ASYMPTOTIC PROPERTIES OF NONOSCILLATORY SOLUTIONS OF HIGHER ORDER DIFFERENTIAL EQUATIONS

W. J. Kim

A classification of the nonoscillatory solutions based on their asymptotic properties of the differential equation $y^{(m)} + py = 0$ is discussed. In particular, the number of solutions belonging to the Kiguradze class A_{j} is determined.

We investigate asymptotic properties of the nonoscillatory solutions of the differential equation

(E)
$$y^{(n)} + py = 0$$
,

where p is a continuous function of one sign on an interval $[a, \infty)$. Various aspects of Eq. (E) have been investigated by a number of authors [1-15]; in most cases, under the condition that the integral

(1)
$$I(r) \equiv \int_a^\infty x^r |p(x)| dx$$

is either finite or infinite for some constant r. For instance, Eq. (E) is oscillatory on $[a, \infty)$ if the integral (1) is infinite with $r = n - 1 - \varepsilon$ for some $\varepsilon > 0$ [4, 8]. On the other hand, if I(n - 1) is finite, (E) is nonoscillatory; in fact, it is eventually disconjugate [9, 14, 15]. Under the same condition, results on the existence of a fundamental system of solutions possessing certain asymptotic properties have also been obtained [5, 13]. Of particular interest to the present work, however, is the notion of class A_p introduced by Kiguradze [4] with the help of inequalities in Lemma 1.

A solution of (E) is said to be *nonoscillatory* on $[a, \infty)$ if it does not have an infinite number of zeros on $[a, \infty)$. (Unless the contrary is stated, the word "solution" is used as an abbreviation for "nontrivial solution.") Eq. (E) is said to be nonoscillatory on $[a, \infty)$ if every solution of (E) is nonoscillatory on $[a, \infty)$. If there exists a point $b \ge a$ such that no solution of (E) has more than n-1 zeros on $[b, \infty)$, Eq. (E) is said to be *eventually disconjugate* on $[a, \infty)$.

As previous studies of Eq. (E) indicate, asymptotic properties of the solutions strongly depend on the parity of n and the sign of p. For this reason, it is convenient to classify Eq. (E) into the following four distinct classes:

(i)
$$n \text{ even}, p \ge 0$$
,

W. J. KIM

(ii)
$$n \text{ odd}, p \ge 0$$
,

(iii)
$$n ext{ even}$$
, $p \leq 0$,(iv) $n ext{ odd}$, $p \leq 0$.

Eq. (E) satisfying condition (i), for example, is denoted by (E_i) ; (E_{ii}) , (E_{iii}) , and (E_{iv}) are similarly defined.

We state important inequalities which will be used in defining the class A_p and also in some proofs.

LEMMA 1. Let y be a nonoscillatory solution of (E) such that $y \ge 0$ on $[b, \infty)$ for some $b \ge a$, and let $p \ne 0$ on $[b_1, \infty)$ for every $b_1 \ge a$. Define [C] to be the greatest integer less than or equal to C.

If y is a solution of (E_i) or (E_{iv}), there exists an integer j, $0 \leq j \leq [(n-1)/2]$, such that

$$(\,2\,) \hspace{1.5cm} y^{\scriptscriptstyle(i)} > 0 \;, \hspace{1.5cm} i = 0,\, 1,\, \cdot \cdot \cdot,\, 2j \;,$$

on $[b_2, \infty)$ for some $b_2 \geq b$, and

$$(\,2') \hspace{1.5cm} (-1)^{i+1} y^{(i)} > 0$$
 , $i=2j+1,\,\cdots,\,n-1$,

on $[b, \infty)$.

