SYMMETRIC SHIFT REGISTERS, PART 2

JAN SØRENG

We study symmetric shift registers defined by

$$(x_1, \dots, x_n) \longrightarrow (x_2, \dots, x_n, x_{n+1})$$

where $x_{n+1} = x_1 + S(x_2, \dots, x_n)$ and S is a symmetric polynomial over the field GF(2).

Introduction. In this paper we study symmetric shift registers over the field $GF(2) = \{0, 1\}$. In [2] we introduced the block structure of elements in $\{0, 1\}^n$ and developed a theory about this block structure. In this paper we will use the results in [2] about the block structure to determine the cycle structure of the symmetric shift registers.

The symmetric shift register θ_S corresponding to $S(x_2, \dots, x_n)$ where S is a symmetric polynomial, is defined by

$$\theta_{S}(x_{1}, \dots, x_{n}) = (x_{2}, \dots, x_{n+1})$$
 where $x_{n+1} = x_{1} + S(x_{2}, \dots, x_{n})$.

q is the minimal period of $A \in \{0, 1\}^n$ with respect to θ_s if q is the least integer such that $\theta_s^q(A) = A$. Then $A \to \theta_s(A) \to \cdots \to \theta_s^q(A) = A$ is called the cycle corresponding to A. We will for all S solve the following three problems:

- 1. Determine the minimal period for each $A \in \{0, 1\}^n$.
- 2. Determine the possible minimal periods.
- 3. Determine the number of cycles corresponding to each minimal period.

Moreover, the problems will be solved in a constructive way, a way which will describe how the minimal periods and the number of cycles can be calculated. In [1] (see also [2]) we reduced all the problems to the case $S = E_k + \cdots + E_{k+p}$ where E_i is defined by

$$E_i(x_2, \, \cdots, \, x_n) = 1$$
 if and only if $\sum_{j=2}^n \, x_j = i$.

In this paper we will only study $S=E_{\scriptscriptstyle k}+\cdots+E_{\scriptscriptstyle k+p}.$

I will now roughly describe the structure of the proof. First we need a definition. Suppose $\mathcal{M} \subset \{0, 1\}^n$ is a set such that for all $A \in \mathcal{M}$ there exists an i > 0 such that $\theta_S^i(A) \in \mathcal{M}$. Then we define Index: $\mathcal{M} \to \{1, 2, \dots\}$ and $\psi \colon \mathcal{M} \to \mathcal{M}$ in the following way:

Let i > 0 be the least integer such that $\theta_s^i(A) \in \mathcal{M}$, then we define Index (A) = i and $\psi(A) = \theta_s^i(A)$.

In the proof we need only consider certain subsets \mathcal{M} which can be represented in a nice way. Each $A \in \mathcal{M}$ is uniquely deter-

mined by its block structure. In [2] we proved how we can determine the block structure of $\psi(A)$ by means of the block structure of A. We continue in this way and calculate the block structure of $\psi^2(A)$, $\psi^3(A)$, \cdots . Finally, we find a q such that A and $\psi^q(A)$ have the same block structure. Hence $A = \psi^q(A)$. Then

$$\operatorname{Index} (A) + \operatorname{Index} (\psi(A)) + \cdots + \operatorname{Index} (\psi^{q-1}(A))$$
 is the minimal period of A .

Next we give a short outline of the paper. Section 2 contains some definitions and notations. In § 3 we compute ψ for a certain subset \mathscr{M} and describe the main ideas. In the §§ 4, 5 and 6 we solve the Problems 1, 2 and 3 respectively for the set \mathscr{M} . In § 7 we generalize the results to all $A \in \{0, 1\}^n$. This generalization will not be difficult.

2. Preliminaries. We must repeat some of the definitions from [2]. First we define the blocks of $A \in \{0, 1\}^n$ ([2], Def. 3.1). Intuitively an *i*-block is *i* consecutive 1's in A. 0_i denotes *i* consecutive 0's in A and 1_i denotes *i* consecutive 1's in A for $i \ge 0$.

We need some notation. We write $a_1 \cdots a_n = (a_1, \cdots, a_n) \in \{0, 1\}^n$. If $A = a_1 \cdots a_n \in \{0, 1\}^n$, we define

$$f(a_i \cdots a_j) = (\text{the number of 1's in } a_i \cdots a_j)$$

- (the number of 0's in $a_i \cdots a_j$).

If $r \leq i \leq j \leq s$ and $(r \neq i \text{ or } j \neq s)$ we write $a_i \cdots a_j < a_r \cdots a_s$. Moreover, $a \wedge b$ denotes the minimum of a and b, and we define $w(\cdot)$ by $w(a_1 \cdots a_n) = \sum_{i=1}^n a_i$.

We divide the definition of blocks into two parts by first defining 1-structures and 0-structures of A. A 1-structure (0-structure) is a generalization of q consecutive 1's (respectively 0's) which is succeeded by q 0's (respectively 1's). We will say that a block B_i is on level i if it is contained in a chain $B_1 > B_2 > B_3 > \cdots > B_i$ of blocks.

DEFINITION 2.1, Part 1. Suppose $A = a_1 \cdots a_n \in \{0, 1\}^n$.

- (a) Suppose $a_r = 1$. Let s be the maximal integer such that $D = a_r \cdots a_s$ satisfies
- (1) $0 < f(a_r \cdots a_i) \le f(a_r \cdots a_s)$ for $i \in \{r, \cdots, s\}$ and
- (2) If $r \le i \le j \le s$, then $f(a_i \cdots a_j) > -(p+1)$. By definition D is a 1-structure with respect to p.
- (b) Suppose $a_r = 0$. Let s be the maximal integer such that $D = a_r \cdots a_s$ satisfies

$$0 > f(a_r \cdots a_i) \ge f(a_r \cdots a_s)$$
 for $i \in \{r, \cdots, s\}$.

By definition D is a 0-structure.

DEFINITION 2.1, Part 2. (a) Suppose $A = a_1 \cdots a_n \in \{0, 1\}^n$. We define the blocks in A with respect to p by induction with respect to the level of the blocks in the following way: (The 1-structures are defined with respect to p.)

Level 1. We decompose A in the following way $A = 0_{i_1}B_1 \ 0_{i_2}B_2 \cdots B_m 0_{i_{m+1}}$ where B_j is a 1-structure. By definition B_1, \cdots, B_m are the blocks in A on level 1.

Level 2. Suppose B is a block on level 1. We decompose B in the following way

$$(2.1) \quad B = 1_{i_1}B_1 1_{i_2}B_2 \cdots B_m 1_{i_{m+1}} \quad \text{where} \quad B_j \text{ is a 0-structure }.$$

By definition B_1, \dots, B_m are the blocks in A on level 2 which are contained in B.

Level 3. Suppose B is a block on level 2. We decompose B in the following way

$$(2.2) \quad B = 0_{i_1} B_1 \, 0_{i_2} B_2 \, \cdots \, B_m 0_{i_{m+1}} \quad \text{where} \quad B_j \text{ is a 1-structure .}$$

By definition B_1, \dots, B_m are the blocks in A on level 3 which are contained in B.

We continue in this way. If $i \in \{3, 5, 7, \dots\}$ and B is a block on level i, we decompose B as in (2.1). If $i \in \{4, 6, 8, \dots\}$ and B is a block on level i, we docompose B as in (2.2).

(b) Let B be a block in A on level i. Then we define level (B)=i, type $(B)=|f(B)|\wedge (p+1)$ and m(B)=|f(B)|. Moreover, if type (B)=q we say that B is a q-block or that B is a block of type q.

We illustrate Definition 2.1 by the example p = 2 and

where

 B_1 , B_2 , B_3 , B_4 , B_5 and B_6 are blocks of type 1

$$B_7$$
 and B_8 are blocks of type 2 B_9 and B_{10} are blocks of type 3 B_1 , B_9 , B_4 and B_{10} are blocks on level 1 B_7 , B_8 , B_5 , B_8 and B_8 are blocks on level 2 B_2 is a block on level 3.

We establish the convention that B always denotes a block. Moreover, we suppose k and p are fixed integers such that $0 \le k \le k + p \le n - 1$. The block structure is always determined with respect to p and we always work with $S = E_k + \cdots + E_{k+p}$. We write $\theta = \theta_s$. These conventions do not concern § 7.

If $A = a_1 \cdots a_n$, we write $l_A(a_i \cdots a_j) = i$ and $r_A(a_i \cdots a_j) = j$. Next we define d(B) which measures how far the block B is to the left in A. Suppose $A = a_1 \cdots a_n$. We define

$$egin{aligned} d_q(a_1 \cdots a_j) &= j - \sum \left\{ q \wedge \operatorname{type}\left(B\right) : l_{A}(B) \leqq j
ight\} \ &- \sum \left\{ q \wedge \operatorname{type}\left(B\right) : r_{A}(B) \leqq j
ight\} \,. \end{aligned}$$

If B is a block of A, then we define d(B) = 0 if $l_A(B) = 1$. Otherwise,

$$d(B) = d_q(a_1 \cdots a_j)$$
 where $j = l_A(B) - 1$ and $q = \text{type}(B)$.

In our example in this section we get

$$(d(B_1),\,d(B_2),\,d(B_3),\,d(B_4),\,d(B_5),\,d(B_6))=(1,\,5,\,6,\,10,\,11,\,15) \ (d(B_7),\,d(B_8))=(3,\,7) \ (d(B_9),\,d(B_{10}))=(2,\,4) \;.$$

3. Main ideas. In this section we let $\gamma_1, \dots, \gamma_{p+1}$ be fix integers such that $\gamma_i \geq 0$ for $i=1, \dots, p$ and $\gamma_{p+1} > 0$. Moreover, we will only work with $A \in \{0, 1\}^n$ which contains γ_i *i*-blocks for $i=1, \dots, p+1$, and such that w(A) = k+p+1. That is; A contains (k+p+1) 1's.

In [2] we described how the blocks move by applying the shift register. We will reformulate these results by introducing new notation. First we have to repeat a lot of the notation from [2]. Moreover, we will mention some of the problems we must solve and describe the main ideas on an example.

In [2] we defined $(i = 1, \dots, p + 1)$

$$(3.1) \qquad \begin{array}{l} \alpha_i = n + i - 2\gamma_1 - 4\gamma_2 - \cdots - 2i\gamma_i - 2i(\gamma_{i+1} + \cdots + \gamma_{p+1}) \ . \\ m = k + p + 1 - \gamma_1 - 2\gamma_2 - 3\gamma_3 - \cdots - (p+1)\gamma_{p+1} \ . \end{array}$$

Since α_i and m are very important constants, we will give an interpretation of them. To do this we define a subset $\mathscr{M} \subset \{0, 1\}^n$ in the following way

$$(3.2) \qquad A \in \mathscr{M} \Longleftrightarrow \begin{cases} w(A) = k + p + 1 \ . \\ A \text{ starts with 0 or a } (p+1)\text{-block .} \\ A \text{ contains } \gamma_i \text{ i-blocks for } i = 1, \, \cdots, \, p+1 \ . \\ A \text{ ends with a } (p+1)\text{-block .} \end{cases}$$

In the $\S\S 3-6$ we will study this subset, and in $\S 7$ we reduce the general problem to \mathscr{M} . It can be proved that

(3.3)
$$\alpha_i \ge \max \{d(B): B \text{ is an } i\text{-block in } A\}$$

for each $A \in \mathcal{M}$. For some $A \in \mathcal{M}$ we will have equality in (3.3). Next, we will give an interpretation of m. We use the function $f(\cdot)$ defined in § 2. From the definition of blocks we have $f(B) \geq p+1$ when type (B) = p+1. We suppose $A \in \mathcal{M}$. Then it can be proved that

$$m = \sum \{f(B) - (p+1): B \text{ is a } (p+1)\text{-block in } A\}$$
.

m is in a way the sum of the superfluous 1's in the (p+1)-blocks in A.

The subset \mathscr{M} we defined in (3.2) is very important. We will now study the key map $\psi \colon \mathscr{M} \to \mathscr{M}$ defined by

(3.4) if $A \in \mathcal{M}$, then $\psi(A) = \theta^i(A)$ where i is the least integer such that $\theta^i(A) \in \mathcal{M}$. Moreover we define Index (A) = i.

In [2] we called this map φ_{\min} . Moreover, if $\gamma_{p+1} = 1$ then $\varphi = \varphi_{\min}$ in [2]. By Lemma 4.11 (the case $\gamma_{p+1} = 1$) and Lemma 4.13 in [2] there exists a bijective correspondence (which we also call ψ)

(3.5)
$$\psi$$
: {the blocks in A } \longrightarrow {the blocks in $\psi(A)$ }

which satisfies Condition 4.9 in [2]. That implies that the map (3.5) have a lot of nice properties which we describe now. We have

type
$$(B) = \text{type } (\psi(B))$$
 and $|f(B)| = |f(\psi(B))|$

where f is as in § 2. In [2] we also write m(B) = |f(B)|. But the most important thing which Condition 4.9 in [2] gives us is the following: Let i be an integer such that $1 \le i \le p+1$ and

$$B_1, \cdots, B_{r_i}$$

are the i-blocks in A ordered from left to right. Then there exists an integer r (depending on i) such that

$$\psi(B_{r+1}), \psi(B_{r+2}), \cdots, \psi(B_{r_s}), \psi(B_1), \cdots, \psi(B_r)$$

are the i-blocks in $\psi(A)$ ordered from left to right. Moreover, there

exists an integer β (depending on i) such that

$$d(\psi(B_i)) = egin{cases} d(B_i) - eta & ext{when} & d(B_i) \leq eta \ d(B_i) - eta + lpha_i & ext{otherwise} \ . \end{cases}$$

We calculated these integers r and β in [2]. Unfortunately, these calculations are very complicated. We will return to these calculations in Lemmas 3.3 and 3.4. Moreover, we proved in [2] (Lemma 4.1(b) in [2]) the following fundamental result:

If $A, A' \in \mathcal{M}$ and there is a correspondence $B \longrightarrow B'$ between the blocks of respectively A and A' such that

(3.6)
$$\text{and} \quad \frac{d(B)=d(B') \quad \text{for each block } B}{f(B)=f(B') \quad \text{for each } (p+1)\text{-block } B \text{ ,} }$$
 then $A=A'$.

