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A SIMPLE GENUS ONE KNOT WITH INCOMPRESSIBLE
SPANNING SURFACES OF ARBITRARILY

HIGH GENUS

RICHARD F. GUSTAFSON

The following theorem is proved. There exists a simple
genus one knot with incompressible spanning surfaces of
arbitrarily high genus.

1* Introduction* H. C. Lyon in [2] proved that there exists
a genus one knot which has incompressible spanning surfaces of
arbitrarily high genus. Lyon's knot has companions and the com-
panions are essential to his discussion. Presented in this paper is
a knot of genus one which is shown to have no companions (is
simple) but which has incompressible spanning surfaces of arbitrarily
high genus. The discussion is in the PL category and all knots
and surfaces are tamely embedded in S\ The notation and termi-
nology generally follow that of [2], [3], [4], [1]. All surfaces are
nonsingular unless otherwise indicated. When two surfaces are
discussed it will be assumed that they are in general position so
that their intersection consists of at most disjoint simple closed
curves (sec) and spanning arcs.

2* The example* The knot K is shown in Figure 1. Figure
2 shows a singular disc D* bounded by K. Figure 3 shows D*
with the singularities removed by cutting out two discs D'9D"
from D*. In Figure 3 an annulus H has been attached to the
"hatched" side of D* along the two boundaries dD\ dD". The an-
nular tube H surrounds a part of D*. Thus Figure 3 shows an
orientable surface S( —1) of genus one spanned by K, therefore K
has genus at most one.

3* Some preliminaries* Ball (3-cell) Q is selected as in Figure
4. Sphere (2-sphere) C = dQ contains two disjoint subdiscs Λf(l) and
Λf(4) which contain the points K Π C in two special classes. Q is
subdivided into three subballs Q(l), Q(2), Q(β) by two subdiscs Λf(2)
and Λf(3) as illustrated in Figure 4 so that each sphere C(i) =
d(QOO), i — 1> 2, 3, contains two discs M(i) and M(i + 1) which have
the points of K U C(i):

Figure 5 illustrates K fΊ Q(i), i ~ 1, 2, 3. There are four simple
arcs α(ΐ, 1), α(i, 2), b(i, 1), b(i, 2) of K Π Q(i). Figure 6 shows how
each of these arcs is completed by one of four disjoint simple arcs
a(ί, 1), a(i, 2), β(i, 1), β(i, 2) in C(i) so that each δ(i, j) U β{i, j), j =
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FIG. 1 FIG. 2 FIG. 3 FIG. 4

FIG. 5 FIG. 6

1, 2, is a trefoil knot and each a(i, j) U a(i, j), j = 1, 2, is a circle
which bounds a disc in Q(i) and which has linking number + 1 with
each trefoil knot.

Consider the case illustrated in Figure 6 for some i e {1, 2, 3}, a
pair αUα = a(i, j) U α(i, j), b U β = 6(i, i) U β(ΐ, i), some i e {1, 2}. Let
disc D(i) £ Q(i) be such that 3D(i) = α U a, D(ϊ) Π C(i) = α, and
J)(i) π 6 = [x] where x is a point in the interior of D(i) and in the
interior of 6.

LEMMA 3.1. Suppose disc E £ Q(£) — (a \Jb) is such that dE =
JEΠ (C(ί) — (α U &)).• E divides Q(i) into subballs Q',Q" such that
Q(ϊ) = Qr U Q" α^d Q' Π Q" = ^ . Then it must be that a U b is con-
tained in just one of the subballs Q', Q".
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Proof. Suppose not. Then a £ Q' and b £ Q", as JEΉ (α U 6) = 0 .
Now JE7 separates C(£) into two discs C, C" such that C'ΓϊC" = a#
a n d C ' U £ = 3Q', C " U ^ - 3Q". Since3α = d α g C - 5C = C - dE,
there is no loss in generality to assume that a £ C — dC\ Assume
Ef]D(i) is minimal so that Ef]D(i) consists of sees each of which,
7, bounds a subdisc 2? (7) of D(ϊ) which contains x. Let 7 be an
"innermost" such sec so that D(y) contains no other curves of Ed
D(i). 7 also bounds a subdisc E(i) of E. E(y) Π (α U 6) = 0, S(τ)Π
D(7) = 7, so E(j) U JD(T) is a sphere in the interior of Q(i)9 which
bounds a subball of Q(ί), yet has just one point x of the interior
of b. This is impossible. Hence, Lemma 3.1 is proved.

A corollary of Lemma 3.1 is

LEMMA 3.2. If disc E £ Q(i) -
then dE bounds a disc in C(i) -
or KΠ Q(i) £ Q" holds.

- K is such that dE = E n (C(i) - K)
K and just one ofKΠ Q(i) £ Qf

TwoThe discussion continues in the context of Lemma 3.1.
more bordered surfaces F(i) and B(ί) are determined in Q(i).

