left(A_{j}\right)$ solutions of which every nontrivial linear combination again belongs to $A_{j}, j=0,1, \cdots, n / 2$. Using Lemmas 1 and 2 , we can easily deduce that the set $B=\bigcup_{j=0}^{n / 2} B_{j}$ containing $\sum_{j=0}^{n / 2} q\left(A_{j}\right)$ solutions is a fundamental system for ($\mathrm{E}_{\mathrm{iii}}$). Thus, $\sum_{j=0}^{n / 2} q\left(A_{j}\right)=n$. For this reason, it suffices to prove that

$$
\begin{equation*}
q\left(A_{0}\right) \leqq 1, \quad q\left(A_{j}\right) \leqq 2, \quad j=1,2, \cdots,(n-2) / 2, q\left(A_{n / 2}\right) \leqq 1 \tag{5}
\end{equation*}
$$

If $q\left(A_{0}\right)>1$, then there exist two solutions y_{1} and y_{2} belonging to A_{0} and a constant K such that $w \equiv y_{1}-K y_{2} \in A_{0}, w(c)=0$, and $w \geqq 0$ on $[c, \infty)$ for some $c \geqq a$. But this contradicts Lemma 1 (see also Kiguradze [5, Lemma 7]) and proves that $q\left(A_{0}\right) \leqq 1$. Suppose that $q\left(A_{k}\right)>2$ for some $k, 1 \leqq k \leqq(n-2) / 2$. Then the class A_{k} contains at least three solutions y_{1}, y_{2}, and y_{3}, of which every nontrivial linear combination again belongs to A_{k}. By Lemma 2, we may assume that

$$
\lim _{x \rightarrow \infty} \frac{y_{j}(x)}{y_{i}(x)}=\infty, \quad 1 \leqq i<j \leqq 3
$$

and $y_{3}>y_{2}>y_{1}>0$ on $[\xi, \infty)$ for some $\xi \geqq a$. Let $\left\{\eta_{i}\right\}$ be an increasing sequence of numbers such that $\eta_{i} \geqq \xi$ and $\eta_{i} \rightarrow \infty$ as $i \rightarrow \infty$. By Lemma 3 there exists for each i, a solution

$$
v_{i} \equiv \alpha_{i} y_{1}+\beta_{i} y_{2}+\gamma_{i} y_{3}, \quad \alpha_{i}^{2}+\beta_{i}^{2}+\gamma_{i}^{2}=1
$$

such that $v_{i} \geqq 0$ on $[\xi, \infty)$ and $v_{i}\left(\zeta_{i}\right)=v_{i}^{\prime}\left(\zeta_{i}\right)=0$ for some $\zeta_{i} \in\left(\eta_{i}, \infty\right)$. Obviously, there are convergent subsequences $\left\{\alpha_{i_{k}}\right\},\left\{\beta_{i_{k}}\right\}$, and $\left\{\gamma_{i_{k}}\right\}$, which will be again denoted by $\left\{\alpha_{i}\right\},\left\{\beta_{i}\right\}$, and $\left\{\gamma_{i}\right\}$, respectively, for notational simplicity. Put

$$
\lim _{i \rightarrow \infty} \alpha_{i}=\alpha, \quad \lim _{i \rightarrow \infty} \beta_{i}=\beta, \quad \lim _{i \rightarrow \infty} \gamma_{i}=\gamma
$$

Then $w(x) \equiv \alpha y_{1}(x)+\beta y_{2}(x)+\gamma y_{3}(x)$ is a nonoscillatory solution belonging to the class A_{k}. Since $w \geqq 0$ on $[\xi, \infty)$, we have

$$
\begin{equation*}
w>0, w^{\prime}>0, \cdots, w^{(2 k-1)}>0 \tag{6}
\end{equation*}
$$

on $\left[b_{2}, \infty\right)$ for some $b_{2} \geqq \xi$, and

$$
\begin{equation*}
w^{(2 k)}>0, \quad w^{(2 k+1)}<0, \quad w^{(2 k+2)}>0, \cdots, w^{(n-1)}<0 \tag{7}
\end{equation*}
$$

on $[\xi, \infty)$ by Lemma 1. We now use a line of reasoning due to Kondrat'ev [7]. Since $\lim _{i \rightarrow \infty} v_{i}^{(j)}=w^{(j)}, j=0,1, \cdots, n$, uniformly on any finite subinterval of $[a, \infty)$, there exists a number N such that