Now we need a simple way to describe the block structure. To each $A \in \mathcal{M}$ we define (p+1) vectors which contains all information about the block structure of A.

DEFINITION 3.1. Let
$$A\in\mathscr{M}$$
. Suppose $1\leq i\leq p+1$ and $B_1,\,\cdots,\,B_{r_r}$

are the *i*-blocks in A ordered from left to right. If $1 \le i \le p$, we define

$$D_i(A) = (d(B_1), \cdots, d(B_{r_i}))$$
.

If i = p + 1, then we define

$$D_{p+1}(A) = (d(B_1), \cdots, d(B_{r_{p+1}})) \times (f(B_1) - (p+1), \cdots, f(B_{r_{p+1}}) - (p+1))$$

where f is as in § 2. As a convention we let $D_i(A)$ be the empty vector if $\gamma_i = 0$.

The last part of $D_{p+1}(A)$, namely $(f(B_1)-(p+1), \dots, f(B_{r_{p+1}})-(p+1))$ tells us how large each (p+1)-block in A is. Let A be as in our example in § 2. Then n=34 and by putting p=2 and k=15 we get $A \in \mathcal{M}$. Moreover, we get

$$\gamma_1=6$$
 , $\gamma_2=2$, $\gamma_3=2$, $lpha_1=15$, $lpha_2=8$, $lpha_3=5$ and $m=2$. $D_1(A)=(1,\,5,\,6,\,10,\,11,\,15)$, $D_2(A)=(3,\,7)$ and $D_3(A)=(2,\,4) imes(1,\,1)$.

These results from [2] indicate that we must solve the following 3 problems: Let $A \in \mathcal{M}$.

- 1. Let i be an integer such that $1 \le i \le p+1$. How can we obtain $D_i(\psi^i(A)) = D_i(A)$?
- 2. How can we determine an integer t such that $D_i(\psi^t(A)) = D_i(A)$ for all $i \in \{1, \dots, p+1\}$.
- 3. Suppose we have solved Problem 2. By (3.6) we have $\psi^t(A) = A$. How can we determine an integer "per" such that $\psi^t(A) = \theta^{\text{per}}(A)$? By using Definition 3.1 we can define a map

$$g = D_1 \times D_2 \times \cdots \times D_{n+1}$$
.

By (3.6) g is a bijective correspondence

$$g: \mathcal{M} \longrightarrow g(\mathcal{M})$$
.

One of the main ideas in this paper is that we work with $g(\mathcal{M})$ instead on \mathcal{M} . For example, later we will count some subsets of \mathcal{M} . Then we instead count the corresponding subset of $g(\mathcal{M})$. In [2] we described $g(\mathcal{M})$ in a nice way as in the following lemma.

LEMMA 3.2. (a) If $1 \le i \le p$, then

$$D_i(\mathscr{M}) = \{(t_1, \cdots, t_{r_i}): 1 \leq t_1 \leq t_2 \leq \cdots \leq t_{r_i} \leq \alpha_i\}.$$

We use the convention that $D_i(\mathcal{M}) = \{(\emptyset)\}$ where (\emptyset) is the empty vector, when $\gamma_i = 0$.

(h

$$\begin{split} D_{p+1}(\mathscr{M}) &= \{ (t_1, \, \cdots, \, t_{r_{p+1}}) \times (s_1, \, \cdots, \, s_{r_{p+1}}) \colon t_i \geqq 0, \, s_i \geqq 0, \\ s_1 + \cdots + s_{r_{p+1}} &= m, \, t_i + s_i \leqq t_{i+1} \, \, (i = 1, \, \cdots, \, \gamma_{p+1} - 1) \\ and \, \, t_{r_{p+1}} + s_{r_{p+1}} &= \alpha_{p+1} \} \; . \end{split}$$

$$g(\mathscr{M}) = igotimes_{i=1}^{p+1} D_i(\mathscr{M}) \; .$$

PROOF. The lemma is a reformulation of Lemma 4.1(c).

Instead of $\psi: \mathscr{M} \to \mathscr{M}$ we will later use the corresponding map on $g(\mathscr{M})$. That is; we will find a map $\hat{\psi}$ such that the following diagram commutes:

$$\begin{array}{ccc}
\mathscr{M} & \xrightarrow{g} g(\mathscr{M}) \\
\downarrow^{\hat{\psi}} & \downarrow^{\hat{\psi}} \\
\mathscr{M} & \xrightarrow{g} g(\mathscr{M}) .
\end{array}$$

 $\hat{\psi}$ will be defined implicitly in Lemmas 3.3 and 3.4. We do not need an explicit definition of $\hat{\psi}$.

The next two lemmas describe how we calculate $D_i(\psi(A))$ from $D_i(A)$.

LEMMA 3.3. (a) Suppose $A \in \mathcal{M}$ and $\gamma_{p+1} = 1$. We define r_p, \dots, r_1 and β_p, \dots, β_1 inductively in the following way:

$$\begin{array}{l} \beta_p=1\\ r_p=\textit{the number of p-blocks } B \textit{ in } A \textit{ such that } d(B)\leqq\beta_p \textit{ .}\\ \vdots\\ \beta_i=(p+1-i)+2r_{i+1}+4r_{i+2}+6r_{i+3}+\cdots+2(p-i)r_p\\ r_i=\textit{the number of i-blocks } B \textit{ in } A \textit{ such that } d(B)\leqq\beta_i\textit{ .}\\ \vdots\\ \end{array}$$

Suppose $1 \leq i \leq p$ and $D_i(A) = (t_1, \dots, t_{r_i})$. Then we have $D_i(\psi(A)) = (t'_{r_i+1}, \dots, t'_{r_i}, t'_1, \dots, t'_{r_i})$

where

$$t_i' = egin{cases} t_i + lpha_i - eta_i & if \quad j \leq r_i \ t_j - eta_i & otherwise \ . \end{cases}$$

Moreover, $D_{p+1}(\psi(A)) = D_{p+1}(A)$ and $0 \le \beta_i \le \alpha_i$ for $1 \le i \le p$ and

Index
$$(A) = (n + p + 1) + 2r_1 + 4r_2 + \cdots + 2 \cdot p \cdot r_n$$
.

We also write $r_i(A) = r_i$ and $\beta_i(A) = \beta_i$.

PROOF. (a) $\varphi(A)$ in Lemma 4.11 in [2] is equal to $\psi(A)$. By Lemma 4.11(b) and (d) in [2] $\beta_i = x_i(A)$ and $r_i = r_i$ where $x_i(A)$ and r_i are used in Lemma 4.11. Then it is not difficult to see that this lemma is a reformulation of Lemma 4.11 in [2].

LEMMA 3.4. (a) Suppose $A \in \mathcal{M}$ and $\gamma_{p+1} > 1$. We define r_{p+1}, \dots, r_1 and $\beta_{p+1}, \dots, \beta_1$ inductively in the following way:

$$eta_{p+1} = d(B) + f(B) - (p+1)$$
 where B is the first $(p+1)$ -block in A . $r_{p+1} = 1$

$$\beta_p = \beta_{p+1} + 2r_{p+1}$$

 $r_p = the number of p-blocks B in A such that <math>d(B) \leq \beta_p$.

$$eta_i = eta_{p+1} + 2r_{i+1} + 4r_{i+2} + \cdots + 2(p+1-i)r_{p+1}$$

 $r_i = the \ number \ of \ i ext{-blocks} \ in \ A \ such \ that \ d(B) \leqq eta_i$.

:

Suppose $1 \leq i \leq p$ and $D_i(A) = (t_1, \dots, t_{r_i})$. Then we have

$$D_i(\psi(A)) = (t'_{r_i+1}, \cdots, t'_{r_i}, t'_1, \cdots, t'_{r_i})$$

where

$$t_j' = egin{cases} t_j + lpha_i - eta_i & if \quad j \leq r_i \ t_i - eta_i & otherwise \ . \end{cases}$$

Suppose $D_{p+1}(A) = (t_1, \dots, t_{r_{p+1}}) \times (s_1, \dots, s_{r_{p+1}})$. Then we have

$$D_{p+1}(\psi(A)) = (t'_2, t'_3, \cdots, t'_{r_{n+1}}, t'_1) \times (s_2, \cdots, s_{r_{n+1}}, s_1)$$

where

$$t_j' = egin{cases} t_j - eta_{_{p+1}} & if & j \geqq 2 \ t_{_1} + lpha_{_{p+1}} - eta_{_{p+1}} = lpha_{_{p+1}} - s_{_1} & if & j = 1 \ . \end{cases}$$

Moreover, we have $0 < \beta_i < \alpha_i$ for $1 \leq i \leq p$ and

Index
$$(A) = \beta_{p+1} + 2r_1 + 4r_2 + \cdots + 2(p+1)r_{p+1}$$
.

We also write $r_i(A) = r_i$ and $\beta_i(A) = \beta_i$.

PROOF. Since ψ is equal to φ_{\min} in [2] this is a reformulation of Lemma 4.13 in [2].

We will illustrate this lemma by our example in §2. We get

$$eta_{\scriptscriptstyle 3} = 2 + 1 = 3 \qquad eta_{\scriptscriptstyle 2} = 3 + 2 \cdot 1 = 5 \qquad eta_{\scriptscriptstyle 1} = 3 + 2 \cdot 1 + 4 \cdot 1 = 9 \ r_{\scriptscriptstyle 3} = 1 \qquad \qquad r_{\scriptscriptstyle 2} = 1 \qquad \qquad r_{\scriptscriptstyle 1} = 3 \; .$$

Since $D_i(A) = (1, 5, 6, 10, 11, 15)$ and $\alpha_i = 15$ we get

$$\begin{split} D_{\scriptscriptstyle \rm I}(\psi(A)) &= (10-\beta_{\scriptscriptstyle \rm I},\, 11-\beta_{\scriptscriptstyle \rm I},\, 15-\beta_{\scriptscriptstyle \rm I},\, 1+\alpha_{\scriptscriptstyle \rm I}-\beta_{\scriptscriptstyle \rm I},\, 5+\alpha_{\scriptscriptstyle \rm I}-\beta_{\scriptscriptstyle \rm I},\, 6+\alpha_{\scriptscriptstyle \rm I}-\beta_{\scriptscriptstyle \rm I}) \\ &= (1,\, 2,\, 6,\, 7,\, 11,\, 12)\;. \end{split}$$

Since $D_2(A) = (3, 7)$ and $\alpha_2 = 8$ we get

$$D_2(\psi(A)) = (7 - \beta_2, 3 + \alpha_2 - \beta_2) = (2, 6)$$
.

Since $D_3(A)=(2,4)\times(1,1)$ and $\alpha_3=5$ we get

$$D_{ extsf{s}}(\psi(A))=(4-eta_{ extsf{s}},\,2+lpha_{ extsf{s}}-eta_{ extsf{s}}) imes(1,\,1)=(1,\,4) imes(1,\,1)$$
 .

In our forthcoming proofs we need not know what $\psi(A)$ looks like. But, if we want, we can successively construct

$$K_3 = K_3(\psi(A)) \longrightarrow K_2 = K_2(\psi(A)) \longrightarrow K_1(\psi(A)) = \psi(A)$$

as in the proof of Lemma 4.1 in [2]. We will only sketch this method:

$$K_3 = 01111000001111$$

since K_3 is the unique vector satisfying: K_3 contains only 3-blocks, $D_3(K_3) = D_3(A)$ and the length of $K_3 = n - 2\gamma_1 - 4\gamma_2 = 14$.

By putting in 1100 or 0011 between certain positions in K_3 we get a vector K_2 which only contains 2- and 3-blocks and satisfies: $D_i(K_2) = D_i(A)$ for i = 2, 3 and the length of $K_2 = n - 2\gamma_1 = 22$. we get

$$K_2 = 0111001110000011001111$$
.

By putting in 10 or 01 between certain positions in K_2 we finally get:

$$\psi(A) = K_s = 0101101100111010010000110100101111$$
 .

Next we will determine q such that $D_j(\psi^q(A)) = D_j(A)$. To do this we must be able to determine $D_j(\psi^q(A))$ directly from $D_j(A)$. We will develop a method in Lemma 3.6. First we need more notation.