If y is a solution of (E_{ii}) or (E_{iii}) , there exists an integer j, $0 \leq j \leq [n/2]$, such that

$$(\,3\,) \hspace{1.5cm} y^{(i)} > 0 \;, \hspace{1.5cm} i = 0,\, 1,\, \cdots,\, 2j-1 \;,$$

on $[b_2, \infty)$ for some $b_2 \geq b$, and

$$(\,3') \hspace{1.5cm} (-1)^i y^{_{(i)}} > 0 \;, \hspace{1.5cm} i = 2j, \, \cdots, \, n-1 \;,$$

on $[b, \infty)$.

Various versions of Lemma 1 appear in the literature [2, 5, 6, 12]. However, the important features of the present version are that the inequalities in Lemma 1 are strict and that the inequalities (2') and (3') hold on $[b, \infty)$ —rather than on $[b_2, \infty)$ for some $b_2 \ge b$ —if $y \ge 0$ on $[b, \infty)$. Following Kiguradze [4], we shall say that a nonoscillatory solution y of (E_i) or (E_{iv}) belongs to class A_j if y or -y satisfies the inequalities (2) and (2') for $0 \le j \le [(n-1)/2]$. Similarly, a nonoscillatory solution y of (E_{ii}) or (E_{iii}) or (E_{iii}) is said to belong to class A_j if y or -y satisfies the inequalities (3) and (3') for $0 \le j \le [n/2]$. In view of the above definition, we may restate Lemma 1 as follows: The family $\{A_0, A_1, \dots, A_{\lfloor (n-1)/2 \rfloor}\}$ forms a partition of the nonoscillatory solutions of (E_i) and (E_{iv}), and the family $\{A_0, A_1, \dots, A_{\lfloor n/2 \rfloor}\}$ forms a partition of the nonoscillatory solutions of the nonoscillatory solutions

 (E_{ii}) and (E_{iii}) .

LEMMA 2. If the class A_k contains three solutions v_1 , v_2 , and v_3 of which every nontrivial linear combination again belongs to A_k , where $0 \leq k \leq [(n-2)/2]$ for (E_i) and (E_{iv}) and $1 \leq k \leq [(n-1)/2]$ for (E_{ii}) and (E_{iii}) , then A_k contains three solutions y_1 , y_2 , and y_3 , each a linear combination of v_1 , v_2 , and v_3 , such that

$$\lim_{x o \infty} rac{{y}_j(x)}{{y}_i(x)} = \, \infty \, \, , \qquad 1 \leq i < j \leq 3$$
 .

Proof. Without loss of generality, we may assume that $v_3 > v_2 > v_1 > 0$ on $[c, \infty)$ for some $c \ge a$. The quotient v_j/v_i , $1 \le i < j \le 3$, cannot assume a fixed value γ an infinite number of times on $[c, \infty)$, for otherwise $v_j - \gamma v_i$ would be an oscillatory solution contrary to the hypothesis. Therefore,

$$\limsup_{x o\infty}rac{v_j(x)}{v_i(x)}=\liminf_{x o\infty}rac{v_j(x)}{v_i(x)}=\lim_{x o\infty}rac{v_j(x)}{v_i(x)}=K_{ij}\;,$$

 $1 \leq K_{ij} \leq \infty$, $1 \leq i < j \leq 3$. At first there appear to be eight different possibilities we must consider, depending on $K_{ij} = \infty$ or $K_{ij} < \infty$, $1 \leq i < j \leq 3$. But note that if two of the constants K_{ij} , $1 \leq i < j \leq 3$, are finite, the third also must be finite. Furthermore, it is impossible to have $K_{12} = K_{23} = \infty$ and $K_{13} < \infty$. Hence we need only to consider the following four cases.