F(i) is as illustrated in Figure 7. F(ϊ) is a surface of genus
one which spans trefoil b U /3. JF(Ϊ) Π C(i) — β and F(i) is composed
of two disc F(ί, 1), F(i, 2) connected by the three twisted rectangles
shown, a Π F(i) = α n ^(i, 2) is point 2/ and J5(i) Π F(i, 2) is segment

/'' p(i,2)F^

.. H

1
 T

1

FIG. 7 FIG. 8

Figure 8 shows Mobius band B(i). dB(i) consists of α, 6, an arc
in M(i) which connects the two points (a U 6) Π M(ϊ), and an arc in
M(i + 1) which connects (α U 6) Π Λί(i + 1). The last two arcs are
i?(i) Π C(i). B{i) consists of two discs, B(i, 1) and B(i, 2), each of
which meets C(i) in one arc of B(i) Π C(i)f connected by the five
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twisted rectangles shown—two of these twisted rectangles share
edge xy.

Define σ = a U (B(i) n M(ϊ)) U (B(i) Π M(i + 1)) U β. D(ϊ), F(ί), B(i)
are positioned so that D(i) Π F{i) = ~xy = D(i) Π -B(i), l*7^) Π .δ(i) con-
sists of four line segments one of which is Icy and the other three
connect the double points of the projection of b into a disc cut
from C(i) by σ. Each twisted rectangle of F(ί) intersects just one
twisted rectangle of B(i) in a segment.

(3.0) Let A be an annulus which is properly embedded in
Q(ί) - (α U 6) so that A Π C(i) = dA £ C(i) - (a U δ) and A is incom-
pressible in Q(i) — (α U 6). Further suppose that the components of
9A are two sec which bound disjoint subdiscs C" and C" of sphere
C(i) and annulus A* so that C(i) = C'U C"U A*, A*Π C is one com-
ponent of 3A, and A*DC" is the other component of dA. iUC'UC"
is a sphere which bounds subball G(ί) £ Q(i) and A U A* bounds a
"cube with hole" W(i) = Q(i) — G(i). Assume that each of the fol-
lowing is minimal: dA Π σ, dA f] (dM(i) U dM(i + 1)), D(i) Π A, B(i) Π A,
jP(i)n A, A Π (boundaries of the 8 twisted rectangles of F(ϊ) and B(i)).
Define collection Σ = {D(ί) n A, J5(i) n A, F(i) Π A}.

The properties listed below follow in a straightforward manner.
(3.1) The components of each of D(ί)Π A, B(i) Π A, F(ί)Γ\ A are

sees which are noncontractible in A, and spanning arcs.
(3.2) Each component of dA intersects a in exactly two points

which lie in different segments: a, β, B(i) Π M(i), B(i) Π M(i + 1).
(3.3) Each spanning arc of Σ separates the surface D(ί), B(i)

or F(ϊ) which contains it.
(3.4) There is at most one spanning arc of Σ on D(i), or on

F(i), and there are exactly two spanning arcs in Σ. (See (3.2).)
(3.5) Each spanning arc in Σ meets xy in at most one point.
(3.6) A can be deformed so that the sees of Σ intersect each

spanning arc of Σ transversally in A, and in one point. Hence no
surface D(ϊ), B(ΐ), F(i) can have two sec of Σf nor can it have both
a spanning arc and a sec of Σ.

(3.7) There is at most one sec 7 in Σ which must separate
the surface D(ϊ), B(i), or F(i) which contains it.

(3.7a) Simple closed curve ζ £ F(i) which separates F(i) is
either a trefoil knot or bounds a disc in F(i). If 7 £ F(ί), 7 cannot
be a trefoil knot, hence 7 would bound a subdisc of F(i, 2) which
contains y.

(3.7b) If yQD(i) then 7 would bound a subdisc of D(ϊ) which
contains x.

(3.7c) The only sec ζ £ B(ϊ) which separates B(i) is parallel in
B(i) to dB(ί) and meets xy in two points. But there is at most one
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FIG. 9 FIG. 10 FIG. 11

spanning arc of Σ in D(ϊ) ((3.4), (3.5), (3.6)). Hence 7 of I7 cannot
lie in B(i).

From (3.0)-(3.7c) follows:

FIG. 12 FIG. 13

LEMMA 3.3. Under the hypotheses of (3.0), Figures 9, 10, 11, 12,
13 give the possible positions of A in Q(i) with the understanding
that two additional variations for the position of A which are
similar to the two shown in Figure 12 are not illustrated in
Figure 12.

Denote the two components of fl*ΠQ as subdiscs D*(a) and
D*(b) where a(i, 1) U a{i, 2) £ D*{a) Π Q(i) = D*(i, a) and b(i, 1) U
δ(i, 2) Q D*(b) n Q(i) = D*(i, 6), i = 1, 2, 3.

