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ON MEASURABLE PROJECTIONS IN BANACH SPACES

ELIAS SAAB

Let £ be a Banach space that is complemented in its
bidual by a projection P: E** — F. It is shown that E has
the Radon Nikodym property if and only if for every Radon
probability measure 2 on the unit ball K of E** guch that

w* — | a**die E for every weak* Borel subset A of K, the

4
projection P is 2-Lusin measurable and for every 2* in E*
the map z*P satisfies the barycentric formula for 1 on K.

J. J. Uhl Jr. asked the following question: Let E be a Banach
space which is complemented in its bidual by a projection P: E** — E
which is weak™ to norm universally Lusin measurable. Does E have
the Radom-Nikodym property?

In [4] we showed that if E is the dual of a Banach space Y
and if P is the natural projection from E** = Y *** to Y* = K then
the above condition is necessary and sufficient for E to have the
Radon-Nikodym property.

In [4] we also showed that for any Banach space E, if P is weak*
to weak Baire-1 function then E has the Radon-Nikodym property.

Recently G. Edgar showed using an idea of Talagrand and
Weizsacker that the projection

LI[O: 1]** — LI[O: 1]

is weak* to weak universally-Lusin measurable. This shows that
Uhl’s question does not have a positive answer in general, however
if one examines the results of [4] he can see that if P is Baire-1,
it is universally Lusin-measurable and for every z* in E* the map
x*P satisfies the barycentric formula. It turns out that a Banach
space E has the Radon-Nikodym property if and only if for every
Radon probability measure A on the unit ball K of E** such that

w* — S x2**dne E for every w*-Borel subset A of K the projection

Pis )\,-Iiusin measurable and for every 2* in E* the map «*P satisfies
the barycentric formula for » on K.

Let us fix some terminology and conventions. All topological
spaces in this paper will be completely regular. The set of all Radon
probability measures on a topological space (X, z) will be denoted
by Mi(X, 7).

DErFINITION 1. Let (X, 7)) and (Y, 7,) be two topological spaces
and let
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fiX—Y and peM(X, )

the map f is said #-Lusin measurable if for every compact set K in
X and for every ¢ > 0 there is a compact set K. K such that
MK\K,) < ¢ and the restriction f|K. of f to K. is continuous.

If f is p-Lusin measurable, the image of p denoted by f(x) and
defined by f(u)(A) = u(f'(A)) for every Borel subset A of (Y, 7,)
belongs to Mi(Y, 7,).

DEFINITION 2. Let E be a Banach space and let (7, X, \) be a
probability space. A function f: T — E, is Bochner integrable if
there exists a sequence (f,) of simple functions such that

(i) lim, ||f(€) — f.(®)]] = 0 for A-almost all t€ T and

(i) tim, | (170 = f®lldr = 0.
If f is Bochner integrable we denote by

Bochner —S Fdn = lims Fudn
4 €n A
for every A in J.

DEFINITION 3. A Banach space E is said to have the Radon-
Nikodym property if for every probability space (T, 3, A) and every
vector measure m: Y — E such that ||m(4)| < MA) for every A in
Y, there exists f: T'— E Bochner integrable such that

m(A) = Bochner — S fdx for
A
every A in Y.
For more about the Radon-Nikodym property see [1].

If (X, 7) is a topological space, ¥ the Borel subset of (X, r) and
NeMi(X,7) and f: X — (H, || |) which is \-Lusin measurable and
bounded then f is Bochner integrable.

If C is a w*-compact convex subset of the dual E* of a Banach
space E and f: (X, 7) — (C, o(E*, E)) then f is said to be w*-integra-
ble with respect to e Mi(X, 7) if

(i) For every x€ E the map ¢t — x(f(¢)) is r-integrable.

(ii) For every AecZX there exists xz%eC such that x(z*) =

SA x(f(t)dn for every xe€ E. The element z% will be denoted by

xj;:a)*-Sfdx.
A
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Let pe Mi(C, o(E*, E)) it is easy to see that the identity map
I: (C, o(E* E)) — (C, 0(E*, E)) is ¢t weak*-integrable. An affine func-
tion h: (C, o(E*, E)) — R which is p-Lusin measurable is said to
satisfy the barycentric formula for # on C if for every w*-Borel
subset A of C

* — .
h(w L Id;z) L h-Tdg .
If ve M(X, z) we denote by supp » the support of .