(a) $K_{ij} = \infty$, $1 \le i < j \le 3$. Put $y_i = v_i$, i = 1, 2, 3. (b) $K_{12} < \infty$, $K_{13} = K_{23} = \infty$. In this case

$$\lim_{x \to \infty} \frac{v_2(x) - K_{12}v_1(x)}{v_1(x)} = 0 , \quad \text{i.e., } \lim_{x \to \infty} \left| \frac{v_1(x)}{v_2(x) - K_{12}v_1(x)} \right| = \infty$$

Put $y_1 = v_2 - K_{12}v_1$, $y_2 = v_1$, and $y_3 = v_3$. (c) $K_{12} = K_{13} = \infty$, $K_{23} < \infty$. Here we have

$$\lim_{x o\infty}rac{v_{\scriptscriptstyle 3}(x)\,-\,K_{\scriptscriptstyle 23}v_{\scriptscriptstyle 2}(x)}{v_{\scriptscriptstyle 2}(x)}=0\;.$$

Suppose that

$$\lim_{x o\infty}rac{v_{\mathfrak{z}}(x)-K_{\mathfrak{z}\mathfrak{z}}v_{\mathfrak{z}}(x)}{v_{\mathfrak{z}}(x)}=K\;.$$

If $|K| = \infty$, put $y_1 = v_1$, $y_2 = v_3 - K_{23}v_2$, and $y_3 = v_2$. On the other hand, if $|K| < \infty$, then

$$\lim_{x o\infty}rac{v_{\scriptscriptstyle 3}(x)-K_{\scriptscriptstyle 23}v_{\scriptscriptstyle 2}(x)-Kv_{\scriptscriptstyle 1}(x)}{v_{\scriptscriptstyle 1}(x)}=0$$

and we put $y_1 = v_3 - K_{23}v_2 - Kv_1$, $y_2 = v_1$, and $y_3 = v_2$. (d) $K_{ij} < \infty$, $1 \le i < j \le 3$. For this case

$$\lim_{x o\infty}rac{v_{_2}(x)\,-\,K_{_{12}}v_{_1}(x)}{v_{_1}(x)} = \lim_{x o\infty}rac{v_{_3}(x)\,-\,K_{_{13}}v_{_1}(x)}{v_{_1}(x)} = 0\;.$$

Suppose that

$$\lim_{x o \infty} rac{v_{2}(x) - K_{12} v_{1}(x)}{v_{3}(x) - K_{13} v_{1}(x)} = K \; .$$

If $|K| = \infty$, let $y_1 = v_3 - K_{13}v_1$, $y_2 = v_2 - K_{12}v_1$, and $y_3 = v_1$. If $|K| < \infty$, then

$$\lim_{x o\infty}rac{v_{\scriptscriptstyle 2}(x)-K_{\scriptscriptstyle 12}v_{\scriptscriptstyle 1}(x)-K(v_{\scriptscriptstyle 3}(x)-K_{\scriptscriptstyle 13}v_{\scriptscriptstyle 1}(x))}{v_{\scriptscriptstyle 3}(x)-K_{\scriptscriptstyle 13}v_{\scriptscriptstyle 1}(x)}=0$$

and we put $y_1 = v_2 - (K_{12} - KK_{13})v_1 - Kv_3$, $y_2 = v_3 - K_{13}v_1$, and $y_3 = v_1$. The solutions y_i , i = 1, 2, 3, defined in (a)-(d) belong to A_k and satisfies

$$\lim_{x o \infty} \left| rac{y_j(x)}{y_i(x)}
ight| = \infty$$
 , $1 \leq i < j \leq 3$.

Since we may take $-y_i$ if y_i is eventually negative as $x \to \infty$, the proof is complete.

LEMMA 3. Suppose that Eq. (E) has there nonoscillatory solutions y_1 , y_2 , and y_3 such that

$$(\ 4\) \qquad \qquad \lim_{x o \infty} rac{y_j(x)}{y_i(x)} = \ \infty \ , \qquad 1 \leq i < j \leq 3 \ ,$$

and $y_3 > y_2 > y_1 > 0$ on $[\xi, \infty)$. If η is an arbitrary point on $[\xi, \infty)$, there exists a solution $v \equiv \sum_{k=1}^{3} \alpha_k y_k$ such that $v \ge 0$ on $[\xi, \infty)$ and $v(\zeta) = v'(\zeta) = 0$ for some point ζ on $[\eta, \infty)$.