LEMMA 3.4. Suppose annulus A is as in (3.0) ίmί with each
instance of "a U 6" m (3.0) replaced by "K". Also let a = α(i, 1)
α^cί Zeί a(i9 2) δβ parallel to a{i, 1) m J9(i). ί^eί b = 6(i, 1) αwd Ze£
6(i, 2) 6e parallel to b{i, 1) iw i^(i). Then the possible positions for
A in Q(ϊ) — K are:

(1) as in Figure 9 with either one or both of a(i, 1) and a(i, 2)
in G(i);

(2) as in Figure 10 wίίfc either just one or both of b(i, 1) and
b(i, 2) in G(i);
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( 3 ) as in Figure 11 with K £ G(ί);
(4) as in Figure 13 with K Q G(i);
(5) eight possibilities similar to the two illustrated in Figure

12: four as in Figure 12 in which A Π D*(a) — 0 = A Π D*(b) and
four as in Figure 12 in which either Af)D*(a)^0 and Af]
D*(b) = 0 , or A n £>*(α) = 0 α ώ i n D*(6) =£ 0 .

Proof This follows from Lemma 3.3 and the observation that
no component of dA in M(i) (or in M(i + 1)) can intersect both
dD*{a) and dD*(fi). If this observation were not true such an inter-
section would give two spanning arcs of A, one in D*(a) which
with a would bound a disc D{i) in Q(i), the other in D*(b) which
with β bounds a surface F{i) in Q(ϊ). This would yield at one hand
that W{i) would be a "cube with unknotted hole" and at the other
hand that W(i) would be a "cube with knotted hole", a contradic-
tion.

In preparation for Lemma 3.5 denote ball S3 — Q by V. Note
C = dV. Figure 14 illustrates V and the four components of VΠK.
Singular disc D* intersects V in three pieces: disc J9*(l) bordered
by segment JD*(6) Π Λf(l) and the single arc of K cut by that seg-
ment, disc D*(3) bordered by segment jD*(α) Π Λf(4) and the single
arc of K cut by Z)*(α) Π M(4), and disc Z)*(2) bordered by the seg-
ments D*(a) Π Λf(l), D*(b) Π M(4), and the two so far unmentioned
segments K(l), K(2) of K f]V. In the interior of D*(l) is segment
α;(l)i/(l), {o5(l), j/(l)} £ K, of singularities of D* and the other seg-
ment x(2)y(2) of singularities of D* lies in the interior of D*(3).
D*(2) n D*(l) = x(ϊ)y(ϊ), D*(2) Π D*(3) = x(2)y(2).

Let disc Z) £ F be as illustrated in Figure 15. D*(2) S D and
3D consists of K(l), segments.JD*(2)Π(Λf(l) U M(A)) and a simple arc

M(4)

FIG. 14 FIG. 15
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ζ which connects the ends of these two segments in C and meets
each of dM(ΐ) and 3Λf(4) once. D meets Z)*(l) in two disjoint seg-
ments: u(l)v(l) in D - (D*(2) U ζ), and a?(l)»(l)«(l) where
D*(l) Π (Z?-(I>*(2) U ζ)). Analogous disjoint segments
x{2)y{2)z{2) comprise D n #*(3).

LEMMA 3.5. Suppose disc E S,V — K is such that dE=EΓ)
(C - JBΓ). Suppose that each of D Π E, JD*(1) Π #, I>*(3) Π # is ramΐ-
mal. As E divides V into subballs Q\ Q" such that V = Qf U Q",
Q' Π Q" = E, then it must be that ΰ * n F = Z)*(l) U JD*(2) (J £*(3) is
α subset of just one of the subballs Q\ Q".

Proof Suppose not. Note that each arc: dJ3*(l), 5Z>*(3), K(l),
ϋΓ(2) must lie entirely in Q' or in Q".

(a) Suppose 3D*(1) £ Q' and JSΓ(1) U K{2) U 3JD*(3) £ Q". Then
Df)E Φ 0 . By the minimality of D Π E, dEf)D = 0 so DfΊ# con-
sists of disjoint sec 7 each of which bounds subdisc D (7) of Z)
which must contain at least one point of 3D*(1) Π J? = {w(l), v(l), «(1)}-
Among such 7 there is a 2) (7) which contains no other sec of Df)E.
So ])(7)£Q' . 7 also bounds subdisc £(7) of # where £7(7)11 -K" = 0
and #(7) Π D(τ) = 7. So sphere E(Ύ) U D(y) bounds subball F* in
the interior of V. Of the three points u(l), v(l), z(l), just one can-
not lie in D(y)9 yet if two are in D(Ύ), the third is isolated for
another instance of just one point of dD*(1) in some other "inner-
most" Dirt). Yet all there of u(l), v(l), z(ΐ) cannot lie in D(rr).
Hence case (a) cannot occur. Similarly

(b) 3D*(3) Q Q' and Kx U K2 U 3JD*(1) £ Q" cannot occur.
(c) Suppose K(l) £ Q\ K{2) £ Q". By the minimality of D Π E

there is one spanning arc of D Π E — Z>*(2) Π E', with ends in the
two components of D*(2) Π C.

