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SYMMETRIC SHIFT REGISTERS, PART 2

JAN SORENG

We study symmetric shift registers defined by

(Xl, ' " , Xn) > (X2t mmm>Xn, %n+l)

where xn+1 = x1 -f S(x2, , xn) and S is a symmetric polynomial
over the field GP(2).

Introduction* In this paper we study symmetric shift registers
over the field GF(2) = {0,1}. In [2] we introduced the block struc-
ture of elements in {0, l}n and developed a theory about this block
structure. In this paper we will use the results in [2] about the
block structure to determine the cycle structure of the symmetric
shift registers.

The symmetric shift register θs corresponding to S(x2, ••-,«»)
where S is a symmetric polynomial, is defined by

θsfru •••,&») = (α2, , «n+i) where xn+1 = xx + S(x2, , a?J .

q is the minimal period of i e {0, 1}* with respect to θs if q is the
least integer such that Θ%(A) = A. Then A -> ΘS(A) -•...-» 0|(A) = A
is called the cycle corresponding to A, We will for all S solve the
following three problems:

1. Determine the minimal period for each A e {0, 1}\
2. Determine the possible minimal periods.
3. Determine the number of cycles corresponding to each mini-

mal period.
Moreover, the problems will be solved in a constructive way, a

way which will describe how the minimal periods and the number
of cycles can be calculated. In [1] (see also [2]) we reduced all the
problems to the case S = Ek + + Ek+P where Et is defined by

Ei(x2, - , x J = 1 if and only if Σ χj — i
3=2

In this paper we will only study S = Ek + + Ek+P.
I will now roughly describe the structure of the proof. First

we need a definition. Suppose Λ€ C {0, l}n is a set such that for
all A e Λ there exists an i > 0 such that 0|(A) e ̂ C Then we define
Index: ^ —> {1, 2, •} and ψ: ^y£ -> ̂ ^ in the following way:

Let i > 0 be the least integer such that θs(A) e ̂ €, then we
define Index (A) = i and ^(A) = ̂ (A).

In the proof we need only consider certain subsets ^£ which
can be represented in a nice way. Each A e ̂ £ is uniquely deter-
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mined by its block structure. In [2] we proved how we can deter-
mine the block structure of ψ(A) by means of the block structure of
A. We continue in this way and calculate the block structure of
ψ\A), ψ\A), . Finally, we find a q such that A and ψg(A) have
the same block structure. Hence A = ψq(A). Then

Index (A) + Index (ψ(A)) + + Index (ψq-\A))

is the minimal period of A .

Next we give a short outline of the paper. Section 2 contains
some definitions and notations. In § 3 we compute ψ for a certain
subset ^ and describe the main ideas. In the §§ 4, 5 and 6 we
solve the Problems 1, 2 and 3 respectively for the set ^£. In § 7
we generalize the results to all A e {0, l}n. This generalization will
not be difficult.

2* Preliminaries* We must repeat some of the definitions from
[2]. First we define the blocks of Ae{0, l}n ([2], Def. 3.1). Intui-
tively an i-block is i consecutive Γs in A. 0* denotes i consecutive
0's in A and 1, denotes i consecutive Γs in A for i ^ 0.

We need some notation. We write αx an = (alf , aj e {0, 1}\
If A = a, an e {0, 1}*, we define

/(α4 aά) — (the number of Γs in αέ αΛ )

— (the number of 0's in at α, ) .

If r ^ iS j ^ s and (r Φ i or j» 9̂  s) we write αέ ad < αr αs.
Moreover, αΛδ denotes the minimum of a and 6, and we define w(-)
by w(αx an) = Σ?=i <V

We divide the definition of blocks into two parts by first defining
1-structures and 0-structures of A. A 1-structure (0-structure) is a
generalization of q consecutive Γs (respectively 0's) which is succeeded
by q 0's (respectively Γs). We will say that a block Bt is on level
i if it is contained in a chain Bx > B2 > Bz > > Bt of blocks.

DEFINITION 2.1, Part 1. Suppose A = αx αΛ 6 {0,1}\
(a) Suppose αr = 1. Let s be the maximal integer such that

D = αr α8 satisfies
(1) 0 < /(αr - α«) ̂  /(αr - α.) for i 6 {r, , s}

and
(2) If r ^ i ^ j ^ 8, then /(α< αy) > - ( p + 1).

By definition D is a 1-structure with respect to p.
(b) Suppose ar = 0. Let s be the maximal integer such that

D = αr α8 satisfies
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. α i ) ^ / ( α r . .α s ) for ie{r, ••-,«}.

By definition D is a 0-structure.

DEFINITION 2.1, Pαrί 2. (a) Suppose A — aλ αw e {0, 1}\ We
define the blocks in A with respect to p by induction with respect
to the level of the blocks in the following way: (The 1-structures
are defined with respect to p.)