Proof. Choose a constant K>0 such that $u \equiv y_2 - Ky_1 < 0$ on $[\xi, \eta]$. Since u < 0 on $[\xi, \eta]$ and eventually u(x) > 0 as $x \to \infty$, u vanishes at some point of (η, ∞) . Let σ be the first zero of u on (η, ∞) . Define $K_1 = \sup G$, where G is the set of real numbers $\beta \ge 1$ such that $y_3 - \beta u \ge 0$ on $[\sigma, \infty)$. Evidently, G is bounded above and it is nonempty because $y_3 - u > 0$, i.e., $1 \in G$. Let $\beta \in G$ and $\tau \in [\sigma, \infty)$. If $u(\tau) \le 0$, then $y_3(\tau) - K_1u(\tau) \ge y_3(\tau) > 0$. On the other hand, if $u(\tau) > 0$, then $y_3(\tau)/u(\tau) \ge \beta$ for all $\beta \in G$, and thus $y_3(\tau)/u(\tau) \ge K_1$. Since τ is arbitrary, the solution $v \equiv y_3 - K_1u \ge 0$ on $[\sigma, \infty)$. Therefore, if $v(\zeta) = 0$ for some $\zeta \in (\sigma, \infty)$, then $v'(\zeta) = 0$. Hence, the proof is complete if we can show that $v(\zeta) = 0$ for some $\zeta \in (\sigma, \infty)$.

110

to the contrary that v > 0 on (σ, ∞) . Let $\varepsilon_1 > 0$ be given. There exists $\rho > \sigma$ such that u > 0 on $[\rho, \infty)$ and $v(x)/u(x) > \varepsilon_1$, $x \in [\rho, \infty)$, since

$$\lim_{x\to\infty}\frac{v(x)}{u(x)}=\infty$$

by (4). Choose an $\varepsilon_2 > 0$ so that $v(x) > \varepsilon_2 u(x)$, $x \in [\sigma, \rho]$. Put $\varepsilon = \min(\varepsilon_1, \varepsilon_2)$. Then $v - \varepsilon u > 0$ on $[\sigma, \infty)$, i.e., $y_3 - (K_1 + \varepsilon)u > 0$ on $[\sigma, \infty)$, contradicting the choice of K_1 . Thus, $v(\zeta) = 0$ for some $\zeta \in (\sigma, \infty)$. Finally, it is evident that v > 0 on $[\xi, \sigma]$ and $v \ge 0$ on $[\xi, \infty)$.

We are ready to consider the problem of determining the number of solutions belonging to class A_j . Let $q(A_j)$ be the maximum number of linearly independent solutions belonging to A_j with the property that every nontrivial linear combination of them again belongs to class A_j .

THEOREM. Assume that Eq. (E) is nonoscillatory on $[a, \infty)$ and that $p \neq 0$ on $[a_1, \infty)$ for every $a_1 \geq a$. Then $q(A_j) = 2, \ j = 0, 1, \cdots, (n-2)/2, \ for \ (E_i);$ $q(A_0) = 1, \ q(A_j) = 2, \ j = 1, 2, \cdots, (n-1)/2, \ for \ (E_{ii});$ $q(A_0) = 1, \ q(A_j) = 2, \ j = 1, 2, \cdots, (n-2)/2, \ q(A_{n/2}) = 1, \ for \ (E_{iii});$ $q(A_j) = 2, \ j = 0, 1, \cdots, (n-3)/2, \ q(A_{(n-1)/2}) = 1 \ for \ (E_{iv}).$