( i ) aZ>*(l)U3D*(3) £ Q'. To separate JSΓ(2) from the six points
u(l), u(2), v(l), v(2), z(X), z{2), each point must lie in subdisc D(y) of
D cut by sec 7 £ E (1 D which contains no other sec of E Π D.
There could be one, two, three—up to six such subdiscs D(y), but
each combination leaves a situation similar to case (a): an odd
number of the six points in the boundary of a ball in the interior
of V9 a contradiction.

(ii) aD*(l) £ Q', 3D*(S) £ Q", or 3JD*(3) £ Q", ai>*(l) £ Q' each
gives a case similar to (i) above.

(iii) dD*(ΐ) U 3J9*(3) £ Q". Redefine disc 2) so that iΓ(2) £ 3D
instead of JSL(1), then apply (i) and (ii) above.

(d) Suppose K(l) U K(2) £ Q* and 3Z)*(1) U 3D*(2) £ Q". Again,
there is just one spanning arc oί E ΓΪD which separates J5Γ(1)U K(2)
from u(ϊ), u(2), v(ϊ), v(2), z(ΐ), z(2). It can be assumed that the span-
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ning arc meets each of x(l)y(l) and x(2)y(2) in a single point. So
EΓ\D*(Ϊ) Φ 0 Φ Ef)D*(Z). Each of these two intersections consists
of sec 7. Among such 7 on i5*(l) is an "innermost" 7 which bounds
subdisc D (7) of JD*(1) which contains no other sec of Ef)D*(l) yet
which contains a point of {x(l), y(l)}. 7 bounds subdisc E(Ί)<^E. If
E(i) n D*(3) = 0 then sphere Z>(τ) U E(y) bounds a ball F * in the
interior of V and dV* contains just one point of K(l) or K(2)f

which is impossible. So E(y)Γi JD*(3) Φ 0 . There exists sec 7(1) in
#(7) Π D*(3) which bounds "innermost" subdisc 2?(τ(l)) of D*(3) which
contains a point of {x(2),y(2)}. 7(1) bounds a subdisc E(y(l)) £ 2?(τ)
for which, for the same reason two sentences above, E(y(l)) Π
D*(ΐ)Φ 0 . Thus there is an infinite sequence of disjoint sec 7, 7(1),
7(2), of E Π (JD*(1) U JD*(3)) bounding properly nested subdiscs
EzDE(y) =>E(rf(ΐ)) z>E(y(2)\ ••• which is impossible. Cases (a), (b),
(c), (d) cover all possible negations of the conclusion of Lemma 3.5
and these cases cannot occur. So Lemma 3.5 is proved.

The discussion continues in the context of Lemma 3.5. Three
more discs M(5), M(6), Λf(7) are determined in V as in Figure 16.
Note their properties: JD*(2)ΠΛf(7) = x(l)y)l), D*(2)nMQ5) = x(2)y(2),
2?*(l)ΠΛf(7) is a subdisc of D*(l) which contains x(l)y(l)z(l), D*(8) ΓΊ
AΓ(5) is a subdisc of D*(3) which contains aj(2)y(2)s(2), J5*(2)nM(6) =
D*nikΓ(6) is a spanning arc of D*(2) which separates D*(2) into two
subdiscs, one containing x(l)y(l)9 the other containing x(2)y(2). Q(4)
denotes the subball cut from V by Λf(4) and Λf(5), ball Q(5) is cut
from V by Af(5) and Af(6), Q(6) is cut by Af(6) and ikf(7), Q(7) is cut
by Λf(7) and Λf(l). In Q(4) determine Mobius band J5(4) and in Q(7)
determine Mobius band 5(7) as illustrated in Figure 17. 3J5(4) con-
sists of a center line in D*(3) from D*(3) Π Λf(4) to x(2), the seg-
ment K(l) (Ί Q(4) to Λf(4), and segment J5(3) ΓΊ M(4). 3B(7) similarly
consists of a center line in Z)*(l) from D*(ϊ)f)M(l) to aj(l), the seg-

M(4)

Q(7)

Q(4)

FIG. 16 FIG. 17
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ment K(l) n Q(7), and segment 5(1) Π Λf(l). Each of S(4) and J5(7)
consists of two discs connected by the five twisted rectangles as
shown.