LEMMA 4. Let (X, 7) be a topological space and »e Mi(X, 7).
Let C be a w*-compact convexr subset of the dual E* of a Banach
space K and f and ¢

.f’ ¢: (X, 7'-) — (C’ G(E*; E))
two N-Lusin measurable maps such that for every Borel subset A in
(X, 1),
a)*—S fdx:w*—s sdn .
A A

Then f = ¢ n-almost everywhere.

Proof. Let K be a compact set in (X, 7) such that ¢|K and
f1K are continuous from (K, r) — (C, o(E*, E)) then we claim that
f=¢ A-almost everywhere on K. Let g = \|K, it is enough to
show that

¢|supp ¢ = f|supp p

if not there exists ¢, supp ¢ such that ¢(¢,) + f(t,). Let x€ E such
that x(¢(t,) — f(t,)) = 1, the scalar map ¢ — () = x(¢(t) — f(t)) is con-
tinuous on K, therefore there exists a neighborhood V of ¢, in K
such that

teV=>q/r(t);-%-.

Observe that ¢,€supp = ¢#(V) > 0 and hence

SV (B)dn = g wO)dp = %;e( V) >0

on the other hand we have w* — S fan = 0* — S #dxn which in turn
14

implies that S 2(FE)dr ~§ wé(t)dn there fore S ()dr = 0 a con-

tradiction that finishes the proof of the claim. To finish the proof
choose for every » = 1 a compact K, such that
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(i) fI|K, and ¢|K, are both continuous on K,.

(ii) MX\K,) =< 1/n.

(iii) K,= H,UN, where f|H, = ¢|H, and \MN,) =0
Let K=U; H,, M=X\U;., K, and M=U;-, N, then X=KUMUN
where MM U N) =0 and f= ¢ on K.

From now on, E will be a Banach space complemented in its
second dual E** by a projection P: E** — K and K will denote the
closed unit Ball of E**.

THEOREM 5. The Banach space E has the Radon-Nikodym
property if and only if for every ne Mi(K, o(E**, E*)) such that
w* — S x**dn e E for every w*-Borel subset A of K, the projection
P s wéalc* to norm A-Lusin measurable and for every x* im E* the
map x*P satisfies the barycentric formula for n on K.

m(A) = o* — S x*FdN belongs
A

to E for every w*-Borel subset 4 of K. It is easy to see that
lm(A)|| = MA)  for every

w*-Borel subset A4 of K and therefore m is a c¢-additive E-valued
vector measure. If E has the Radon-Nikodym property one can find

STK— (& | D

A-Bochner integrable such that for every w*-Borel subset 4 of K we
have

m(A) = Bochner — S fdr = o* — S s d .
A A
Apply Lemma 4 to conclude that f(x**) = 2** \-almost everywhere
and use the fact that f is A-Lusin measurable from K — (&, || ||
to write K = Uy, K, U N where (K,) is a sequence of disjoint norm
compact subset of E and A(N) = 0. This shows that the identity

I: (K, o(E**, E*) — (K, || I}
is A-Lusin measurable and therefore P is A-Lusin measurable. Let

2* in E*, we have to show that

x*P(w* — S x**dk) - SA 2 Pa*)dn .

A

To this end observe that
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(0 — | o) = o' (0 — | 5an) = 2 mca)

A A

= o*(3 MK, N A) = S oK, N 4)

— ig s @ *)dn = ig o* P@*)dn
KN4 Kp0d

n=1 n=1

= S 2*P(@* ") .
A

Conversely, let » be in Mi(K, o(E**, E*)) such that for every weak*
Borel subset A of K we have

mA) = o* — S s *dne B .
A
Let x* e E*, then

2*(m(A)) = z*P(m(A)) = S 2*PE*)dn = L o @) .