DEFINITION 3.5. When it is clear which $A \in \{0, 1\}^n$ we are working with, we define $(s = 0, 1, 2, \cdots)$

$$eta_j(s) = eta_j(\psi^s(A)) \qquad \qquad ext{and} \qquad r_j(s) = r_j(\psi^s(A)) \ \mathscr{B}_j(s) = eta_j(0) + \dots + eta_j(s-1) \qquad ext{and} \qquad \mathscr{B}_j(s) = r_j(0) + \dots + r_j(s-1) \; .$$

LEMMA 3.6. Suppose $A \in \mathcal{M}$, $1 \leq j \leq p$ and $D_j(A) = (t_1, \dots, t_{r_j})$. Then we determine $D_j(\psi^s(A))$ in the following way:

We determine integers f and β^* such that

$$\mathscr{B}_{j}(s) = f \cdot \alpha_{j} + \beta^{*}$$
 and $0 \leq \beta^{*} < \alpha_{j}$.

We let $r^* = the number of coordinates <math>t_i$ in $D_j(A)$ such that $t_i \leq \beta^*$.

Then we have

$$D_{j}(\psi^{s}(A)) = (t'_{r^*+1}, \; \cdots, \; t'_{7j}, \; t'_{1}, \; \cdots, \; t'_{r^*}) \qquad where$$
 $t'_{i} = egin{cases} t_{i} + lpha_{j} - eta^* & when & 1 \leq i \leq r^* \ t_{i} - eta^* & when & i > r^* \end{cases}.$

$$(If \ r^* = \gamma_j, \ then \ D_j(\psi^s(A)) = (t_1', \ \cdots, \ t_{r_j}').) \quad \textit{Moreover}, \ \mathscr{R}_j(s) = f \cdot \gamma_j + r^*.$$

PROOF. We suppose the lemma is true for s, and we will prove that it is true for (s + 1). We write

$$D_j(\psi^s(A)) = (u_1, \cdots, u_{r_i})$$
.

By Lemma 3.3 or Lemma 3.4 we have $(\beta^{**} = \beta_j(s))$ and $r^{**} = r_j(s)$

$$D_{j}(\psi^{s+1}(A)) = (u'_{r^{**}+1}, \; \cdots, \; u'_{r_{j}}, \; u'_{1}, \; \cdots, \; u'_{r^{**}}) \qquad ext{where} \ u'_{i} = egin{cases} u_{i} + lpha_{j} - eta^{**} & ext{for} & 1 \leq i \leq r^{**} \ u_{i} - eta^{**} & ext{for} & i > r^{**} \end{cases}.$$

We suppose $\beta^* + \beta^{**} \ge \alpha_j$ (the case $\beta^* + \beta^{**} < \alpha_j$ is treated analogously). We observe

$$t'_{r_i} = t_{r_i} - \beta^* \leq \alpha_i - \beta^* \leq \beta^{**}.$$

Hence we get

$$D_{j}(\psi^{s}(A)) = \underbrace{(t'_{r^{*}+1}, \cdots, t'_{r_{j}}, t'_{1}, \cdots, t'_{v}, t'_{v+1}, \cdots, t'_{r^{*}})}_{= \underbrace{(u_{1}, \cdots u_{r^{**}}, u_{r^{**}+1}, \cdots)}$$

and

$$D_{m{j}}(\psi^{s+1}\!(A)) = (t_{v+1}^{\prime\prime},\ \cdots,\ t_{\gamma j}^{\prime\prime},\ t_1^{\prime\prime},\ \cdots,\ t_v^{\prime\prime}) \qquad ext{where} \ t_i^{\prime\prime} = egin{cases} t_i + lpha_j - (eta^* + eta^{**} - lpha_j) & ext{if} \quad 1 \leq i \leq v \ t_i - (eta^* + eta^{**} - lpha_i) & ext{if} \quad i > v \ . \end{cases}$$

(For example, if $1 \le i \le v$ we get: $t_i'' = t_i' + \alpha_j - \beta^{**} = (t_i + \alpha_j - \beta^*) + \alpha_j - \beta^{**} = t_i + \alpha_j - (\beta^* + \beta^{**} - \alpha_j)$).

Now we will prove that this is in accordance with the lemma:

$$\mathscr{B}_{j}(s+1) = f\alpha_{j} + \beta^{*} + \beta^{**} = (f+1)\alpha_{j} + (\beta^{*} + \beta^{**} - \alpha_{j}).$$

If $1 \le i \le v$, then we have

$$t_i = (t_i + \alpha_j - \beta^*) + \beta^* - \alpha_j = t_i' + \beta^* - \alpha_j \leq \beta^{**} + \beta^* - \alpha_j.$$

If $v < i \le r^*$, then we have

$$t_i = (t_i + \alpha_j - \beta^*) + \beta^* - \alpha_i = t_i' + \beta^* - \alpha_i > \beta^{**} + \beta^* - \alpha_i$$
.

If $v > r^*$, then we have

$$t_i > \beta^* \ge \beta^* + \beta^{**} - \alpha_i$$
.

Hence, v = the number of coordinates t_i in $D_i(A)$ such that $t_i \le \beta^* + \beta^{**} - \alpha_i$.

We observe $v = r^* + r^{**} - \gamma_j$. Hence,

$$\mathscr{R}_{j}(s+1)=\mathscr{R}_{j}(s)+r^{**}=f\cdot\gamma_{j}+r^{*}+r^{**}=(f+1)\cdot\gamma_{j}+v$$

and the proof is complete.

Now we return to our example. We divide the treatment into 5 steps:

Step 1. We have
$$D_2(A) = (3, 7)$$
 and $\alpha_2 = 8$. If $\beta^* = 0, 1, 2, \dots, 7$

respectively in Lemma 3.6 we get that $D_2(\psi^s(A))$ is equal to (3, 7), (2, 6), (1, 5), (4, 8), (3, 7), (2, 6), (1, 5), (4, 8) respectively. Hence, $\beta^* = 0$ or 4 gives $D_2(\psi^s(A)) = (3.7)$ and therefore

(3.8)
$$D_2(\psi^s(A)) = D_2(A) \iff \mathscr{B}_2(s) \text{ is a multiple of } 4.$$

Step 2. In the same way as in Step 1 we get

$$(3.9) D_{i}(\psi^{s}(A)) = D_{i}(A) \iff \mathscr{B}_{i}(s) \text{ is a multiple of 5.}$$

Step 3. By using Lemma 3.4 we get

$$egin{align} D_{\mathfrak{z}}(A) &= (\mathbf{2,4}) imes (\mathbf{1,1}) & eta_{\mathfrak{z}}(A) &= 3 & r_{\mathfrak{z}}(A) &= 1 \ D_{\mathfrak{z}}(\psi(A)) &= (\mathbf{1,4}) imes (\mathbf{1,1}) & eta_{\mathfrak{z}}(\psi(A)) &= 2 & r_{\mathfrak{z}}(\psi(A)) &= 1 \ D_{\mathfrak{z}}(\psi^{\mathfrak{z}}(A)) &= (\mathbf{2,4}) imes (\mathbf{1,1}) \ . \end{split}$$

Hence, we get $D_3(A) = D_3(\psi^2(A)) = D_3(\psi^4(A)) = \cdots$ and

$$\mathscr{B}_{\mathfrak{I}}(2)=5$$
 , $\mathscr{B}_{\mathfrak{I}}(4)=10$, \cdots , $\mathscr{B}_{\mathfrak{I}}(2\cdot X_{\mathfrak{I}})=5\cdot X_{\mathfrak{I}}$, \cdots $\mathscr{B}_{\mathfrak{I}}(2)=2$, $\mathscr{B}_{\mathfrak{I}}(4)=4$, \cdots , $\mathscr{B}_{\mathfrak{I}}(2\cdot X_{\mathfrak{I}})=2\cdot X_{\mathfrak{I}}$, \cdots

where X_3 is an integer.

Step 4. We will determine Y such that $D_i(\psi^Y(A)) = D_i(A)$ for i = 2, 3. By Step 3

$$Y=2\cdot X_3$$
 for an integer X_3 .

By Lemma 3.4 and Step 3

$$egin{align} \mathscr{J}_2(Y) &= \sum\limits_{s=0}^{Y-1}eta_3(s) + 2r_3(s) = \mathscr{J}_3(Y) + 2\mathscr{R}_3(Y) \ &= \mathscr{J}_3(2X_3) + 2\mathscr{R}_3(2X_3) = 5X_3 + 4X_3 = 9X_3 \ . \end{cases}$$

By (3.8) $\mathscr{B}_{\scriptscriptstyle 2}(Y)$ must be a multiple of 4. Hence, the possible values of $X_{\scriptscriptstyle 3}$ and $Y=2\cdot X_{\scriptscriptstyle 3}$ are

$$X_3 = 4, 8, 12, \cdots$$
 and $Y = 8, 16, 24, \cdots$.

Direct calculation gives us

$$\mathscr{R}_{\scriptscriptstyle 2}(8)=9$$
 , $\mathscr{R}_{\scriptscriptstyle 2}(16)=18$, $\mathscr{R}_{\scriptscriptstyle 2}(24)=27$, etc.

Later, of course, we must do this in a more sofisticated way. But at the present stage, this will obscure the ideas.

Step 5. We will determine Y such that $D_i(\psi^Y(A)) = D_i(A)$ for i = 1, 2, 3. The possible values of Y are $Y = 8, 16, 24, \cdots$. By Lemma 3.4 we have

$$\mathscr{B}_{\scriptscriptstyle 1}(Y) = \sum\limits_{\scriptscriptstyle s=0}^{\scriptscriptstyle Y-1} eta_{\scriptscriptstyle 3}(s) + 2r_{\scriptscriptstyle 2}(s) + 4r_{\scriptscriptstyle 3}(s) = \mathscr{B}_{\scriptscriptstyle 3}(Y) + 2\mathscr{R}_{\scriptscriptstyle 2}(Y) + 4\mathscr{R}_{\scriptscriptstyle 3}(Y)$$
 .

Hence, by Step 3 and Step 4 we get

$$\mathscr{B}_{1}(8) = \mathscr{B}_{3}(8) + 2\mathscr{R}_{2}(8) + 4\mathscr{R}_{3}(8) = 20 + 18 + 32 = 70$$

which is a multiple of 5. Hence Y = 8 is the least Y such that $\psi^{Y}(A) = A$.

Now I will try to sketch thoroughly the ideas on the case $S=E_k+E_{k+1}+E_{k+2}$. Instead I will delete the general proof of how the minimal periods are determined. We suppose $A\in \mathcal{M}$, $\gamma_{p+1}>1$ and again we divide the treatment of A into 5 steps.

Step 1. Suppose $D_2(A)=(t_1,\cdots,t_{r_2})$. We will find a formula similar to (3.8). To do this we define A_2 in the following way:

If
$$t_1 = \cdots = t_r = 1$$
 and $t_{r+1} > 1$ we define $\Lambda_2(t_1, \cdots, t_r, \cdots, t_{r_2}) = (t_{r+1} - 1, \cdots, t_{r_2} - 1, t'_1, \cdots, t'_r)$ where $t'_1 = \cdots = t'_r = \alpha_2$.

By Lemma 3.4 we get

$$egin{aligned} D_2(\psi(A)) &= arLambda_2^{eta_2(A)}(D_2(A)) \ D_2(\psi^2(A)) &= arLambda_2^{eta_2(A)+eta_2(\psi(A))}(D_2(A)) &= arLambda_2^{eta_2(2)}(D_2(A)) \ &dots \ D_2(\psi^s(A)) &= & \cdots &= arLambda_2^{eta_2(s)}(D_2(A)) \;. \end{aligned}$$

The next problem is to determine when $\Lambda_2^{\alpha}(D_2(A)) = D_2(A)$. First we observe that this is true for $\alpha = \alpha_2$. Next we let α be the least α such that $\Lambda_2^{\alpha}(D_2(A)) = D_2(A)$. We will now describe how $D_2(A)$ looks in this case. We must have $\alpha_2 = r\alpha$ for an integer r. We let γ be the maximum integer such that $t_7 \leq \alpha$. By definition of Λ_2^{α} we get

$$A_2^{lpha}(D_2(A)) = (t_{7+1} - lpha, \, \cdots, \, t_{7_2} - lpha, \, t_1 + lpha_2 - lpha, \, \cdots, \, t_7 + lpha_2 - lpha) \ = D_2(A) \ .$$

Now we get obviously that $D_2(A)$ must have the form

$$(3.10) \begin{array}{c} D_2(A) = (\underbrace{t_1, \, \cdots, \, t_7}_{\text{Part 1}}, \, \underbrace{t_1 + \alpha, \, \cdots, \, t_7 + \alpha}_{\text{Part 2}}, \, \cdots, \\ \\ \underbrace{t_1 + (r-1)\alpha, \, \cdots, \, t_7 + (r-1)\alpha}_{\text{Part }, \, r} \end{array}$$

where $\alpha_2 = r\alpha$.

Now we will prove that (3.10) is a sufficient condition. Therefore we suppose (3.10) is true. Then we get by Lemma 3.2 that

$$t_{r_2} = t_r + (r-1)\alpha \le \alpha_2$$
 and $t_1 > 0$.

Hence

$$t_r \leq \alpha$$
 and $t_{r+1} > \alpha$.

Hence, $\Lambda^{\alpha}(D_2(A)) = D_2(A)$.

We let α_2^* be the least α such that $\Lambda^{\alpha}(D_2(A)) = D_2(A)$. We get

$$D_2(\psi^s(A)) = D_2(A) \iff \mathscr{G}_2(s) = X_2\alpha_2^*$$
 for an integer X_2 .