$$
\begin{equation*}
v_{i}^{(j)}\left(b_{2}\right)>\frac{w^{(j)}\left(b_{2}\right)}{2}>0, \quad j=0,1, \cdots, 2 k-1 \tag{8}
\end{equation*}
$$

if $i>N$. We may assume that $\eta_{i}>b_{2}$ for $i>N$. Since $v_{i} \in A_{k}$ and $v_{i} \geqq 0$ on $[\xi, \infty)$ for all $i, v_{i}^{(2 k)}>0$ on $[\xi, \infty)$ by Lemma 1. Thus,

$$
\begin{equation*}
v_{i}^{(2 k-1)}\left(b_{2}\right) \leqq v_{i}^{(2 k-1)}(\tau), \quad \tau \in\left[b_{2}, \infty\right) \tag{9}
\end{equation*}
$$

Substituting (9) in (8) with $j=2 k-1$, we obtain

$$
\begin{equation*}
v_{i}^{(2 k-1)}(\tau)>\frac{w^{(2 k-1)}\left(b_{2}\right)}{2}, \quad \tau \in\left[b_{2}, \infty\right) \tag{10}
\end{equation*}
$$

Integrating the above inequality from b_{2} to $x \in\left[b_{2}, \infty\right)$ and substituting in the resulting expression the inequality (8) with $j=2 k-2$, we get

$$
v_{i}^{(2 k-2)}(x)>\frac{w^{(2 k-1)}\left(b_{2}\right)}{2}\left(x-b_{2}\right)+\frac{w^{(2 k-2)}\left(b_{2}\right)}{2}
$$

Repeating a similar procedure $2 k-2$ times, we arrive at the inequality

$$
\begin{align*}
v_{i}(x)> & \frac{w^{(2 k-1)}\left(b_{2}\right)}{2(2 k-1)!}\left(x-b_{2}\right)^{2 k-1}+\frac{w^{(2 k-2)}\left(b_{2}\right)}{2(2 k-2)!}\left(x-b_{2}\right)^{2 k-2} \tag{11}\\
& +\cdots+\frac{w\left(b_{2}\right)}{2}, \quad x \in\left[b_{2}, \infty\right) .
\end{align*}
$$

This inequality, however, cannot hold throughout the interval $\left[b_{2}, \infty\right)$. Indeed, for $x=\zeta_{i}>\eta_{i}>b_{2}(i>N)$, the left-hand side $v_{i}\left(\zeta_{i}\right)=0$, while the right-hand side is positive by (6). This contradiction proves that $q\left(A_{j}\right) \leqq 2, j=1,2, \cdots,(n-2) / 2$. The proof that $q\left(A_{n / 2}\right) \leqq 1$ is more or less similar to the preceding case. Suppose that $A_{n / 2}$ contains two solutions y_{1} and y_{2} of which every nontrivial linear combination belongs to $A_{n / 2}$. Assume that $y_{2}>y_{1}>0$ on $[\xi, \infty)$, and let $\left\{\eta_{i}\right\}$ be defined as before. Put

$$
v_{i} \equiv \alpha_{i} y_{1}+\beta_{i} y_{2}, \quad \alpha_{i}^{2}+\beta_{i}^{2}=1
$$

such that $v_{i}\left(\eta_{i}\right)=0$. If

$$
\lim _{i \rightarrow \infty} \alpha_{i}=\alpha, \quad \lim _{i \rightarrow \infty} \beta_{i}=\beta
$$

(take subsequences, if necessary), define $w \equiv \alpha y_{1}+\beta y_{2}$. Then $w \in A_{n / 2}$ and we may assume that $w \geqq 0$ on $[b, \infty)$ for some b. Hence, by Lemma 1,

$$
\begin{equation*}
w>0, w^{\prime}>0, \cdots, w^{(n-1)}>0 \tag{12}
\end{equation*}
$$

on $\left[b_{2}, \infty\right.$) for some $b_{2} \geqq b$, and the inequality (8) holds for $i>N_{1}$, for some N_{1}, and for $j=0,1, \cdots, n-1$. Assume that $\eta_{i}>b_{2}$ for $i>N_{1}$. For each $i>N_{1}$, there exists $c_{i} \in\left(b_{2}, \eta_{i}\right]$ such that $v_{i}\left(c_{i}\right)=0$ and $v_{i}>0$ on $\left[b_{2}, c_{i}\right)$, since $v_{i}\left(\eta_{i}\right)=0$. On the interval $\left[b_{2}, c_{i}\right]$, we have $v_{i}^{(n)}(x)=-p(x) v_{i}(x) \geqq 0$. Therefore, $v_{i}^{(n-1)}\left(b_{2}\right) \leqq v_{i}^{(n-1)}(\tau), \tau \in\left[b_{2}, c_{i}\right]$, and when this inequality is substituted in (8) with $j=n-1$, we get