Proof. We shall prove the theorem for (E_{iii}) : $q(A_0) = 1$, $q(A_j) = 2$, $j = 1, 2, \dots, (n-2)/2$, and $q(A_{n/2}) = 1$. Suppose that the class A_j contains a set B_j of $q(A_j)$ solutions of which every nontrivial linear combination again belongs to A_j , $j = 0, 1, \dots, n/2$. Using Lemmas 1 and 2, we can easily deduce that the set $B = \bigcup_{j=0}^{n/2} B_j$ containing $\sum_{j=0}^{n/2} q(A_j)$ solutions is a fundamental system for (E_{iii}) . Thus, $\sum_{j=0}^{n/2} q(A_j) = n$. For this reason, it suffices to prove that

$$(\,5\,) \qquad q(A_{\scriptscriptstyle 0}) \leq 1\,\,, \ \ q(A_{_j}) \leq 2\,\,, \ \ \ j=1,\,2,\,\cdots,\,(n-2)/2,\,q(A_{_{n/2}}) \leq 1\,\,.$$

If $q(A_0) > 1$, then there exist two solutions y_1 and y_2 belonging to A_0 and a constant K such that $w \equiv y_1 - Ky_2 \in A_0$, w(c) = 0, and $w \ge 0$ on $[c, \infty)$ for some $c \ge a$. But this contradicts Lemma 1 (see also Kiguradze [5, Lemma 7]) and proves that $q(A_0) \le 1$. Suppose that $q(A_k) > 2$ for some k, $1 \le k \le (n-2)/2$. Then the class A_k contains at least three solutions y_1 , y_2 , and y_3 , of which every non-trivial linear combination again belongs to A_k . By Lemma 2, we may assume that

$$\lim_{x o \infty} rac{{y}_{j}(x)}{{y}_{i}(x)} = \, \infty \,$$
 , $\quad 1 \leq i < j \leq 3$,

and $y_3 > y_2 > y_1 > 0$ on $[\xi, \infty)$ for some $\xi \ge a$. Let $\{\eta_i\}$ be an increasing sequence of numbers such that $\eta_i \ge \xi$ and $\eta_i \to \infty$ as $i \to \infty$. By Lemma 3 there exists for each i, a solution

$$m{v}_i\equiv lpha_i y_{\scriptscriptstyle 1}+eta_i y_{\scriptscriptstyle 2}+\gamma_i y_{\scriptscriptstyle 3}$$
 , $lpha_i^2+eta_i^2+\gamma_i^2=1$,

such that $v_i \geq 0$ on $[\xi, \infty)$ and $v_i(\zeta_i) = v'_i(\zeta_i) = 0$ for some $\zeta_i \in (\eta_i, \infty)$. Obviously, there are convergent subsequences $\{\alpha_{i_k}\}, \{\beta_{i_k}\}$, and $\{\gamma_{i_k}\}$, which will be again denoted by $\{\alpha_i\}, \{\beta_i\}$, and $\{\gamma_i\}$, respectively, for notational simplicity. Put

$$\lim_{i o\infty}lpha_i=lpha$$
 , $\lim_{i o\infty}eta_i=eta$, $\lim_{i o\infty}\gamma_i=\gamma$.

Then $w(x) \equiv \alpha y_1(x) + \beta y_2(x) + \gamma y_3(x)$ is a nonoscillatory solution belonging to the class A_k . Since $w \ge 0$ on $[\xi, \infty)$, we have

$$(6) w > 0, w' > 0, \cdots, w^{(2k-1)} > 0,$$

on $[b_2, \infty)$ for some $b_2 \geq \xi$, and

$$(\,7\,) \qquad w^{_{(2k)}}>0\,,\ w^{_{(2k+1)}}<0\,,\ w^{_{(2k+2)}}>0,\,\cdots,\,w^{_{(n-1)}}<0\,,$$

on $[\xi, \infty)$ by Lemma 1. We now use a line of reasoning due to Kondrat'ev [7]. Since $\lim_{i\to\infty} v_i^{(j)} = w^{(j)}$, $j = 0, 1, \dots, n$, uniformly on any finite subinterval of $[a, \infty)$, there exists a number N such that