Moreover, if $\mathscr{G}_2(s) = X_2\alpha_2^*$, then

$$\mathscr{R}_{\scriptscriptstyle 2}(s) = X_{\scriptscriptstyle 2} \gamma_{\scriptscriptstyle 2}^{\star} \quad \text{where} \quad \gamma_{\scriptscriptstyle 2}^{\star} = \frac{\alpha_{\scriptscriptstyle 2}^{\star}}{\alpha_{\scriptscriptstyle 2}} \gamma_{\scriptscriptstyle 2} \; .$$

We prove (3.11) as follows: If $0 \le z < r$, then by (3.10) the number of coordinates less than or equal to $z \cdot \alpha_2^*$ is $z \cdot \gamma_2^*$. We suppose $\mathscr{B}_2(s) = (wr + z)\alpha_2^* = w\alpha_2 + z \cdot \alpha_2^*$ where $0 \le z < r$. By Lemma 3.6 we get

$$\mathscr{R}_2(s) = w\gamma_2 + z\gamma_2^* = (wr + z)\gamma_2^*$$

and the proof of (3.11) is complete.

Step 2. Suppose $D_1(A) = (t_1, \dots, t_{r_1})$. Analoguesly with Step 1 we define A_1 in the following way:

If
$$t_1 = \cdots = t_r = 1$$
 and $t_{r+1} > 1$ we define $\Lambda_1(t_1, \, \cdots, \, t_{r_1}) = (t_{r+1} - 1, \, t_{r+2} - 1, \, \cdots, \, t_{r_1} - 1, \, t_1', \, \cdots, \, t_r')$ where $t_1' = \cdots = t_r' = \alpha_1$.

We let α_i^* be the least integer such that $\Lambda_i^{\alpha_i^*}(D_i(A)) = D_i(A)$. Analogously with Step 1 we get

$$D_{\scriptscriptstyle \rm I}(\psi^{\scriptscriptstyle m{s}}(A)) = D_{\scriptscriptstyle \rm I}(A) \Longleftrightarrow \mathscr B_{\scriptscriptstyle \rm I}(s) = X_{\scriptscriptstyle \rm I} lpha_{\scriptscriptstyle \rm I}^*$$
 for an integer $X_{\scriptscriptstyle \rm I}$

and

If
$$\mathscr{B}_1(s)=X_1\alpha_1^*$$
, then $\mathscr{B}_1(s)=X_1\gamma_1^*$ where $\gamma_1^*=\frac{\alpha_1^*}{\alpha_1}\gamma_1$.

Step 3. Suppose $D_3(A)=(t_1,\cdots,t_{r_3})\times (s_1,\cdots,s_{r_3})$. Now we will determine when $D_3(\psi^q(A))=D_3(A)$. Again we define a function Λ_3 in the following way:

$$\varLambda_3(t_1, \, \cdots, \, t_{r_3}) \times (s_1, \, s_2, \, \cdots, \, s_{r_3}) = (t'_2, \, \cdots, \, t'_{r_3}, \, t'_1) \times (s_2, \, \cdots, \, s_{r_3}, \, s_1)$$

where

$$t_i' = egin{cases} t_1 + lpha_3 - (s_1 + t_1) = lpha_3 - s_1 & ext{for} & i = 1 \ t_i - (s_1 + t_1) & ext{for} & i = 2, 3, \, \cdots, \, \gamma_3 \ . \end{cases}$$

We observe by Lemma 3.4 that

$$D_3(\psi(A)) = \Lambda_3(D_3(A)), \cdots, D_3(\psi^q(A)) = \Lambda_3^q(D_3(A)), \cdots$$

By definition of Λ_3 we have for $1 \leq q \leq \gamma_3$ that

$$(3.12) \begin{cases} A_3^q(t_1,\,\cdots,\,t_{7_3})\times(s_1,\,\cdots,\,s_{7_3}) \\ = (t_{q+1}'',\,\cdots,\,t_{7_3}'',\,t_1'',\,\cdots,\,t_q'')\times(s_{q+1},\,\cdots,\,s_{7_3},\,s_1,\,\cdots,\,s_q) \\ \text{where} \\ t_i'' = \begin{cases} t_i + \alpha_3 - (s_q + t_q) & \text{for} \quad i = 1,\,\cdots,\,q \\ t_i - (s_q + t_q) & \text{for} \quad i = q+1,\,\cdots \end{cases}$$

For example if q=2 and i>2 we get

$$t_i'' = t_i' - (s_2 + t_2') = t_i - (s_1 + t_1) - s_2 - (t_2 - (s_1 + t_1))$$

= $t_i - (s_2 + t_2)$.

Specially, if $q=\gamma_3$ we get $(s_{\gamma_3}+t_{\gamma_3}=\alpha_3)$ by Lemma 3.2)

$$t_i''=t_i+lpha_{\scriptscriptstyle 3}-(s_{r_3}+t_{r_s})=t_i \quad ext{for} \quad i=1,\; \cdots,\; \gamma_{\scriptscriptstyle 3} \; .$$

Hence, $\Lambda^{-2}(D_3(A)) = D_3(A)$.

If $D_3(A)=(t_1,\,\cdots,\,t_{r_3})\times(s_1,\,\cdots,\,s_{r_3})$ and $1\leq q\leq \gamma_3$, we have by Lemma 3.4 that

$$D_3(\psi^q(A))=(t_{q+1}^{\prime\prime},\,\cdots,\,t_{r_a}^{\prime\prime},\,t_1^{\prime\prime},\,\cdots)\times(s_{q+1},\,\cdots,\,s_{r_a},\,s_1,\,\cdots,\,s_q)$$

where

$$t_i''=egin{cases} t_i+lpha_{\scriptscriptstyle3}-(eta_{\scriptscriptstyle3}(0)+\cdots+eta_{\scriptscriptstyle3}(q-1))\ &=t_i+lpha_{\scriptscriptstyle3}-\mathscr{G}_{\scriptscriptstyle3}(q) \quad ext{for} \quad 1 \leqq i \leqq q\ t_i-(eta_{\scriptscriptstyle3}(0)+\cdots+eta_{\scriptscriptstyle3}(q-1))\ &=t_i-\mathscr{G}_{\scriptscriptstyle3}(q) \qquad \qquad ext{for} \quad i>q \ . \end{cases}$$

Hence,

$$\mathscr{G}_3(q) = s_q + t_q \quad \text{for} \quad 1 \leq q \leq \gamma_3 \ .$$

The next problem is to determine when $\Lambda^r(D_s(A)) = D_s(A)$. Next we suppose γ is the least integer such that $\Lambda^r(D_s(A)) = D_s(A)$. Then we have $\gamma_s = r\gamma$ for an integer r, and by (3.12) we get that $D_s(A)$ has the form

$$D_{3}(A) = \underbrace{(t_{1}, \cdots, t_{7}, t_{1} + \alpha, \cdots, t_{7} + \alpha, \cdots, Part 2}_{Part 1} \underbrace{t_{1} + (r - 1)\alpha, \cdots, t_{7} + (r - 1)\alpha}_{Part r}$$

$$\times \underbrace{(s_{1}, \cdots, s_{7}, s_{1}, \cdots, s_{7}, \cdots, s_{1}, \cdots, s_{7})}_{Part 1} \underbrace{Part 2}_{Part 2}$$

where $\alpha r = \alpha_s$ (which is equivalent to $\alpha = s_r + t_r$). (We get directly from (3.12) that (3.14) is true with $\alpha = s_r + t_r$. But this is equivalent to $\alpha r = \alpha_s$ because $s_{r_3} + t_{r_3} = (s_r + t_r) + (r - 1)\alpha = \alpha_s$ by Lemma 3.2.)

We let γ_3^* be the least integer γ such that $\Lambda_3^{\gamma}(D_3(A)) = D_3(A)$. Then we have

$$D_{\scriptscriptstyle 3}(\psi^{\scriptscriptstyle Y}(A))=D_{\scriptscriptstyle 3}(A) \Longleftrightarrow Y=X_{\scriptscriptstyle 3}\gamma_{\scriptscriptstyle 3}^* \quad {
m for \ an \ integer} \quad X_{\scriptscriptstyle 3} \; .$$

Moreover, if $Y = X_3 \gamma_3^*$, then

$$(3.15) \mathscr{B}_3(Y) = X_3 \alpha_3^* \text{where} \alpha_3^* = \frac{\gamma_3^*}{\gamma_2} \alpha_3.$$

We prove (3.15) as follows: By (3.13) and (3.14) we have

$$\mathscr{B}_{\scriptscriptstyle 3}(q\cdot\gamma_{\scriptscriptstyle 3}^{st}) = t_{q\cdot\gamma_{\scriptscriptstyle 2}^{st}} + s_{q\cdot\gamma_{\scriptscriptstyle 2}^{st}} = qlpha_{\scriptscriptstyle 3}^{st} \quad ext{for} \quad 0 \leqq q < r$$
 ,

where $r = \gamma_3/\gamma_3^*$, and

$$\mathscr{D}_3(r\gamma_3^*) = \mathscr{D}_3(\gamma_3) = s_{r_2} + t_{r_2} = \alpha_3 = r\alpha_3^*$$

and (3.15) follows.

Step 4. Next, we will determine Y such that $D_i(\psi^Y(A)) = D_i(A)$ for i=2,3. By Step 3 we must have $Y=X_3\cdot\gamma_3^*$. Moreover in this case

$$\mathscr{B}_{\scriptscriptstyle 2}(Y)=\mathscr{B}_{\scriptscriptstyle 3}(Y)+2\mathscr{R}_{\scriptscriptstyle 3}(Y)=X_{\scriptscriptstyle 3}lpha_{\scriptscriptstyle 3}^*+2X_{\scriptscriptstyle 3}\gamma_{\scriptscriptstyle 3}^*$$
 .

Moreover, by Step 1, we must have

$$\mathscr{D}_{2}(Y) = X_{2}\alpha_{2}^{*}$$
 for an integer X_{2} .

Hence, we get the equation $X_2\alpha_2^*=X_3\alpha_3^*+2X_3\gamma_3^*$.

Step 5. Next, we will determine Y such that $D_i(\psi^Y(A)) = D_i(A)$ for i=1,2,3. By Step 2 this is true for i=2,3 if and only if there exist integers X_2 and X_3 such that $X_2\alpha_2^*=X_3\alpha_3^*+2X_3\gamma_3^*$ and $Y=X_3\gamma_3^*$. Moreover by the previous steps we have

$$\mathscr{B}_3(Y)=X_3lpha_3^*$$
 , $\mathscr{B}_3(Y)=X_3\gamma_3^*$, $\mathscr{B}_2(Y)=X_2lpha_2^*$ and $\mathscr{B}_2(Y)=X_2\gamma_2^*$.

Hence.

$$\mathscr{B}_{\scriptscriptstyle 1}(Y)=\mathscr{B}_{\scriptscriptstyle 3}(Y)+2\mathscr{R}_{\scriptscriptstyle 2}(Y)+4\mathscr{R}_{\scriptscriptstyle 3}(Y)=X_{\scriptscriptstyle 3}lpha_{\scriptscriptstyle 3}^*+2X_{\scriptscriptstyle 2}\gamma_{\scriptscriptstyle 2}^*+4X_{\scriptscriptstyle 3}\gamma_{\scriptscriptstyle 3}^*\;.$$

Moreover, by Step 2 we must have

$$\mathscr{B}_{\scriptscriptstyle 1}(Y) = X_{\scriptscriptstyle 1}\alpha_{\scriptscriptstyle 1}^*$$
 for an integer $X_{\scriptscriptstyle 1}$.

Hence, we get the equation

$$X_1\alpha_1^* = X_3\alpha_3^* + 2X_2\gamma_2^* + 4X_3\gamma_3^*$$
.

Conclusion. $\psi^{\scriptscriptstyle Y}(A)=A \Leftrightarrow D_i(\psi^{\scriptscriptstyle Y}(A))=D_i(A) \ i=1,\ 2,\ 3\Leftrightarrow {\rm There}$ exists integers $X_1,\ X_2$ and X_3 such that

$$egin{array}{ll} X_2lpha_2^* &= X_3lpha_3^* + 2X_3\gamma_3^* \ X_1lpha_1^* &= X_3lpha_3^* + 2X_2\gamma_2^* + 4X_3\gamma_3^* \ Y &= X_3\gamma_3^* \ . \end{array}$$

Let X_1 , X_2 , X_3 be the least integral solution. Then $(\mathscr{R}_1(Y) = X_1\gamma_1^*)$ follows from Step 2)

$$egin{aligned} \sum_{s=0}^{Y-1} \operatorname{Index}\left(\psi^s(A)
ight) &= \sum_{s=0}^{Y-1} eta_3(s) + 2r_1(s) + 4r_2(s) + 6r_3(s) \ &= \mathscr{B}_3(Y) + 2\mathscr{B}_1(Y) + 4\mathscr{B}_2(Y) + 6\mathscr{B}_3(Y) \ &= X_s lpha_s^* + 2X_s \gamma_s^* + 4X_s \gamma_s^* + 6X_s \gamma_s^* \end{aligned}$$

which is the minimal period of A.

If $A \in \mathcal{M}$ and $\gamma_{p+1} = 1$ we must use Lemma 3.3 instead of Lemma 3.4. Then we have always $D_3(\psi(A)) = D_3(A)$. Hence, we need only to modify Steps 4 and 5 as follows.