Therefore w* — | Idn = @* — | Pd) where I is the identity map on
A A
K. Now apply Lemma 4 to deduce that K can be written

K=UK,UN
n=1

where each K, is w*-compact on which 7 = P and AMWN) = 0. This
implies that for every n = 1, K, is norm compact and is contained
in E and hence I: (K, o(E**, E*)) — (K, || ||) is A-Lusin measurable.
To prove now that E has the Radon-Nikodym property, let 3 be
o-algebra of all Lebesgue measurable subsets of [0, 1] and let z be
the Lebesgues measure on [0, 1]. Consider a vector measure m:
Y — E such that ||m(A)| < #(A) for every Ae3. By [5], there
exists a map f: [0, 1] — K such that

(i) For every w*-Borel subset B of K, f~'(B) belongs to 3.

(ii) The image measure f(¢) belongs to Mi(K, o(E**, E*)).

(ili) For every Aec X

mA) = o* — SAfdp .
It follows easily that for any w*-Borel subset B of K
w* — SA o**df(p) e E .
Therefore I: (K, o(E**, E*)) — (K, || ||) is f(¢)-Lusin measurable by

what we did above. Consequently K can be written K = 3., K, UN
where f(¢)(N) = #(f*(N)) =0 and K, is norm compact subset of
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E**. It follows that If:[0,1] > (K, | ) is p-almost separably
valued. Also note that if 0 is an open set in (K, || ||) then f*(0)eX.
This shows that the map

f=1:00,1] - (&, || )

is p-Lusin measurable and therefore Bochner integrable and hence
m(4) = o* — S fdp = Bochner — S fdp
A A

for every A€ X. This shows that f takes its values p-almost every-
where in E, therefore E has the Radon-Nikodym property.
The proof of the above theorem implies the following corollary.

COROLLARY 6. For any Banach space E the following two con-
ditions are equivalent:

(i) The space E the Radon-Nikodym property.

(ii) For every ne€ Mi(K, o(E**, E*)) such that o™ — S x**dne B
for every w*-Borel subset A of K, the identity ‘

(K) O'(E**7 E*)) - (K’ H H)

is A-Lusin measurable.

If E is completed in E** by a projection P: E** — K then (i)
and (ii) are equivalent to

(iii) For every n e M:(K, o(E**, E*)) such that ©* — S v**dne B

A

Jor every w*-Borel subset A of K, the projection P is \-Lusin
measurable and for every x* e E*, the map x*P satisfies the bary-
centric formula for n on K.

COROLLARY 7 [4]. If E is complemented in E** by a weak™ to
weak Baire-1 projection P, then E has the Radon-Nikodym property.

Proof. If P is Baire-1, it is A-Lusin-measurable for any e
Mi(K, o(E**, E*)) and for every x*e E*, the map z*P is Baire-1
and therefore satisfies the barycentric formula for » on K.

In [4] it was shown that if P: (E**, o(E**, E¥)) — (K, o(&*, E))
is Baire-1, then E is a weakly compactly generated Banach space.
Using this fact we can now give the following:

Erample of a Banach space having the Radon-Nikodym property
and complemented in its bidual by a nonweak™ to weak Baire-1
projection.

Let R be the Banach space constructed by Rosenthal in [2], this
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space bas the following properties:
(1) It is a dual space, therefore it is complemented in R**.
(2) It is a closed subspace of a weakly compactly generated
Banach space, therefore it has the Radon-Nikodym property [3].
(8) Itisnot weakly compactly generated so P: R** — R is not
Baire-1.

For more examples related to this paper see [4].

REFERENCES

1. J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Survey No. 15, Ameri-
can Mathematical Society, Providence, 1977.

2. H. P. Rosenthal, The heredity problem for weakly compactly generated Banach
spaces, Comp. Math., Groningen, (28), (1974), 83-111.

3. E. Saab, A characterization of w*-compact convex sets having the Radon-Nikodym
property, Bull. Soc. Math., 2 éme serie, 104 (1980), 79-88.

4., —————, Universally Lusin-measurable and Baire-1 projections, Proc. Amer. Math.
Soc., to appear, 78 (1980), 514-518..

5. H. Weizsdker, Strong measurability, lifting and the Choquet Edgar theorem, Lec-
ture notes no 645, 209-218.

Received April 25, 1980.

THE UNIVERSITY OF BRITISH COLUMBIA
VANCOUVER, B. C.
V6T 1Y4 CANADA

Current address: The University of Missouri
Department of Mathematics
Columbia, MO 65211