$$(\,8\,) \hspace{1.5cm} v_{i}^{(j)}(b_{2}) > rac{w^{(j)}(b_{2})}{2} > 0 \hspace{1.5cm}, \hspace{1.5cm} j = 0, \hspace{1.5cm} 1, \hspace{1.5cm} \cdots, \hspace{1.5cm} 2k-1 \hspace{1.5cm},$$

if i > N. We may assume that $\eta_i > b_2$ for i > N. Since $v_i \in A_k$ and $v_i \ge 0$ on $[\xi, \infty)$ for all $i, v_i^{(2k)} > 0$ on $[\xi, \infty)$ by Lemma 1. Thus,

$$(9)$$
 $v_i^{(2k-1)}(b_2) \leq v_i^{(2k-1)}(au)$, $au \in [b_2, \infty)$.

Substituting (9) in (8) with j = 2k - 1, we obtain

(10)
$$v_i^{(2k-1)}(au) > rac{w^{(2k-1)}(b_2)}{2}$$
 , $au \in [b_2, \ \infty)$.

Integrating the above inequality from b_2 to $x \in [b_2, \infty)$ and substituting in the resulting expression the inequality (8) with j = 2k - 2, we get

$$v_i^{_{(2k-2)}}(x) > rac{w^{_{(2k-1)}}(b_2)}{2}(x-b_2) + rac{w^{_{(2k-2)}}(b_2)}{2}$$

Repeating a similar procedure 2k-2 times, we arrive at the inequality

(11)
$$v_i(x) > rac{w^{(2k-1)}(b_2)}{2(2k-1)!}(x-b_2)^{2k-1} + rac{w^{(2k-2)}(b_2)}{2(2k-2)!}(x-b_2)^{2k-2} + \cdots + rac{w(b_2)}{2}$$
, $x \in [b_2, \infty)$.

This inequality, however, cannot hold throughout the interval $[b_2, \infty)$. Indeed, for $x = \zeta_i > \eta_i > b_2(i > N)$, the left-hand side $v_i(\zeta_i) = 0$, while the right-hand side is positive by (6). This contradiction proves that $q(A_j) \leq 2$, $j = 1, 2, \dots, (n-2)/2$. The proof that $q(A_{n/2}) \leq 1$ is more or less similar to the preceding case. Suppose that $A_{n/2}$ contains two solutions y_1 and y_2 of which every nontrivial linear combination belongs to $A_{n/2}$. Assume that $y_2 > y_1 > 0$ on $[\xi, \infty)$, and let $\{\eta_i\}$ be defined as before. Put

$$v_i\equiv lpha_i y_{\scriptscriptstyle 1}+eta_i y_{\scriptscriptstyle 2}$$
 , $lpha_i^2+eta_i^2=1$,

such that $v_i(\eta_i) = 0$. If

$$\lim_{i o\infty}lpha_i=lpha$$
 , $\qquad \lim_{i o\infty}eta_i=eta$

(take subsequences, if necessary), define $w \equiv \alpha y_1 + \beta y_2$. Then $w \in A_{n/2}$ and we may assume that $w \ge 0$ on $[b, \infty)$ for some b. Hence, by Lemma 1,

(12)
$$w > 0, w' > 0, \cdots, w^{(n-1)} > 0$$

on $[b_2, \infty)$ for some $b_2 \geq b$, and the inequality (8) holds for $i > N_1$, for some N_1 , and for $j = 0, 1, \dots, n-1$. Assume that $\eta_i > b_2$ for $i > N_1$. For each $i > N_1$, there exists $c_i \in (b_2, \eta_i]$ such that $v_i(c_i) = 0$ and $v_i > 0$ on $[b_2, c_i)$, since $v_i(\eta_i) = 0$. On the interval $[b_2, c_i]$, we have $v_i^{(m)}(x) = -p(x)v_i(x) \geq 0$. Therefore, $v_i^{(n-1)}(b_2) \leq v_i^{(n-1)}(\tau), \tau \in [b_2, c_i]$, and when this inequality is substituted in (8) with j = n - 1, we get

(13)
$$v_i^{(n-1)}(au) > rac{w^{(n-1)}(b_2)}{2}$$
 , $au \in [b_2, \, c_i]$.