Step 4. By Lemma 3.3 we get $\mathscr{B}_2(Y) = Y$. We must have $\mathscr{B}_2(Y) = Y = X_2\alpha_2^*$ for an integer X_2 . In this case $\mathscr{B}_2(Y) = X_2\gamma_2^*$.

Step 5. By Lemma 3.3 we get

$$\mathscr{B}_{\scriptscriptstyle 1}(Y) = \sum\limits_{s=0}^{{\scriptscriptstyle Y}-1} \left(2 + 2r_{\scriptscriptstyle 2}(s)
ight) = 2Y + 2\mathscr{R}_{\scriptscriptstyle 2}(Y) = 2Y + 2X_{\scriptscriptstyle 2}\gamma_2^* \;.$$

We must have $\mathscr{B}_1(Y) = 2Y + 2X_2\gamma_2^* = X_1\alpha_1^*$ for an integer X_1 . In this case $\mathscr{B}_1(Y) = X_1\gamma_1^*$.

Conclusion. $A=\psi^Y(A)\Leftrightarrow$ There exist integers X_1 and X_2 such that $X_2\alpha_2^*=Y$ and $X_1\alpha_1^*=2Y+2X_2\gamma_2^*$. Suppose X_1 , X_2 is the least solution. Then we get

$$egin{aligned} \sum_{s=0}^{Y-1} \operatorname{Index}\left(\psi^s(A)
ight) &= \sum_{s=0}^{Y-1} \left[(n+3) + 2r_1(s) + 4r_2(s)
ight] \ &= Y(n+3) + 2\mathscr{R}_1(Y) + 4\mathscr{R}_2(Y) \ &= Y(n+3) + 2X_1\gamma_1^* + 4X_2\gamma_2^* \end{aligned}$$

which is the minimal period.

4. The minimal periods. Now I will formulate the results

from $\S 3$ for a general p and very roughly sketch the proof. As before

$$A \in \mathscr{M} \Longleftrightarrow egin{cases} w(A) = k + p + 1 \ A ext{ starts with 0 or a } (p+1) ext{-block} \ A ext{ contains } \gamma_i ext{ i-blocks for } i = 1, \ \cdots, \ p+1 \ A ext{ ends with a } (p+1) ext{-block} \ .$$

The blocks in A are determined with respect to p. $D_i(A)$ $(i = 1, \dots, p + 1)$ is defined in Definition 3.1.

DEFINITION 4.1. Let $A \in \mathcal{M}$ be given.

(a) Suppose $1 \le j \le p$ and $D_j(A) = (t_1, \dots, t_{r_j})$. We define Λ_j in the following way:

If
$$t_1 = \cdots = t_r = 1$$
 and $t_{r+1} > 1$ we define $\Lambda_j(t_1, \cdots, t_{r_j}) = (t_{r+1} - 1, \cdots, t_{r_i} - 1, t'_1, \cdots, t'_r)$ where $t'_1 = \cdots = t'_r = \alpha_j$.

Let α_i^* be the least integer such that

$$\Lambda_i^{\alpha_i^*}(D_i(A)) = D_i(A)$$
.

(b) Suppose $D_{p+1}(A)=(t_1,\,\cdots,\,t_{r_{p+1}})\times(s_1,\,\cdots,\,s_{r_{p+1}}).$ We define A_{p+1} in the following way:

$$A_{p+1}(t_1, \dots, t_{r_{p+1}}) \times (s_1, \dots, s_{r_{p+1}}) = (t'_2, \dots, t'_{r_{p+1}}, t'_1) \times (s_2, \dots, s_{r_{p+1}}, s_1)$$
 where

$$t_i' = egin{cases} lpha_{p+1} - s_1 & ext{for} & i = 1 \ t_i - (s_1 + t_1) & ext{for} & i > 1 \ . \end{cases}$$

Let γ_{p+1}^* be the least integer such that

$$\Lambda_{p+1}^{r_{p+1}^*}(D_{p+1}(A)) = D_{p+1}(A)$$
.

(c) If $1 \leq i \leq p$, we define $\gamma_i^* = \gamma_i \cdot \alpha_i^* / \alpha_i$. Moreover, we define $\alpha_{p+1}^* = \alpha_{p+1} \cdot \gamma_{p+1}^* / \gamma_{p+1}$.

As in the previous section we can prove that γ_i^* $(1 \le i \le p)$ and α_{p+1}^* are integers.

Theorem 4.2. Suppose $A \in \mathcal{M}$. We associate p equations to A in the following way:

$$(p) \qquad lpha_{p}^{st} \cdot X_{p} = a_{p+1}^{st} X_{p+1} + 2 \gamma_{p+1}^{st} X_{p+1} \ (p-1) \qquad lpha_{p-1}^{st} X_{p-1} = lpha_{p+1}^{st} X_{p+1} + 2 \gamma_{p}^{st} X_{p} + 4 \gamma_{p+1}^{st} X_{p+1} \ dots \ (1) \qquad lpha_{1}^{st} X_{1} = lpha_{p+1}^{st} X_{p+1} + 2 \gamma_{2}^{st} X_{2} + 4 \gamma_{3}^{st} X_{3} + \cdots + 2 p \gamma_{p+1}^{st} X_{p+1} \ .$$

If $\gamma_i = 0$, we replace equation (i) by $X_i = 0$. We let X_1, \dots, X_{p+1} be the least integral solution of the equations.

Then $X_{p+1}\alpha_{p+1}^* + \sum_{i=1}^{p+1} 2i \cdot \gamma_i^* \cdot X_i$ is the minimal period of A with respect to the shift register $(x_1, \dots, x_n) \rightarrow (x_2, \dots, x_{n+1})$ where

$$x_{n+1} = x_1 + (E_k + \cdots + E_{k+p})(x_2, \cdots, x_n)$$
.

If $\gamma_i=0$ for $i=1,\,\cdots,\,p$, we observe that the minimal period $=X_{p+1}\alpha_{p+1}^*+2(p+1)\gamma_{p+1}^*X_{p+1}=\alpha_{p+1}^*+2(p+1)\gamma_{p+1}^*=(\gamma_{p+1}^*/\gamma_{p+1})(\alpha_{p+1}-2(p+1)\gamma_{p+1})=(\gamma_{p+1}^*/\gamma_{p+1})(n+p+1).$

The existence of the minimal solution X_1, \dots, X_{p+1} is proved as indicated in § 3 in [2].

Proof. We only sketch the proof since it is only a generalization of the case p=2 which we treated in § 3.

First we suppose $\gamma_{p+1} > 1$.

We get

$$D_{p+1}(\psi^{V}(A)) = D_{p+1}(A) \Longleftrightarrow Y = X_{p+1}\gamma_{p+1}^{*} \text{ for an integer } X_{p+1}$$
.

In this case $\mathscr{B}_{p+1}(Y)=X_{p+1}\alpha_{p+1}^*$ and $\mathscr{B}_{p+1}(Y)=X_{p+1}\gamma_{p+1}^*$. If $1\leq j\leq p$ we get (if $\gamma_j\neq 0$)

$$D_j(\psi^{\scriptscriptstyle T}(A)) = D_j(A) \Longleftrightarrow \mathscr{B}_j(Y) = X_j lpha_j^* \;\; ext{for an integer} \;\; X_j \;.$$

In this case we have $\mathcal{R}_i(Y) = X_i \gamma_i^*$.

Suppose X_1, \dots, X_{p+1} satisfy the equations. Put $Y = X_{p+1} \gamma_{p+1}^*$. We prove by induction that

$$(4.1) \mathscr{G}_i(Y) = X_i \alpha_i^* \quad \text{when} \quad \gamma_i \neq 0 \quad \text{and} \quad 1 \leq i \leq p \; .$$

Suppose (4.1) is true for $i=p,\,p-1,\,\cdots,\,j+1$. Then we have

$$egin{aligned} \mathscr{B}_{j}(Y) &= \mathscr{B}_{p+1}(Y) + 2\mathscr{R}_{j+1}(Y) + \cdots + 2(p+1-j)\mathscr{R}_{p+1}(Y) \ &= X_{p+1}lpha_{p+1}^* + 2\gamma_{j+1}^*X_{j+1} + \cdots + 2(p+1-j)\gamma_{p+1}^*X_{p+1} = lpha_j^*X_j \;. \end{aligned}$$

Hence (4.1) is true for $j=1, \dots, p$. Then we get $\psi^{r}(A)=A$ and $\psi^{r}(A)=\theta^{t}(A)$ where

$$egin{align} t &= \mathscr{B}_{p+1}(Y) + 2\mathscr{R}_1(Y) + \cdots + 2(p+1)\mathscr{R}_{p+1}(Y) \ &= X_{p+1}lpha_{p+1}^* + \sum_{i=1}^{p+1} 2i \cdot \gamma_i^* \cdot X_i \;. \end{gathered}$$

Moreover, it is easily seen that all Y such that $\psi^{r}(A) = A$ is obtained in this way.

Finally, we suppose $\gamma_{p+1} = 1$ and $\gamma_i \neq 0$ for at least one i . We only sketch the proof since the proof is analogous with the case

 $\gamma_{p+1} > 1$. We get

$$\psi^{\scriptscriptstyle T}(A) = A \Longleftrightarrow \mathscr{B}_i(Y) = X_i \cdot \alpha_i^* \quad ext{when} \quad \gamma_i \neq 0 \quad ext{and} \quad 1 \leqq i \leqq p \; .$$

In the same way as in § 3 (the case $\gamma_{p+1} = 1$) this is equivalent to: X_1, \dots, X_p, Y satisfy the equations $(1)', \dots, (p)'$ given by

$$(q)'egin{cases} X_q\cdotlpha_q^*=Y(p+1-q)+\sum\limits_{t=q+1}^P2(t-q)X_t\gamma_t^* & ext{if} \quad \gamma_q
eq 0 \ X_q=0 & ext{if} \quad \gamma_q=0 \end{cases}$$

Let X_1, \dots, X_p , Y be the least solution of the equations $(1)', \dots, (p)'$. Then Y is the least Y such that $\psi^Y(A) = A$. We calculate the minimal period of A in the following way

$$egin{aligned} \sum_{s=0}^{r-1} \left[(n \, + \, p \, + \, 1) \, + \, 2 \, \sum_{i=1}^{P} i \cdot r_i(s)
ight] &= \, Y(n \, + \, p \, + \, 1) \, + \, 2 \, \sum_{i=1}^{P} i \cdot \mathscr{R}_i(Y) \ &= \, Y(n \, + \, p \, + \, 1) \, + \, 2 \, \sum_{i=1}^{P} i \cdot \gamma_i^* \cdot X_i \; . \end{aligned}$$

The proof will be complete if we can prove the following claim: Suppose X_1, \dots, X_{p+1} is the least solutions $(1), \dots, (p)$. Let

$$Y = X_{p+1} \qquad ext{and} \qquad \widehat{X}_t = egin{cases} 0 & ext{if} & \gamma_t = 0 \ X_t - Y \cdot rac{\gamma_t}{\gamma_t^*} & ext{if} & \gamma_t
eq 0 \ . \end{cases}$$

Then $\hat{X}_1, \dots, \hat{X}_p$, Y is the least solution of the equations (1)', ..., (p)', and

$$Y(n+p+1) + \sum_{i=1}^{p} 2i \cdot \hat{X}_i \cdot \gamma_i^* = X_{p+1} \alpha_{p+1}^* + \sum_{i=1}^{p+1} 2i \cdot X_i \cdot \gamma_i^*$$
.

Now we will prove this claim. Since $\gamma_{p+1}=\gamma_{p+1}^*=1$, then $\alpha_{p+1}=\alpha_{p+1}^*$. We use the definition of α_{p+1} and get

$$egin{aligned} X_{p+1}lpha_{p+1}^* + \sum_{i=1}^{p+1} 2i\cdot X_i\cdot \gamma_i^* \ &= Y\Big(n+p+1-\sum_{i=1}^{p+1} 2i\gamma_i\Big) + \sum_{i=1}^{p} 2i\gamma_i^* \Big(\hat{X}_i + Yrac{\gamma_i}{\gamma_i^*}\Big) + 2(p+1)\gamma_{p+1}Y \ &= Y(n+p+1) + \sum_{i=1}^{p} 2i\cdot \gamma_i^* \cdot \hat{X}_i \;. \end{aligned}$$

Next we prove that the following 3 equations are equivalent (we use $\alpha_i^* \cdot \gamma_i / \gamma_i^* = \alpha_i$):

$$lpha_i^* X_i = X_{p+1} lpha_{p+1}^* + \sum_{t=i+1}^{p+1} 2(t-i) \gamma_i^* X_i \ lpha_i^* \hat{X}_i + lpha_i Y = Y lpha_{p+1} + \sum_{t=i+1}^{p} 2(t-i) \gamma_i^* \hat{X}_i + Y \sum_{t=i+1}^{p+1} 2(t-i) \gamma_i \ lpha_i^* \hat{X}_i + X_i = X_i + X_i +$$

$$\hat{X}_ilpha_i^*=Y(p+1-i)+\sum\limits_{t=i+1}^{p}2(t-i)\gamma_i^*\hat{X}_i+Z_i^*$$

where

$$Z = Y \Big(-lpha_i + lpha_{p+1} + \sum_{t=i+1}^{p+1} 2(t-i)\gamma_i + i - (p+1) \Big)$$
 .