4* K is simple* Let T be a torus which is incompressible in
S3 — K. Denote the component of S3 — T which contains K by G.
T Π C consists of a collection of disjoint simple closed curves. Sup-
pose T Π (Λf(2) U Λf(3)) is minimal, and T Π C is minimal. Then, by
Lemma 3.2 and Lemma 3.5, no sec of either T Π C or Γfl (Λf(2) U
Λf(3)) can bound a disc in Q or in V. So the closures of com-
ponents of Γ-(C(1)UC(2)UC(3)) are incompressible annuli in Q(ϊ)-K,
Q(2) - if, Q(3) - K, V - K. Denote this collection of annuli by Γ.
Suppose Γ Φ 0 . The annuli of Γ can be positioned so as to satisfy
the hypotheses of Lemmas 3.3 and 3.4. Then, from the minimality
conditions three sentences above and from the incompressibility of
T in Ss — K, none of the Lemma 3.4 cases (3), (4), (5) can occur in
Q(i)f i = 1, 2, 3. So if Γ Φ 0 it can be assumed that Γn (C-(Λf(l) U
Λf(4))) = 0 . Γ can be deformed so that TΓ\ D* is minimal. Sup-
pose annulus A e Γ, A = A(ΐ) £ ΓΠ Q(i), i e {1, 2, 3}, is an instance of
(1) of Lemma 3.4 for which D*(ί, a) £ G(ϊ). A gives rise to two
more annuli of Γ of the same type of case (1) of Lemma 3.4 in the
other two balls of Q. The three annuli join together in T to give
an incompressible annulus A* of T Π Q which forms part of the
boundary of ball G(l) U G(2) U G(8) = G* where D*(α) £ G* and
i>*(6) £ Q - G*. Thus 3i);ί:(2) Π Mil) £ 3G* and 3D*(3)nM(4) £ 3G*
but segments D*(6) Π (lf(l) U Λf(4)) are not in 3G*. In Q(4) annulus
A of Γ Π Q(4) which shares the component dA Π Λί(4) with A* must
be part of a ball G in Q(4) which contains 3J9*(3) but does not con-
tain (JBΓ(1) U K{2)) Π Q(4). Then G Π Λf(5) is a disc, bounded by a
component of dΆ, which contains no point of K(l) U K(2). As T —
( C - ( I ( 1 ) U I ( 4 ) ) ) = 0 , the component A' of Γ Π Q(5) continuing
from Ά must have a boundary component in Q(6). The ball G' cut
by A' from Q(5) which shares disc G Π Jkf(5) with G can contain no
points of K(X) U ίΓ(2). G' Π M(6) is a subdisc of Λf(6) which has no
points of if, hence T would be compressible in S3 — K, a contradic-
tion. So there can be no such A above and the only instances of
(1) from Lemma 3.4 which arise are those for which just one of
a(ί, 1), α(i, 2) is contained in G(i). Similarly the only instance of
(2) from Lemma 3.4 which can occur are those for which just one
of b(i, 1), b(i, 2) is contained in G(i). From this easily follows:

LEMMA 4.1. If Γ Φ 0 , T bounds a regular neighborhood of K.

Next, suppose that Γ = 0 . There is no loss in generality to
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assume that Tf] C = 0 and Tf] flJLi AΓ(*O) = 0 . Then Γ C Q(i) - K
for some i e {1, 2, 3, 4, 5, 6, 7}. As T is incompressible iτx Sz — K it
may also be assumed that T Π (D* Π Q(i)) = 0 . If TF is the com-
ponent of S3 - T other than G, then T? g Q(£) - (3Q(i) U Z>*).

Suppose i e {1, 2, 3, 4, 7}. Let P be a disc properly embedded in
Q(ΐ) with 3P = σ (cf (3.2)) so that P contains as subdiscs D(ΐ), D*(i, α),
jP(i, 1), JB(i, 1), S(i, 2), and two pieces of D*(i, 6). P intersects the
rest of D*(i, δ) in three segments, oue in D(ΐ), two in F(i, 1). It
can be assumed that T Π P is minimal. As Γ is in the interior of
Q(i) and separates Q(ΐ), Γ Π P must have as components at least 4
of the 5 sec illustrated by dashed lines in Figure 18. Select the
two subdiscs P(l), P(2) of P as in Figure 19, P(l) c P(2) c P. As
P(l) is pivoted in Q(i) on its edge in D*(i, a) through angles Θ:
\θ\ ̂  5π/6, the components of D(i, θ)f] T sweep out two annuli in T
and part of the boundary of a regular neighborhood of D*(i, a) in
Q(i), under the assumption that T Π P(l, 0) is minimal, for each θ.
See Figure 20. Similarly as P(2) is pivoted in Q(i) on its edge in
D*(ίf b), as in Figure 21, through θ: \θ\ ̂  ττ/2, the sweep continues
to complete the tube around D*(i, α), again, under the assumption
that ΓΠP(2, θ) is minimal, each θ. At \θ\ = π/2, the P(2, ̂ )'s have

FIG. 18 FIG. 20

\

FIG. 21 FIG. 22
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swept the part of T in Figure 22. For π/2 ^ \θ\ <; π the family
{P(2, θ)} complete T to yield a surface of genus two as the only
candidate for T, a contradiction.

For i6{5, 6} and Γ n ( ΰ * Π Q(ϊ)) = 0, Γ £ Q(ΐ) is impossible as
there are no incompressible surfaces in Q(i) — D*, i = 5, 6.

Hence one can conclude:

LEMMA 4.2. Γ ^ 0 .