Level 1. We decompose A in the following way A = 0 ^ Qi2B2

Bm0ίm+1 where Bά is a 1-structure. By definition Bu - , Bm are the
blocks in A on level 1.

Level 2. Suppose B is a block on level 1. We decompose B in
the following way

(2.1) B = l̂ JBi li2B2 - -BmlW l where B3 is a 0-structure .

By definition Bu , Bm are the blocks in A on level 2 which are
contained in B.

Level 3. Suppose S is a block on level 2. We decompose B in
the following way

(2.2) B = 0 ^ 0,2£2 £m0 i w + 1 where Bό is a 1-structure .

By definition Bl9 - , Bm are the blocks in A on level 3 which are
contained in B.

We continue in this way. If ie{3, 5, 7, •••} and B is a block
on level i, we decompose B as in (2.1). If iβ{4, 6, 8, •} and B is
a block on level i, we docompose B as in (2.2).

(b) Let B be a block in A on level ΐ. Then we define level
(B) = i, type (5) - \f(B)\ A (p + 1) and m(JS) = |/(JS)|. Moreover, if
type (B) = # we say that J5 is a g-block or that B is a block of
type q.

We illustrate Definition 2.1 by the example p = 2 and

A = 0 1 0 0 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 0 1

U U U U U LJ U
B1 B2 B3 B4 Bδ BQ B6

u
B,B7

u
Bs

u

where

Bu B2, B3, B4, Bδ and B6 are blocks of type 1
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BΊ and B8 are blocks of type 2
BQ and 2?10 are blocks of type 3
Bu Bg, ί?4 a n d B10 are blocks on level 1
B7, Bz, J35, BQ a n d BQ are blocks on level 2
J?2 is a block on level 3 .

We establish the convention that B always denotes a block.
Moreover, we suppose k and p are fixed integers such that O ^ i g
k -\- p ^ n — 1. The block structure is always determined with respect
to p and we always work with S — Ek + + Ek+9. We write
θ — θs. These conventions do not concern § 7.

If A — aλ an, we write lA{at as) — i and r^α, as) = i .
Next we define d(i?) which measures how far the block B is to the
left in A. Suppose A = αx an. We define

dq(a, αy) = j - Σ {? Λ type (£): iA(B) ^ j]

If β is a block of A, then we define d(B) = 0 if ί4(B) = 1. Otherwise,

d(i?) = ^ ( ^ as) where j = lA(B) — 1 and q = type (J8) .

In our example in this section we get

{d{Bx\ d(B2), d(B9), d{B,\ d(B5), d(BQ)) = (1, 5, 6, 10, 11, 15)

(d(B7), d(B8)) = (3, 7)

(d(BQ\ d(B10)) = (2, 4) .

3* Main ideas* In this section we let yl9 , 7P+1 be fix integers
such that 7i ^ 0 for i — 1, , ^ and 7P+1 > 0. Moreover, we will
only work with A 6 {0, 1}* which contains 7έ ί-blocks for i = 1, ,
p + 1, and such that w(A) = k + p + 1. That is; A contains (k +
p + 1) l?s.

In [2] we described how the blocks move by applying the shift
register. We will reformulate these results by introducing new
notation. First we have to repeat a lot of the notation from [2].
Moreover, we will mention some of the problems we must solve and
describe the main ideas on an example.

In [2] we defined (i — 1, , p + 1)

/o Λ\ «< = w + i ~ 27i - 4γ2 - - 2ΐ7* - 2i(7<+i + + ΎP+1) .
( o . JL)

m = k + p + 1 — 7i — 272 — 373 — — (p + l)7P+i .

Since «i and m are very important constants, we will give an inter-
pretation of them. To do this we define a subset ^£ c {0, 1}Λ in
the following way
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w(A) = k + p + 1 .

A starts with 0 or a (p + l)-block .

A contains y{ ί-blocks for i — 1, , p + 1 .

ends with a (j> + l)-block .

In the §§ 3-6 we will study this subset, and in § 7 we reduce the
general problem to ^ . It can be proved that

(3.3) (Xi ^ max {d{B)\ B is an ί-block in A)

for each A e . / For some A e ^ / we will have equality in (3.3).
Next, we will give an interpretation of m. We use the function
/(•) defined in § 2. From the definition of blocks we have f{B) ^ p + 1
when type (B) — p + 1. We suppose A e ^//. Then it can be proved
that

w = Σ if(B) - (p + 1): B is a (p + l)-block in A} .

m is in a way the sum of the superfluous l's in the (p + l)rblocks
in A.

The subset <^€ we defined in (3.2) is very important. We will
now study the key map ψ: Λ€ -> ^€ defined by

if A 6 ̂ y/έ, then ψ(A) = Θ\A) where i is the least integer

such that Θ%A) e ^ C Moreover we define Index (A) = i .