Z=0 follows from the definition of α_{p+1} and α_i . Hence, the proof of the claim is complete.

Finally we will include an alternative way to determine α_i^* and γ_i^* :

Proposition 4.3. Let $A \in \mathcal{M}$.

(a) Suppose $1 \leq j \leq p$. We define the map ρ_j in the following way: If $D_j(A) = (t_1, \dots, t_{\tau_j})$, then

$$\rho_i(D_i(A)) = (d_1, \cdots, d_{r_i})$$

where

$$d_i = egin{cases} t_1 + lpha_j - t_{r_j} & \emph{for} & i = 1 \ t_{i+1} - t_i & \emph{for} & i > 1 \end{cases}.$$

Then γ_j^* is the cycle period of (d_1, \dots, d_{r_j}) , that is; γ_j^* is the least integer such that

$$(d_{r_{j}^*+1},\,\,\cdots,\,d_{r_j},\,d_{\scriptscriptstyle 1},\,\,\cdots,\,d_{r_j^*})=(d_{\scriptscriptstyle 1},\,\,\cdots,\,d_{r_i})$$
 .

(b) Suppose $D_{p+1}(A)=(t_1,\ \cdots,\ t_{r_{p+1}}) imes(s_1,\ \cdots,\ s_{r_{p+1}}).$ Then we define

$$\eta_{p+1}(D_{p+1}(A)) = (d_{\scriptscriptstyle 1}, \; \cdots, \; d_{\scriptscriptstyle 7_{p+1}}) imes (s_{\scriptscriptstyle 1}, \; \cdots, \; s_{\scriptscriptstyle 7_{p}+1})$$

where

$$d_i = egin{cases} t_{_1} + lpha_{_{p+1}} - (t_{_{7_{p+1}}} + s_{_{7_{p+1}}}) = t_{_1} & \textit{for} & i = 1 \ t_{_{i+1}} - (t_{_i} + s_{_i}) & \textit{for} & i > 1 \ . \end{cases}$$

Then γ_{p+1}^* is the least cycle period of $(d_1, \dots, d_{r_{p+1}}) \times (s_1, \dots, s_{r_{p+1}})$. That is; γ_{p+1}^* is the least integer such that

$$(d_{r_{p+1}^*+1}, \cdots, d_{r_{p+1}}, d_1, \cdots, d_{r_{p+1}^*}) \times (s_{r_{p+1}^*+1}, \cdots, s_{r_{p+1}}, s_1, \cdots, s_{r_{p+1}^*})$$

= $(d_1, \cdots, d_{r_{n+1}}) \times (s_1, \cdots, s_{r_{n+1}})$.

Proof. (a) By (3.10) we have that γ_i^* is the least integer such that $D_i(A)$ has the form

$$D_j(A) = \underbrace{(t_1, \cdots, t_{7_j^*}, t_1 + lpha_j^*, \cdots, t_{7_j^*} + lpha_j^*, \cdots,}_{ ext{Part 1}}, \underbrace{t_1 + (r-1)lpha_j^*, \cdots, t_{7_j^*} + (r-1)lpha_j^*)}_{ ext{Part } r}$$
 and

$$\alpha_i = r\alpha_i^*$$
.

Moreover, this is equivalent to that $\rho_i(D_i(A))$ has the form

$$(4.3) \begin{array}{c} \rho_{j}(D_{j}(A)) = (\underbrace{d_{1},\, \cdots,\, d_{r_{j}^{*}}}_{\text{Part 1}},\, \underbrace{d_{1},\, \cdots,\, d_{r_{j}^{*}}}_{\text{Part 2}},\, \cdots,\, \underbrace{d_{1},\, \cdots,\, d_{r_{j}^{*}}}_{\text{Part }r}) & \text{and} \\ d_{1} + \cdots + d_{r_{j}^{*}} = \alpha_{j}^{*} \ . \end{array}$$

We indicate how this is proved: Suppose (4.2) is satisfied, then

$$egin{aligned} d_{\scriptscriptstyle 1} &= t_{\scriptscriptstyle 1} + lpha_{\scriptscriptstyle j} - t_{\scriptscriptstyle \gamma_{\scriptscriptstyle j}} = t_{\scriptscriptstyle 1} + lpha_{\scriptscriptstyle j} - (t_{\scriptscriptstyle \gamma_{\scriptscriptstyle j}^*} + (r-1)lpha_{\scriptscriptstyle j}^*) \ &= t_{\scriptscriptstyle 1} + lpha_{\scriptscriptstyle j}^* - t_{\scriptscriptstyle \gamma_{\scriptscriptstyle j}^*} = t_{\scriptscriptstyle \gamma_{\scriptscriptstyle j}^*+1} - t_{\scriptscriptstyle \gamma_{\scriptscriptstyle j}^*} = d_{\scriptscriptstyle \gamma_{\scriptscriptstyle j}^*+1} \ , \end{aligned}$$
 etc.

Suppose (4.3) is satisfied, then

$$t_{ au_{j+1}^*} = \sum\limits_{i=2}^{ au_{j}^*+1} \left(t_i-t_{i-1}
ight) + t_1 = \sum\limits_{i=2}^{ au_{j}^*+1} d_{\imath} + t_1 = lpha_{j}^* + t_1$$
 , etc.

Since (4.2) is equivalent to (4.3), (a) follows easily.

- (b) We define ρ_j for j=p+1 as in (a). Since (3.14) is analogous with (3.10) we get as in (a) that γ_{p+1}^* is the least common cycle period for $\rho_{p+1}(D_{p+1}(A))$ and $(s_1, \cdots, s_{r_{p+1}})$. This is equivalent with that γ_{p+1}^* is the least cycle period of $\eta_{p+1}(D_{p+1}(A))$.
- 5. The possible periods. By Theorem 4.2 the minimal periods of $A \in \mathcal{M}$ are completely determined by $(\gamma_1^*, \dots, \gamma_{p+1}^*)$ since $\alpha_i^* = (\gamma_i^*/\gamma_i)\alpha_i$. We define

$$egin{aligned} ext{PER} \; (\gamma_1^*, \, \cdots, \, \gamma_{p+1}^*) \ &= X_{p+1} lpha_{p+1}^* + 2 X_1 \gamma_1^* \, + \, 4 X_2 \gamma_2^* \, + \, \cdots \, + \, 2 (p\, +\, 1) \gamma_{p+1}^* X_{p+1} \end{aligned}$$

where X_1, \dots, X_{p+1} is the least solution of the equations corresponding to $(\gamma_1^*, \dots, \gamma_{p+1}^*)$ in Theorem 4.2. Moreover, we let

$$m = k + p + 1 - \gamma_1 - 2\gamma_2 - \cdots - (p+1)\gamma_{n+1}$$
.

Theorem 5.1. (a) The possible periods of the elements in \mathcal{M} are:

 $\{ \text{PER} \; (\gamma_{\scriptscriptstyle 1}^*,\; \cdots,\; \gamma_{\scriptscriptstyle p+1}^*) \colon (\gamma_{\scriptscriptstyle 1}^*,\; \cdots,\; \gamma_{\scriptscriptstyle p+1}^*) \; \textit{corresponds to an} \; \; A \in \mathscr{M} \} \; .$

(b) There exists $A \in \mathcal{M}$ corresponding to $(\gamma_1^*, \dots, \gamma_{p+1}^*)$ if and only if

$$egin{array}{ll} rac{\gamma_i}{\gamma_i^*} & (i=1,\,\cdots,\,p+1) \;, & & lpha_i\!\cdot\!rac{\gamma_i^*}{\gamma_i} & (i=1,\,\cdots,\,p+1) & & and \ m\!\cdot\!rac{\gamma_{p+1}^*}{\gamma_{p+1}} & are \; integers. \end{array}$$

Proof. (a) is obvious. We let $\rho_1, \dots, \rho_p, \eta_{p+1}$ be as in Proposi-

tion 4.3. By Lemma 3.2 we get easily

$$\left\{
ho_1 imes
ho_2 imes \cdots imes
ho_p imes \eta_{p+1} \left\{ egin{smallmatrix} p_{i+1} \ iggr_{i=1} \end{pmatrix} D_i(A) \colon A \in \mathscr{M}
ight\} = iggright{implies}^{p+1}_{i=1} \mathscr{N}_i$$

where

$$\mathcal{N}_i = \{(d_1, \, \cdots, \, d_{ au_i}) \colon d_1 > 0, \, d_j \geqq 0 \, \, (j = 2, \, \cdots, \, \gamma_i) \, ext{ and } \ d_1 + \cdots + d_{ au_i} = lpha_i\} \quad ext{for} \quad 1 \leqq i \leqq p \quad ext{ and } \ \mathcal{N}_{p+1} = \{(d_1, \, \cdots, \, d_{ au_{p+1}}) imes (s_1, \, \cdots, \, s_{ au_{p+1}}) \colon d_i \geqq 0, \, s_i \geqq 0, \ d_1 + \cdots + d_{ au_{p+1}} = lpha_{p+1} - m \, \, ext{and} \, \, s_1 + \cdots + s_{ au_{p+1}} = m\}$$

where $m = k + p + 1 - \gamma_1 - 2\gamma_2 - \cdots - (p+1)\gamma_{p+1}$.

By Proposition 4.3 we get {the possible $(\gamma_1^*, \cdots, \gamma_{p+1}^*)$ } is equal to the set

$$\underset{i=1}{\overset{p+1}{\times}}$$
 {the cycle periods of elements in \mathscr{N}_i }.

Finally, we get easily that {the possible cycle periods of elements in \mathcal{N}_i } is equal to the set

$$\left\{ \gamma_i^* : \frac{\gamma_i}{\gamma_i^*} \text{ and } \alpha_i \cdot \frac{\gamma_i^*}{\gamma_i} \text{ are integers} \right\}$$

for $1 \le i \le p$. Moreover, we get

(the possible cycle periods of elements in \mathcal{N}_{p+1})

is equal to the set

$$\left\{\gamma_{p+1}^* \colon \frac{\gamma_{p+1}}{\gamma_{p+1}^*}, \ \alpha_{p+1} \cdot \frac{\gamma_{p+1}^*}{\gamma_{p+1}} \ \text{and} \ m \cdot \frac{\gamma_{p+1}^*}{\gamma_{p+1}} \ \text{are integers} \right\}$$

and the proof is complete.

6. The number of cycles. In this section we will count the number of cycles $\mathscr C$ in

$$\bar{\mathscr{M}} = \{A \in \{0, 1\}^n : \exists i \text{ such that } \theta^i(A) \in \mathscr{M}\}$$

corresponding to a given $(\gamma_1^*, \dots, \gamma_{p+1}^*)$. That means: If $A \in \mathcal{C} \cap \mathcal{M}$, then $(\gamma_1^*, \dots, \gamma_{p+1}^*)$ corresponds to A. We let \sharp denote "the number of elements in". Moreover, we let \mathcal{N}_i $(i=1, \dots, p+1)$ be as in § 5. That is;

$$egin{aligned} \mathscr{N}_i &= \{(d_1, \ \cdots, \ d_{7_i}) \colon d_1 > 0, \ d_j \geqq 0 \ \ (j = 2, \ \cdots, \ \gamma_i) \ \ ext{and} \ \ d_1 + \cdots + d_{7_i} &= lpha_i\} \ \ ext{for} \ \ 1 \leqq i \leqq p \ \ \ \ ext{and} \ \ \mathscr{N}_{p+1} &= \{(d_1, \ \cdots, \ d_{7_{p+1}}) imes (s_1, \ \cdots, \ s_{7_{p+1}}) \colon d_i \geqq 0, \ s_i \geqq 0, \ \ d_1 + \cdots + d_{7_{p+1}} &= lpha_{p+1} - m \ \ ext{and} \ \ s_1 + \cdots + s_{7_{p+1}} &= m\} \ . \end{aligned}$$

THEOREM 6.1. Suppose X_1, \dots, X_{p+1} is the least solution of the equations corresponding to $(\gamma_1^*, \dots, \gamma_{p+1}^*)$ in Theorem 4.2. Then the number of cycles in $\overline{\mathscr{M}}$ corresponding to $(\gamma_1^*, \dots, \gamma_{p+1}^*)$ is

$$\prod_{i=1}^{p+1} w_i/X_{p+1}\gamma_{p+1}^*$$

where

 $w_{p+1} = \sharp \{the \ elements \ in \ \mathscr{N}_{p+1} \ with \ cycle \ period \ \gamma^*_{p+1} \}$

and for $1 \leq j \leq p$

$$w_j = \sum\limits_{t=1}^{lpha_j^*} t\!\cdot\!w_{j,t}$$

where

$$w_{j,t} = \sharp \{(d_1, \cdots, d_{r_j}) \in \mathscr{N}_j \text{ with cycle period } \gamma_j^* \text{ and } d_1 = t\}$$
.

Proof. Suppose $A \in \mathscr{M}$ corresponds to $(\gamma_1^*, \dots, \gamma_{p+1}^*)$. In the proof of Theorem 4.2 we prove that $Y = X_{p+1}\gamma_{p+1}^*$ is the least integer such that $\psi^Y(A) = A$. Hence, there are $X_{p+1}\gamma_{p+1}^*$ elements in \mathscr{M} on the same cycle as A. Hence, the proof will be complete if we can prove

$$\sharp\{A\in\mathscr{M}:A \text{ corresponds to } (\gamma_1^*,\ \cdots,\ \gamma_{p+1}^*)\}=\prod\limits_{i=1}^{p+1}w_i$$
 .