$$
\begin{equation*}
v_{i}^{(n-1)}(\tau)>\frac{w^{(n-1)}\left(b_{2}\right)}{2}, \quad \tau \in\left[b_{2}, c_{i}\right] \tag{13}
\end{equation*}
$$

Following the procedure employed to get from (10) to (11), we alternately integrate (13) from b_{2} to $x \in\left[b_{2}, c_{i}\right]$ and substitute in the resulting expression a suitable inequality from (8) (which holds for $j=0,1, \cdots, n-1$, in this case). When this process is repeated $n-1$ times, we arrive at

$$
\begin{aligned}
v_{i}(x)> & \frac{w^{(n-1)}\left(b_{2}\right)}{2(n-1)!}\left(x-b_{2}\right)^{n-1}+\frac{w^{(n-2)}\left(b_{2}\right)}{2(n-2)!}\left(x-b_{2}\right)^{n-2} \\
& +\cdots+\frac{w\left(b_{2}\right)}{2}, \quad x \in\left[b_{2}, c_{i}\right] .
\end{aligned}
$$

However, this inequality cannot hold at $x=c_{i}$ because $v_{i}\left(c_{i}\right)=0$
while the right-hand side is positive by virtue of (12). Consequently, $q\left(A_{n / 2}\right) \leqq 1$, and the proof is complete for (E_{ii}). Proofs for (E_{i}), (E_{ii}), and (E_{iv}) are similar.

This theorem generalizes a main result of Etgen and Taylor [3].

References

1. G. V. Anan'eva and V. I. Balaganski, Osctllation of the solutions of certain differential equations of higher order, Uspehi Mat. Nauk, 14 (1959), 135-140.
2. G. A. Bogar, Oscillations of nth order differential equations with retarded argument, SIAM J. Math. Anal., 5 (1974), 473-481.
3. G. J. Etgen and W. E. Taylor, Jr., The essential uniqueness of bounded nonoscillatory solutions of certain even order differential equations, Pacific J. Math., 68 (1977), 339-346. 4. I. T. Kiguradze, Oscillation properties of solutions of certain ordinary differential equations, Dokl. Akad. Nauk, 144 (1962), 33-36.
4. On the oscillatory character of solutions of the equation $d^{m} u / d t^{m}+$ $a(t)|u|^{n} \operatorname{sign} u=0$, Mat. Sb., 65 (107) (1964), 172-187.
5. W. J. Kim, Nonoscillatory solutions of a class of nth-order linear differential equations, J. Differential Equations, 27 (1978), 19-27.
6. V. A. Kondrat'ev, Oscillatory properties of solutions of the equation $y^{(n)}+p y=0$, Trudy Moskov. Mat. Obsc, 10 (1961), 419-436.
7. J. G.-Mikusinski, On Fite's oscillation theorem, Colloq. Math., 2 (1949), 34-39.
8. Z. Nehari, Disconjugacy criteria for linear differential equations, J. Differential Equations, 4 (1968), 604-611.
9. -, Nonlinear techniques for linear oscillation problems, Trans. Amer. Math. Soc., 210 (1975), 387-406.
10. -, Green's functions and disconjugacy, Arch. Rational Mech. Anal., 62 (1976), 53-76.
11. G. H. Ryder and D. V. V. Wend, Oscillation of solutions of certain differential equations of nth order, Proc. Amer. Math. Soc., 25 (1970), 463-469.
12. I. M. Sobol', On the asymptotic behavior of the solutions of linear differential equations, Dokl. Akad. Nauk SSSR, 61 (1948), 219-222.
13. W. F. Trench, A sufficient condition for eventual disconjugacy, Proc. Amer. Math. Soc., 52 (1975), 139-146.
14. D. Willett, Disconjugacy tests for singular linear differential equations, SIAM J. Math. Anal., 2 (1971), 536-545.

Received March 19, 1979.
State University of New York
Stony Brook, NY 11794