Following the procedure employed to get from (10) to (11), we alternately integrate (13) from b_2 to $x \in [b_2, c_i]$ and substitute in the resulting expression a suitable inequality from (8) (which holds for $j = 0, 1, \dots, n-1$, in this case). When this process is repeated n-1 times, we arrive at

$$egin{aligned} &v_i(x) > rac{w^{(n-1)}(b_2)}{2(n-1)!}(x-b_2)^{n-1} + rac{w^{(n-2)}(b_2)}{2(n-2)!}(x-b_2)^{n-2} \ &+ \cdots + rac{w(b_2)}{2} \ , \qquad x \in [b_2, \, c_i] \ . \end{aligned}$$

However, this inequality cannot hold at $x = c_i$ because $v_i(c_i) = 0$

while the right-hand side is positive by virtue of (12). Consequently, $q(A_{n/2}) \leq 1$, and the proof is complete for (E_{iii}) . Proofs for (E_i) , (E_{ii}) , and (E_{iy}) are similar.

This theorem generalizes a main result of Etgen and Taylor [3].

References

1. G. V. Anan'eva and V. I. Balaganski, Oscillation of the solutions of certain differential equations of higher order, Uspehi Mat. Nauk, 14 (1959), 135-140.

2. G. A. Bogar, Oscillations of nth order differential equations with retarded argument, SIAM J. Math. Anal., 5 (1974), 473-481.

G. J. Etgen and W. E. Taylor, Jr., The essential uniqueness of bounded nonoscillatory solutions of certain even order differential equations, Pacific J. Math., 68 (1977), 339-346.
 I. T. Kiguradze, Oscillation properties of solutions of certain ordinary differential

equations, Dokl. Akad. Nauk, 144 (1962), 33-36.

5. _____, On the oscillatory character of solutions of the equation $d^{m}u/dt^{m} + a(t) | u |^{n} \operatorname{sign} u = 0$, Mat. Sb., **65** (107) (1964), 172-187.

W. J. Kim, Nonoscillatory solutions of a class of nth-order linear differential equations,
 J. Differential Equations, 27 (1978), 19-27.

7. V. A. Kondrat'ev, Oscillatory properties of solutions of the equation $y^{(n)} + py = 0$, Trudy Moskov. Mat. Obsc, **10** (1961), 419-436.

8. J. G.-Mikusinski, On Fite's oscillation theorem, Colloq. Math., 2 (1949), 34-39.

9. Z. Nehari, Disconjugacy criteria for linear differential equations, J. Differential Equations, 4 (1968), 604-611.

10. _____, Nonlinear techniques for linear oscillation problems, Trans. Amer. Math. Soc., **210** (1975), 387-406.

11. ____, Green's functions and disconjugacy, Arch. Rational Mech. Anal., 62 (1976), 53-76.

12. G. H. Ryder and D. V. V. Wend, Oscillation of solutions of certain differential equations of nth order, Proc. Amer. Math. Soc., 25 (1970), 463-469.

13. I. M. Sobol', On the asymptotic behavior of the solutions of linear differential equations, Dokl. Akad. Nauk SSSR, **61** (1948), 219-222.

14. W. F. Trench, A sufficient condition for eventual disconjugacy, Proc. Amer. Math. Soc., **52** (1975), 139-146.

15. D. Willett, Disconjugacy tests for singular linear differential equations, SIAM J. Math. Anal., 2 (1971), 536-545.

Received March 19, 1979.

STATE UNIVERSITY OF NEW YORK STONY BROOK, NY 11794

114