We get by Lemma 3.2 that

$$\#\{A\in\mathscr{M}\colon A \text{ corresponds to } (\gamma_1^*,\,\cdots,\,\gamma_{p+1}^*)\}$$

$$=\prod_{i=1}^{p+1} \#\{D_i(A)\colon D_i(A) \text{ corresponds to } \gamma_i^* \text{ and } A\in\mathscr{M}\} \ .$$

Hence, the proof will be complete if we can prove $(1 \le i \le p+1)$

$$(6.1) \qquad \sharp \{D_i(A) \colon D_i(A) \text{ corresponds to } \gamma_i^* \text{ and } A \in \mathscr{M} \} = w_i \ .$$

First we will prove that (6.1) is true for i=p+1. It is sufficient to prove that the map

$$\eta_{p+1} \colon \{D_{p+1}(A) \colon A \in \mathscr{M}\} \longrightarrow \mathscr{N}_{p+1}$$

defined in Proposition 4.3 is bijective: Let $(d_1, \dots, d_{r_{p+1}}) \times (s_1, \dots, s_{r_{p+1}}) \in \mathcal{N}_{p+1}$. Then there exists one and only one $D_{p+1}(A)$ such that

$$\eta_{p+1}(D_{p+1}(A)) = (d_1, \cdots, d_{r_{p+1}}) \times (s_1, \cdots, s_{r_{p+1}})$$
.

This $D_{p+1}(A)=(t_1,\,\cdots,\,t_{r_{p+1}}) imes (s_1,\,\cdots,\,s_{r_{p+1}})$ is given by $t_1=d_1,\,\,t_2=d_2+t_1+s_1,\,\,t_3=d_3+t_2+s_2,\,\,{
m etc.}$

Next we will prove (6.1) in the case i , and we do the

following observation $(i = 1, \dots, p)$:

To each $(d_1, \dots, d_{r_i}) \in \mathcal{N}_i$ there exists exactly d_1 elements $D = D_i(A)$ such that $\rho_i(D) = (d_1, \dots, d_{r_i})$ where ρ_i is as in Proposition 4.3.

These elements are

$$\left(s,s+d_{\scriptscriptstyle 2},s+d_{\scriptscriptstyle 2}+d_{\scriptscriptstyle 3},\,\cdots,\,s+\sum\limits_{j=2}^{{\scriptscriptstyle 7}_t}d_j
ight)$$
 where $s=1,\,\cdots,\,d_{\scriptscriptstyle 1}$.

(6.1) follows from this observation in the case i . $The next theorem gives us a way of calculating <math>w_{p+1}$ and $w_{j,t}$.

THEOREM 6.2. (a) We let $\sigma(r, s, t) = the number of elements in <math>\mathscr{C}(r, s, t) = \{(d_1, \dots, d_s): d_i \geq 0, d_1 = r, d_1 + \dots + d_s = t \text{ and } (d_1, \dots, d_s) \text{ has trivial period } s\}.$

Then $\sigma(r, s, t)$ can be calculated inductively by the following formula:

$$\begin{split} \sigma(r,s,t) &= \binom{t+s-r-2}{s-2} - \sum \left\{ \! \sigma\!\!\left(r,\frac{s}{s'},\frac{t}{s'}\right) \! \! : \! \frac{s}{s'} \ and \right. \\ &\left. \frac{t}{s'} \ are \ integers \! \right\} \, . \end{split}$$

- () is the binomial coefficient.
 - (b) We let $\sigma(s, t) = the number of elements in$

$$\mathscr{C}(s,t) = \{(d_1, \cdots, d_s): d_i \geq 0, d_1 + \cdots + d_s = t \text{ and } (d_1, \cdots, d_s) \text{ has trivial period } s\}.$$

Then $\sigma(s, t)$ can be calculated inductively by the following formula:

$$\sigma(s,t) = {t+s-1 \choose s-1} - \sum \left\{ \sigma(\frac{s}{s'}, \frac{t}{s'}) : \frac{s}{s'} \text{ and } \frac{t}{s'} \text{ are integers} \right\}.$$

(c) The number of elements in

$$\mathscr{Q}(s, t) = \{(d_1, \cdots, d_s): d_i \geq 0 \ and \ d_1 + \cdots + d_s = t\}$$

$$is \quad {s+t-1 \choose s-1}.$$

- (d) $w_{i,t} = \sigma(t, \gamma_i^*, \alpha_i^*)$ for $1 \le i \le p$ and $1 \le t \le \alpha_i^*$.
- (e) Let $m^* = m \cdot \gamma_{p+1}^* / \gamma_{p+1}$. Then we have

$$w_{\scriptscriptstyle p+1} = r_{\scriptscriptstyle 1}\!\cdot\! q_{\scriptscriptstyle 1} + r_{\scriptscriptstyle 2}\!\cdot\! q_{\scriptscriptstyle 2} - r_{\scriptscriptstyle 1}\!\cdot\! r_{\scriptscriptstyle 2}$$

where

$$egin{aligned} r_1 &= \sigma(\gamma_{p+1}^*, \, lpha_{p+1}^* - m^*) & and & q_1 &= egin{pmatrix} m^* + \, \gamma_{p+1}^* - 1 \ \gamma_{p+1}^* - 1 \end{pmatrix} \ & r_2 &= \sigma(\gamma_{p+1}^*, \, m^*) & and & q_2 &= egin{pmatrix} lpha_{p+1}^* - m^* + \, \gamma_{p+1}^* - 1 \ \gamma_{p+1}^* - 1 \end{pmatrix}. \end{aligned}$$

Proof. (a)

$$egin{aligned} &\{(d_1,\,\cdots,\,d_s)\colon d_i \geq 0,\; d_1=r\; ext{and}\; d_1+\cdots+d_s=t\}^\sharp \ &=\{(d_2,\,\cdots,\,d_s)\colon d_i \geq 0\; ext{and}\; d_2+\cdots+d_s=t-r\}^\sharp \ &= ext{the number of ways to divide}\; (t-r)\; 1\text{'s into}\; (s-1)\; ext{groups} \ &= ext{the number of ways to put}\; s-2\; 0\text{'s into}\; (t+s-r-2)\; ext{positions} \ &= egin{aligned} t+s-r-2 \ s-2 \end{aligned} \end{aligned}.$$

We subtract those (d_1, \dots, d_s) with trivial period less than s. For each s' such that s/s' and t/s' are integers, $(d_1, \dots, d_s) \to (d_1, \dots, d_{s/s'})$ is a bijective correspondence between

$$\{(d_1,\ \cdots,\ d_s)\colon 0\le d_i,\ d_1=r,\ d_1+\cdots+d_s=t\ ext{and}$$
 $(d_1,\ \cdots,\ d_s)\ ext{has trivial period}\ s/s'\}$ $\mathscr{C}(r,s/s',t/s')$.

and

By using these correspondences (a) follows.

- (b) and (c) are proved in the same way.
- (d) By definition $w_{i,t}$ is the number of elements in the set

$$\mathscr{N}_1 = \{(d_1, \dots, d_{r_i}) \in \mathscr{N}_i; d_1 = t \text{ and } (d_1, \dots, d_{r_i}) \}$$
has cycle period $\gamma_i^*\}$.

The map from \mathcal{A}_i into $\mathcal{C}(t, \gamma_i^*, \alpha_i^*)$ given by

$$(d_1, \cdots, d_{r_i}) \longrightarrow (d_1, \cdots, d_{r_i^*})$$

is bijective, and (d) follows.

(e) By definition w_{p+1} is the number of elements in the set

$$\mathscr{N}_2 = \{(d_1, \cdots, d_{r_{p+1}}) \times (s_1, \cdots, s_{r_{p+1}}) \in \mathscr{N}_{p+1} \text{ which}$$
has cycle period $\gamma_{p+1}^*\}$.

We define

$$\mathscr{S}_3 = \{(d_1, \ \cdots, \ d_{r_{p+1}^*}) imes (s_1, \ \cdots, \ s_{r_{p+1}^*}) \colon d_i \geqq 0, \ s_i \geqq 0, \ d_1 + \cdots + d_{r_{p+1}^*} = lpha_{p+1}^* - m^*, \ s_1 + \cdots + s_{r_{p+1}^*} = m^* \ ext{and} \ (d_1, \ \cdots, \ d_{r_{p+1}^*}) \ ext{or} \ (s_1, \ \cdots, \ s_{r_{p+1}^*}) \ ext{has cycle period} \ \gamma_{p+1}^* \} \ .$$

The map from \mathscr{A}_2 into \mathscr{A}_3 given by

$$(d_1, \cdots, d_{r_{n+1}}) \times (s_1, \cdots, s_{r_{n+1}}) \longrightarrow (d_1, \cdots, d_{r_{n+1}}) \times (s_1, \cdots, s_{r_{n+1}})$$

is bijective. We observe that

$$\#\mathscr{N}_3 = r_1 \cdot q_1 + r_2 \cdot q_2 - r_1 \cdot r_2$$

where

$$egin{aligned} r_1 &= \#\mathscr{C}(\gamma_{p+1}^*,\, lpha_{p+1}^* - m^*) \qquad ext{and} \qquad q_1 &= \mathscr{C}(\gamma_{p+1}^*,\, m^*) \ r_2 &= \#\mathscr{C}(\gamma_{p+1}^*,\, m^*) \qquad ext{and} \qquad q_2 &= \mathscr{C}(\gamma_{p+1}^*,\, lpha_{p+1}^* - m^*) \end{aligned}$$

and (e) follows.

7. The reduction. We will reduce the cycle structure problem to the set studied in the §§ 3-6. First we need two lemmas. C < D means C contained in D and $C \neq D$. If $D = a_r \cdots a_s$, we define $(t \in D \Leftrightarrow r \leq t \leq s)$ and $f_D(t) = f(a_r \cdots a_t)$.

We need more precise notation. If we are working with A we write

$$\alpha_i(A)$$
, $\gamma_i(A)$ and m_A instead of α_i , γ_i and m .

LEMMA 7.1. Suppose $A = 0_{i_1}B_1C_10_{i_2}B_2C_2\cdots 0_{i_f}$ $B_fwhere\ B_i$ is a block on level 1. Moreover, we suppose $f(C_i) = -type\ (B_i)$ and $0 > f_{C_i}(t) \ge -type\ (B_i)$ for $t \in C_i$.

Then we have

$$n+type\left(B_{\scriptscriptstyle f}
ight)=\left(\sum\limits_{i=1}^{p+1}2i\gamma_i
ight)+m_{\scriptscriptstyle A}+\left(i_1+\,\cdots\,+\,i_f
ight)$$
 ,

and if type $(B_i) \ge type(B_i)$ for $i = 1, \dots, f$ then

$$\alpha_{\scriptscriptstyle type\;(B_f)}(A)=m_{\scriptscriptstyle A} \Longleftrightarrow i_{\scriptscriptstyle 1}+\cdots+i_{\scriptscriptstyle f}=0$$
 .

Proof. We let $C_f=0_{{}_{\operatorname{type}\,(B_f)}}$ and consider $A^*=AC_f=0_{i_1}B_iC_i\cdots 0_{i_f}B_fC_f.$

As in the proof of Lemma 4.13 in [2] we get

the length of
$$B_i = f(B_i) + \sum \{2 \cdot \text{type}\,(B^*) \colon B^* < B_i \}$$
, the length of $C_i = \text{type}\,(B_i) + \sum \{2 \cdot \text{type}\,(B^*) \colon B^* < C_i \}$.

If type $(B_i) = p + 1$, we therefore have

the length of
$$B_iC_i = [f(B_i) - (p+1)] + \sum \left\{2 \cdot \mathrm{type}\left(B^*\right) \colon B^* < B_iC_i \right\}$$
 .

Otherwise,

the length of
$$B_iC_i = \sum \{2 \cdot \text{type}(B^*): B^* < B_iC_i\}$$
.

Hence,

the length of
$$A^* = \sum \{f(B_i) - (p+1) : \text{type } (B_i) = p+1 \} + \sum \{2 \cdot \text{type } (B^*) : B^* \text{ a block} \} + (i_1 + \cdots + i_f)$$

$$= m_A + \left(\sum_{i=1}^{p+1} 2i\gamma_i\right) + (i_1 + \cdots + i_f) .$$

The equivalence follows by the definition of $\alpha_{\text{type }(B_f)}(A)$.

We write

$$\theta_{k,p} = \theta_{E_k + \dots + E_{k+p}}.$$

LEMMA 7.2. We suppose the block structure of $A \in \{0, 1\}^n$ is determined with respect to p. Moreover, we suppose w(A) = k + p + 1. Then we have

$$egin{aligned} ([\gamma_{p+1}(A)
eq 0 \ and \ lpha_{p+1}(A)=m_A] \ or \ [z&=\sup_i \left\{i\colon \gamma_i(A)
eq 0
ight\} < p+1 \ and \ lpha_z(A)=0]) \ &\Longleftrightarrow heta_{k,n}^i(A)= heta_{k,n}^i(A) \ for \ p'>p \ and \ every \ j \ . \end{aligned}$$

Proof. We suppose first $\gamma_{p+1}(A) \neq 0$. By Lemma 4.4 in [2] there exists q such that $\bar{A} = \theta_{k,p}^q(A)$ satisfies $\gamma_i(A) = \gamma_i(\bar{A})$, $\alpha_i(A) = \alpha_i(\bar{A})$, $m_A = m_{\bar{A}}$, \bar{A} ends with a (p+1)-block, \bar{A} starts with 0 or a (p+1)-block and $w(\bar{A}) = k + p + 1$.