Lemma 4.1 and Lemma 4.2 then give

THEOREM 4 3. K is simple.

5* K is of genus one* Suppose i 6 {1, 2, 3, 4, 7} and recall
Mobius band J?(i) in Q(i) as presented earlier. Suppose disc E S Q(i)
is such that dE = 3jB(i). Consider disc P of Lemma 4.2 for which
Figure 23 features D(i), aξZP, and bΓϊP consisting of two segments
and three points, one of which is bf] D{i) = {x}. Again let {P(2, θ)}
be the family of discs of which P(2, θ) is obtained by pivoting
P(2) = P(2, 0) on its edge which contains the two arcs of b through
angle θ, \θ\ ^ π. (See Figure 23.) Assume E Π P(2, θ) is minimal,
for each θ. For 0 < \θ\ < 5π/6 each point x(θ) must connect by an
arc of Ep[P(2,θ) to a point on the pivot edge of P(2). Yet at
θ = 0, X(0) in D(i) connects by an arc of E Π D(i) to a point of α.
This is impossible. Consequently, one has:

P(2,0)
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LEMMA 5.1. For ίe {1, 2, 3, 4, 7}, dB(i) cannot bound a disc in

REMARK 5.1. For i e {1, 2, 3}, if disc E £ Q{i) is such that
E n C(i) = arc a', 3£7 = α U a', a! Π 6 = 0 and if J? n b is minimal,
then (E - dE) p(b - db) Φ 0 .

REMARK ,5.2. For i e {1, 2, 3}, if arc β' £ C(i) is such that
β' η 6 = d/3' = dδ, then /3' U b cannot bound a disc in Q(i).

REDUCTION REMARK 1. Suppose E is a compressing disc for
(possibly bordered) surface F (i.e., E f] F = dE and dE does not
bound a disc on F). Suppose s and t are two points of dE and
simple arc δ £ E is such that d<5 = {s, ί} and δ cuts i? into two sub-
discs, J5", £"'. Suppose simple arc η £ F is such that 3)y = {s, ί} and
there exists disc # * for which dE* = δ U η, E* n E = δ, E* Pi F = η,
then one of discs E'\J E* or E" U E* is a compressing disc for F.

REDUCTION REMARK 2. If E is a compressing disc for surface
F, sec 7 Q E — dE bounds disc E(j)(zEf 7 bounds disc E* such that
E*Π(E- E(j)) = 0,E*f)F= 0, thenCE-J0(7))U#* is a compres-
sing disc for ί7.

THEOREM 5.1. S( — 1) is incompressible. K is of genus one.

Proof. Suppose £ is a compressing disc for S( —1). Assume
for each ΐ e {1, 2, 3, 4, 5, 6} that E f] C(i) is minimal not only via de-
formations but also with respect to the operations of the two re-
duction remarks. Also assume that dE Π (USUi M(k)) is minimal.

If dE Π D* Φ 0 then EnC Φ 0 and for i e {1, 2, 3}, EnC(i) Φ 0.
Because of Lemma 3.2 the components of E Π C(i) are subdiscs Er

of U7, E'ΓiC(i) = d£", where 9£" is composed of simple arcs in C(i),
with ends in some of the four segments of (D*(i, α)U -D*(ΐ, 6))Π
(Λί(i) U Λf(i + 1)), and of center lines of D*(i, α) or D*(i, 6). Just
three possibilities need be considered.

(a) dE' = α U α ' where α is a center line of D*(ί, a) and α' S
C(i). By Remark 5.1 this case cannot occur.

(b) dE' = 6U/3' where 6 is a center line of D*(i, b) and βΏC(i).
By Remark 5.2 this cannot occur.

(c) dE'ΓlD*(i,a) = a, a centerline of D*(i, a); dE'f)D*(i,b) =
b, a centerline of D*(i, b); there exists arc a' in M(i + 1) from da to
db; there exists arc /3' in M(i) from 9α to db, so £"(Ί C(i) = a' U /5';
3£" = αUα'UδU/3'. But then 3£" bounds a Mδbius band similar to
B(i) in Q(i). This is contrary to Lemma 5.1.
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As none of (a), (b), (c), can occur, dE Π D* = 0 . Thus dE £ H.
It can be assumed that dE = H Π Λf(6) which bounds subdisc Λf* of
Λf(6) and AT* Π JD*(2) is a segment. There is no loss of generality
to assume that E Π M* = dE and that J5ΊJ Λf * is a sphere in ball
Q(5)UQ(6). But JEΊJM* contains just one point of i£(l), a contradic-
tion. So, there can be no compressing disc for S(—1) and S(—1) is
incompressible in S3 — K. K is of genus at least one, and S( —1)
then guarantees that K is of genus one.