Moreover, \bar{A} has the form

$$ar{A}=0_{i_1}B_{\scriptscriptstyle 1}C_{\scriptscriptstyle 1}0_{i_2}B_{\scriptscriptstyle 2}C_{\scriptscriptstyle 2}\cdot\cdot\cdot\cdot0_{i_f}B_{\scriptscriptstyle f}$$
 as in Lemma 7.1 .

(If f = 1, then $\bar{A} = 0_{i_1}B_{i_2}$)

We suppose $\theta_{k,p}^j(A)=\theta_{k,p}^j(A)$ for p'>p. If $i_1\neq 0$, then $w(\theta_{k,p+1}(A))=k+p+2\neq w(\theta_{k,p}(A))$. Hence, $i_1=0$. By Lemma 5.7 in [2] we have

$$w(\theta_{k,p}^s(\bar{A})) = k + p + 1$$
 where $s = \text{length of } B_iC_i$.

In the same way we prove $i_1 = \cdots = i_f = 0$. By Lemma 7.1 $\alpha_{p+1}(\bar{A}) = m_{\bar{A}}$. Hence, $\alpha_{p+1}(A) = m_A$.

Next we suppose $\alpha_{p+1}(A)=m_A$. Hence, $\alpha_{p+1}(\bar{A})=m_{\bar{A}}$. By Lemma 7.1 we have $i_1+\cdots+i_f=0$. Hence, type $(B_1)=p+1$. Moreover, let $j=\inf\{i>1$: type $(B_i)=p+1\}$. Put $C_1''=''C_1B_2C_2\cdots B_{j-1}C_{j-1}$ and $B_2''=''B_j$. By continuing in this way we can suppose type $(B_1)=\cdots=$ type $(B_f)=p+1$. Hence, by Lemma 5.6(c) in [2] we get $\theta_{k,p}^i(\bar{A})=\theta_{k,p}^j(\bar{A})$ for p'>p.

Finally we treat the case $z = \sup_i \gamma_i(A) < p+1$. By Lemma 5.6 (a) in [2] we have $\theta_{k,p}^i(A) = \theta_{k_1,p_1}^i(A)$ where $k_1 = p+1-z$ and $p_1 = z-1$. By Lemma 4.4 in [2] there exists q such that $\bar{A} = \theta_{k,p}^i(A)$ satisfies:

 $\gamma_i(A)=\gamma_i(ar{A}), \ \alpha_i(A)=\alpha_i(ar{A}), \ m_A=m_{ar{A}}=0, \ ar{A} \ {
m ends} \ {
m with} \ {
m a} \ z{
m -block}, \ ar{A} \ {
m starts} \ {
m with} \ 0 \ {
m or} \ {
m a} \ z{
m -block} \ {
m and} \ w(ar{A})=k+p+1. \ {
m Moreover}, \ ar{A} \ {
m has} \ {
m the} \ {
m form}$

$$\bar{A} = 0_{i_1} B_1 C_1 0_{i_2} B_2 C_2 \cdots 0_{i_f} B_f$$
 as in Lemma 7.1.

We suppose $\theta_{k,p}^j(A)=\theta_{k,p'}^j(A)$ for p'>p. As in the case $\gamma_{p+1}(A)\neq 0$ we prove $i_1=\cdots=i_f=0$. By Lemma 7.1 $\alpha_z(A)=m_A=0$.

Next we suppose $\alpha_z(A)=0$. Hence, $\alpha_z(\bar{A})=m_{\bar{A}}=0$. By Lemma 7.1 we have $i_1+\cdots+i_f=0$. As before we can suppose type $(B_1)=\cdots=$ type $(B_f)=z$. Hence, by Lemma 5.6 (c) we get $\theta_{k,p}^j(\bar{A})=\theta_{k,p'}^j(\bar{A})$ for p'>p.

Previously in this paper we have not mentioned the possible values of $(\gamma_1, \dots, \gamma_{p+1})$. However, by Lemma 4.1 in [2] we have the following result (k, p and n are given)

$$(\gamma_{\scriptscriptstyle 1},\,\cdots,\,\gamma_{\scriptscriptstyle p+1})$$
 is a possible vector if and only if $\exists m\geqq 0$ such that $m+\sum\limits_{i=1}^{p+1}i\cdot\gamma_i=k+p+1$

and

$$m+2\cdot\sum_{i=1}^{p+1}i\cdot\gamma_i \leq n+p+1$$

(*m* corresponds to *m* defined previously).

The results obtained in this paper give a complete description of the cycle structure of \mathcal{M} where

(7.2) $\mathcal{M}=$ the union of all \mathcal{M} defined in (3.2) corresponding to the possible vectors $(\gamma_1,\,\cdots,\,\gamma_{p+1})$ satisfying $\gamma_{p+1}\neq 0$.

Now we start the reduction process. For $\mathscr{A} \subset \{0, 1\}^n$, we define the closure of \mathscr{A} with respect to θ by

$$\bar{\mathscr{A}} = \{\theta^i(A) \colon A \in \mathscr{A}\}$$
.

We let $\theta = \theta_{k,p}$ and we define

$$\mathscr{F} = \{A \colon k \leqq w(\theta^i(A)) \leqq w(A) \leqq k + p + 1 \ \forall \ i\} \ .$$

If $A \notin \overline{\mathscr{F}}$, then $\theta^i(A) = C^i(A) \ \forall i$, where $C(a_1, \dots, a_n) = a_2 \dots a_n a_1$ is the pure cycling register. Hence, it is enough to study $\overline{\mathscr{F}}$. We define

$$\mathscr{D}(i,j) = \{A \in \mathscr{F} : k+i = \inf w(\theta^s(A)) \le w(A) = k+j \}$$
.

Then we have obviously that

$$\bar{\mathscr{F}} = \bigcup_{i \leq j} \overline{\mathscr{D}(i,\,j)}$$

is a disjoint union. Hence, it is sufficient to determine the cycle structure of the sets $\overline{\mathscr{D}(i,j)}$. First we need an observation:

Observation 7.3. Suppose $\theta=\theta_{k,p},\ w(A)=k+p+1$ and $0\leq p'< p$. Then we have

$$egin{aligned} \gamma_{p'+1}
eq 0 & ext{and} \ \gamma_{p'+2} = \cdots = \gamma_{p+1} = 0 & \Longleftrightarrow \inf_s w(heta^s(A)) = k + p - p' \;. \end{aligned}$$

Proof. This follows directly from the definition of the blocks, or for example from Lemma 5.1 in [2].

We also need very precise notation. If we are working with p we write α_i^p , γ_i^p and m^p instead of α_i , γ_i and m.

Case 1.
$$\overline{\mathscr{D}(0, p+1)} = \overline{\mathscr{M}}$$
 where \mathscr{M} is as in (7.2).

Proof. Let $A \in \mathcal{D}(0, p+1)$. By Observation 7.3 we have $\gamma_{p+1} \neq 0$. By Lemma 4.4 in [2] there exists s such that $\theta^s(A) \in \mathcal{M}$ and the claim follows.

Case 2. If $0 \le i < j < p+1$, we can determine $\overline{\mathscr{D}(i,j)}$ in the following way: Let k' = k+i, p' = j-i-1 and let \mathscr{M} be as in (7.2) with respect to k' and p'. Then

$$egin{aligned} \overline{\mathscr{D}(i,j)} &= \overline{\{A \in \mathscr{M} : lpha_{p'+1} = 0\}} & ext{if} \quad i > 0 \ \overline{\mathscr{D}(i,j)} &= \{A \in \mathscr{M} : lpha_{p'+1} = m\} & ext{if} \quad i = 0 \end{aligned}$$

where $\alpha_{p'+1}$ and m are determined with respect to p'. Moreover, the closure of $\mathcal{D}(i,j)$ with respect to $\theta_{k,p}$ and $\theta_{k',p'}$ respectively are equal.

Proof. Let p''=j-1 and $A\in \mathscr{D}(i,j)$. By Lemma 7.2 there are two possibilities:

- (1) If $\gamma_{p''+1}^{p''} \neq 0$, then $\alpha_{p''+1}^{p''} = m^{p''}$.
- (2) If $\gamma_z^{p^{\prime\prime}} \neq 0$ and $\gamma_{z+1}^{p^{\prime\prime}} = \cdots = \gamma_{p^{\prime\prime}+1}^{p^{\prime\prime}} = 0$, then $\alpha_z^{p^{\prime\prime}} = 0$.

We suppose first that i > 0. By Observation 7.3 we are in Case 2 with z = j - i since

$$k + p'' + 1 - (j - i) = k + i \le w(\theta^s(A)) \le k + p'' + 1$$
.

Hence, we have $\alpha_z^{p''}=\alpha_{p'+1}^{p''}=0$ and $\gamma_z^{p''}=\gamma_{p'+1}^{p''}\neq 0$. Since, $\gamma_{z+1}^{p''}=\cdots=\gamma_{p''+1}^{p''}=0$ we have

$$\alpha_{p'+1}^{p'} = \alpha_{p'+1}^{p''} = 0$$
 and $\gamma_{p'+1}^{p'} = \gamma_{p'+1}^{p''} \neq 0$.

By Lemma 4.4 in [2] there exists s such that $\theta_{k',p'}^s(A) \in \mathcal{M}$ where \mathcal{M} is defined as in (7.2) with respect to k' and p'.

Next we suppose i=0. Then we are in Case 1 and p''=p'. Hence, we have $\alpha_{p'+1}^{p'}=m^{p'}$ and $\gamma_{p'+1}^{p'}\neq 0$. By Lemma 4.4 in [2] there exists s such that $\theta_{k',p'}^s(A)\in \mathscr{M}$ where \mathscr{M} is defined as in (7.2) with respect to k' and p'.

Case 3. If
$$0 < i < j = p + 1$$
, then

$$\overline{\mathscr{D}(i,j)} = \overline{\{A \in \mathscr{M} : m = 0\}}$$

where \mathscr{M} and m is defined with respect to k' = k + i and p' = p - i. Moreover, the closure of $\mathscr{D}(i, j)$ with respect to $\theta_{k,p}$ and $\theta_{k',p'}$ respectively are equal.

Proof. Let $A \in \mathcal{D}(i, j)$. By Observation 7.3 we have

$$\gamma_{n'+2}^{p'} = \cdots = \gamma_{n+1}^{p'} = 0.$$

Hence, $m^{p'}=0$. Namely, if $m^{p'}\neq 0$, then (*) would not be true. Moreover, by Lemma 5.6 in [2] we have

$$\theta_{k,v'}^s(A) = \theta_{k,v}^s(A) \quad \forall s$$

and there exists s such that $\theta_{k',p'}^s(A) \in \mathscr{M}$ where \mathscr{M} is defined with respect to k' and p'. Hence the proof of Case 3 is complete.

Case 4. If i=j, then $\mathcal{D}(i,i)=\emptyset$ except in the following case: If k+p+1=n, then $\overline{\mathcal{D}(p+1,p+1)}=\{A=1_n\}$.

The proof of Case 4 is obvious.

Finally we will mention how to determine the minimal period for $A \in \{0, 1\}^n$ with respect to $\theta_{k,p}$ in the following 4 steps:

- 1. If $w(A) \notin \{k, \dots, k+p+1\}$, then $\theta_{k,p}(A) = \xi(A)$ where $\xi(a_1 \dots a_n) = (a_2 \dots a_n a_1)$ and the problem is trivial. We therefore suppose $w(A) \in \{k, \dots, k+p+1\}$.
- 2. We calculate w(A), $w(\theta_{k,p}(A))$, \cdots , $w(\theta_{k,p}^{2n}(A))$ and choose j such that $A^* = \theta_{k,p}^j(A)$ satisfies

$$w(A^*) = \sup_{1 \le i \le 2n} w(heta_{k,p}^i(A)) = \sup_i w(heta_{k,p}^i(A))$$
 .

- 3. Put $p'=w(A^*)-k-1$. Then we can use $\theta_{k,p'}$ instead of $\theta_{k,p}$ (Lemma 5.6 (b) in [2]). We have $w(A^*)=k+p'+1$.
- 4. Next we determine the block structure of A^* with respect to p'. We put $j = \sup\{i: \gamma_i^{p'}(A) \neq 0\}$, and k'' = p' j and p'' = j 1. Then we can use $\theta_{k'',p''}$ instead of $\theta_{k,p}$ (Lemma 5.6 (a) in [2]). More-

over, we have $w(A^*)=k''+p''+1$ and $\gamma_{p''+1}^{p''}(A^*)\neq 0$. Hence, we can use Theorem 4.2.

REFERENCES

- 1. J. Søreng, The periods of the sequences generated by some shift registers, J. Combinatorial Theory, Ser. A, 21 (1976), 165-187.
- 2. ———, Symmetric shift registers, Pacific J. Math., 85 (1979), 201-229.

Received September 19, 1978 and in revised form November 2, 1979.

University of Oslo Blindern, Oslo 3, Norway