6* More spanning surfaces for K+ Recall that annulus H
bounded a regular neighborhood of D*(2) Π (Q(5) U Q(6)). Figure 24
shows H continued through Q(4), Q(7) and Q to yield H, part of the
boundary of a regular neighborhood of disk JD** = D*(2) U D*(a) U
Z)*(6). Cap annulus Jϊ by the disc in Λf(l) cut by 3JΪ, which con-
tains D*(6) ΓΊ Λf(l), and by the disc in Λf(4) cut by 3 ^ which con-
tains ΰ*(α)nl(4). The result is a sphere Z which bounds 3-cell U,
as in Figure 24.

For i 6 {1, 2, 3} define C*(i) = C{%) - C7, Q*(i) = Q(i) - [/, so that

FIG. 24
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C*(i) is a sphere with four holes and Q*(i) is a "cube with two
holes".

Next, restrict ie{2, 3}. Consider small product neighborhood
C(i)xloί C(i) in Q(i), where I =[0,1]. Let ne {1, 2, 3, •} and
define C(2, j) = C(2) x {i/n} for j e {0, 1, 2, 3, .• , n), (7(3, fc) = C(3) x
ί(fc - 1)/(Λ + 1)}, k e {1, 2, .. . f Λ + 1}. Note that C(2) = (7(2, 0), that
there are n additional copies of (7(2) in the interior of Q(2), each
copy parallel to C(2) in Q(2). Also, C(3, 1) = C(3)x{0} = (7(8), but
(7(2, 1) = (7(2)x{l/w}=£ C(2). Note also that the elements of {(7(1),
(7(2, j), C(3, k)\ j = 1, 2, • , n, fc = 1, 2, , n + 1} are disjoint.

Disc Z>** is cut by C* = (7(1) U \JU C(2, j) U U ϊ ϋ C(3, fc) in 8^ + 8
disjoint spanning segments which cut An + A properly nested sub-
discs D**(l)z> Z>**(2)=> => Z)**(4w + 4), where D**(l) - D**. Note
also that C* Π U is a collection of 8n + 8 disjoint discs L(t), t =
1, 2, , Sn + 8, parallel in U and which slice H into 8^ + 7 an-
nuli H(k), k e {1, 2, , 8n + 7}. For /e {1, 2, , An + 4} first note
that 3D**(/) £ L(/) U L(8^ + 8 - s+ 1). Secondly, let J7(/) be the
component of £7 cut by the discs L(/), L(8n + 8 — s+ 1) with these
discs attached. So D**(/) S C7(/). Define H{/) £ Jϊ such that
dU(s) = L{s) U H{/) U L(8^ + 8 - ^ + 1 ) . In U - D** consider pro-
duct neighborhood Hxl of β. Then for /e {1, 2, , An + 4} de-
fine H'(y) = H(/)x{{An + 4 - /)/(An + 4)}. Next attach the annuli
cut from each of discs L{s) and L(8n + 8 — ̂ + 1 ) by dHf{s), to
JEΓV) to form annulus £Γ*(/). H*(/) is merely ffV) which is "flared"
so that its boundary lies in it. The "flare" disappears at
H*(An + 4) = H(An + 4) x {0} £ iϊ. H*(An + 4) lies in F and i ί =
H*(4n + 4) n (Q(5)UQ(6)). Define C*(2, i) = (7(2, j) - CΓ, j = 1, 2, .. ,
w, C*(8, k) - C(3, fc) ~ U, k = 1, 2, , w + 1. Let F*(n) - C*(l) U
Ui=χ C*(2, i) U U S C*(3, fc) U Uw=+i4 i ϊ V ) .

Each of the four boundary components of each of (7*(1), C*(2, j),
C*(8, &), j = 1, 2, , n, k = 1, 2, , n + 1, is a boundary compo-
nent of just one H*(/) and so F*(ri) is a single closed surface.
Figure 25 schematically illustrates the connection scheme for F*(n).
The scheme is similar to the one in [2] but the surface F*(n) here
is actually connected in a different manner. The surfaces F*(n) are
adapted from one of the algorithms in [1]. Euler characteristic:

X(F*(n)) = ΣZ(C*(2, j)) + Σ^(C*(3, k)) -

= w(-2) + (n + l)(-2) + (-2)=-4(w + 1) .

Hence F*(n) has genus 2w + 3. If n = 0 were allowed, then F*(0) =
C*(l)UC*(3)UU=i^V) is again a surface of the same type as
F*(n), n = 1, 2, , and has genus 3. So, in general, n e {0, 1, 2, •}
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FIG. 26

is permitted. Each F*(n) is a closed surface in S3, hence F*(n) is
orientable.

Remove H from F*(ri) to obtain orientable spanning surface
S(n) = (F*(n) - IT) U (£>* - (D' U D")) for K, of genus 2^ + 3, n =
0,1, 2, . Figure 26 illustrates S(l).

LEMMA 6.1. For each /— 1, 2, + 4, jff*(/) is incompres-
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sible in S3 — K.

Proof. Each noncontractible sec 7 inH*(s) is parallel in H*{s)
to either component of dH*(s), hence 7 bounds a disc in U which
intersects each of the two arcs of K Π U in one point. If such a
sec 7 were to bound a disc E in S3 — if, Ef\H*(s) = 7, a contradic-
tion similar to that in the proof of Lemma 3.1 would arise.

LEMMA 6.2. .For each i = 1,2, 3, C*(ΐ) is incompressible in
S3 - J5Γ.

Proof. Suppose not. Suppose E is a compressing disc for C*(i),
some ie{l, 2, 3}. Then E Π C*(i) = dE does not bound a disc on
C*(i). Assume that 2ί7n(Ui*< (C*(i) — C*(i))) is minimal not only
with respect to deformations but also with respect to the two re-
duction remarks. Then, by Lemmas 3.2 and 3.5, E Q Q*(i). But
this contradicts Lemma 3.2.

THEOREM 6.1. For ne {0, 1, 2, •}, S(n) is incompressible in
S 3 - K.

Proof. Suppose not. Suppose E is a compressing disc for S{n),
some n e {0, 1, 2, •}. Then EΓϊS(n) = dE does not bound a disc on
S(ri). Assume for each i = 1,2, 3, 4, 5, 6, 7 that E ΓiC(i) is minimal,
and that E Π H is minimal.

If E Γ\ H — 0 , then just one of the following can hold:
(a) there is some /e {1, 2, , An + 4} such that dE £ #*(/),
(b) either dl?£C*(l) or there is some ie{2, 3}, some /e

{1, 2, -, n + 1} such that 3£; £ C*(i, i),
(c) 3EQD* - (D'UJD'O

(a) and (b) cannot occur because of Lemma 6.1 and Lemma 6.2.
In the proof of Theorem 5.1 it was shown that (c) cannot hold. So
E n H Φ 0. Note that 3 n (Q(4) U Q(7)) = H\4n + 4) - H Q S(n) so
if E n (jff'(4w + 4) - H) Φ 0,En (H'(4n + 4) - H) £ dE. Let col-
lection 0* consist of annuli H(k), k = 1, 2, 3, , 8w + 7 with the
one identified with H\4n + 4) removed and replaced by H (so that
there still are 8w + 7 of them) and two discs L*(l), L*(8w + 8),
where L*(l) is cut from 1/(1) by dH\l) and L*(8w + 8) is cut from
L(Sn + 8) by dH\l). Denote segment c = D**nL*(l), segment d =
D** n L*(Sn + 8).

From minimality conditions above, for each H(k) e 0*, H(k) Π E
consists of at most disjoint spanning arcs in H(k) and E with
boundary in both components of 3H(k). Each of E Γ\ L*(ϊ) and Ef]
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FIG. 27

L*(βn + 8) consists of at most spanning arcs in E with boundary
in dL*(l) and c, or in dL*(8n + 8) and d. Call the class of all such
arcs 0 and suppose 0 Φ 0 . Then each arc in 0 separates E into
two disjoint subdiscs and among these subdiscs are "end-discs" which
contain no other subdisc. If 0 Φ 0, E must have at least two
"end-discs". If E* is an "end-disc", then dE* = δ U η where δ is a
spanning arc in 0 and η £ dE. There are just two possibilities
for 8:

(a) δQH(k), and i? is a subset of one of C*(l), C*(2, n),
C*(3, n + 1), and # * £ Q*(l), or £?* C Q*(2, Λ), or E* £ Q*(3, w + 1);

(b) δ C L*(l) and 07 £ C*(l) U J5*(l) U (H n Q(7)) with one arc in
each of the named pieces, and E* Q Q(7) or <5 Q L*(8n + 8) and
?7 £ C*(8) U J5*(3) U (H Π Q(4)) and £7* £ Q(4).
Figure 27 gives a schematic representation of S(2) with possibilities
(a) and (b) denoted by "speckled" discs. Case (a) contradicts Remark
5.1 or Remark 5.2 and case (b) contradicts Lemma 5.1. So 0 = 0 ,
which contradicts E Π Ή Φ 0 . Hence S(ri) is incompressible in
S3 - K.

7. A conjecture* Theorems 4.2. 5.1, 6.7 establish the existence
of a knot as in the title of this paper. If one were to replace arc
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2q+1

crossings

FIG. 28

b in Q(2), which has 3 self-crossings which provide F(2) and B(2)
with 3 twisted rectangles, by arc V with 2# + 1 crossings as illus-
trated in Figure28, q = 2, 3, 4, , so that ίτ/(2) still has discs F(2, 1)
and JP(2, 2) but they are attached by 2q + 1 twisted rectangles and
a similar situation occurs for 2?'(2), then all the previous discussion
still holds. Trefoil b U /3 is replaced by torus knot (2, 2g + 1) and
B'(2) is a twisted Mobius band. So there are infinitely many con-
structions possible to obtain a simple knot of genus one with in-
compressible spanning surfaces of arbitrarily high genus. It is this
author's conjecture that the knots are all different.
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