In [2] we called this map φmin. Moreover, if yp+1 — 1 then φ = φmin

in [2]. By Lemma 4.11 (the case yp+1 — 1) and Lemma 4.13 in [2]
there exists a bijective correspondence (which we also call ψ)

(3.5) ψ: {the blocks in A} > {the blocks in ψ(A)}

which satisfies Condition 4.9 in [2]. That implies that the map (3.5)
have a lot of nice properties which we describe now. We have

type (B) = type (ψ(B)) and | f{B) \ = | f(ψ(B)) \

where / is as in §2. In [2] we also write m(B) = |/(J5)|. But the
most important thing which Condition 4.9 in [2] gives us is the fol-
lowing: Let i be an integer such that 1 <; ί ^ p + 1 and

are the i-blocks in A ordered from left to right. Then there exists
an integer r (depending on i) such that

ψ(Br+1)t ψ(Br+2), , ψ(Bri), f{Bx), •., ψ(Br)

are the i-blocks in ψ(A) ordered from left to right. Moreover, there
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exists an integer β (depending on i) such that

lcZ(ft) — /3 + at otherwise .

We calculated these integers r and β in [2]. Unfortunately, these
calculations are very complicated. We will return to these calcula-
tions in Lemmas 3.3 and 3.4. Moreover, we proved in [2] (Lemma
4.1(b) in [2]) the following fundamental result:

If A, A! e ^// and there is a correspondence B > Br

between the blocks of respectively A and A! such that

(3.6) d{B) = d(B') for each block B

f(B) = f(B') for each (p + l)-block B ,

then A = A' .

Now we need a simple way to describe the block structure. To each
A e ^ we define (p + 1) vectors which contains all information about
the block structure of A.

DEFINITION 3.1. Let 4 e ^ Suppose 1 <ί i ^ p + 1 and

are the i-blocks in A ordered from left to right. If 1 ^ i ^ p, we
define

If ί = p + 1, then we define

DP+1(A) = (dCft), , d(J? r,+ 1)) X

where / is as in § 2. As a convention we let D^A) be the empty
vector if yt = 0.

The last part of ΰp+1(A), namely (/(ft) - (p + 1), ,f(Br9+ι) -
(p + 1)) tells us how large each (p + l)-block in A is. Let A be as
in our example in § 2. Then n = 34 and by putting p = 2 and k = 15
we get i e ^ Moreover, we get

7i = 6 , τ2 = 2 , T3 = 2 , αx = 15 , α2 = 8 ,

A(A) = (1, 5, 6, 10, 11,15) , D2(A) = (3, 7) and

= (2, 4) x (1, 1) .
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These results from [2] indicate that we must solve the following
3 problems: Let A e ^ C

1. Let i be an integer such that 1 ^ i ^ p + 1. How can we
obtain A(f'(A)) = A(^)?

2. How can we determine an integer t such that Di{ψ\A)) —
Dt(A) for all ie{l, ••-, p + 1}.

3. Suppose we have solved Problem 2. By (3.6) we have ψ*(A) =
A. How can we determine an integer "per" such that ψt{A) = #per(A)?

By using Definition 3.1 we can define a map

g = A x A x x -Dp+i

By (3.6) gr is a bijective correspondence

One of the main ideas in this paper is that we work with
instead on ^ . For example, later we will count some subsets of
^ . Then we instead count the corresponding subset of g{^£). In
[2] we described g{^) in a nice way as in the following lemma.

LEMMA 3.2. (a) Ifl^i^ p, then

= {(ίlf , th): 1 ^ tt £ tt £ • • ^ th £ at) .

We use the convention that D^^t) — {(0)} where ( 0 ) is the empty
vector, when yi = 0.

(b)

- {(ίx, - , ίrp+1) x (slf , βrj>+1): ί€ ^ 0, β< ^ 0,

» !+•••+ sΐp+1 = m, t t + β, ^ ί<+1 (i = 1, , τ p + 1 - 1)

(c)
2>+l

- x

PROOF. The lemma is a reformulation of Lemma 4.1 (c).

Instead of ψ: ^ -> ̂  we will later use the corresponding map
on g(^). That is; we will find a map ψ such that the following
diagram commutes:

I g I

^ (
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ψ will be defined implicitly in Lemmas 3.3 and 3.4. We do not need
an explicit definition of ψ.

The next two lemmas describe how we calculate Di{ψ{A)) from

LEMMA 3.3. (a) Suppose A e ^ and yp+1 = 1. We define
- •• ,Ti and βP, * * , βi inductively in the following way:

βp = l

rp = the number of p-blocks B in A such that d(B) ^ βp .

ft = (p + 1 - i) + 2ri+1 + 4rί+2 + 6r,+3 + . . . + 2(p - i)rp

7\. = ίfee number of i-blocks B in A such that d{B) ^ ^ .

Suppose 1 <̂  i ^ p and D^A) — (tl9

[h + at-β. if 3^rt

\tη — β, otherwise .

Moreover, DP+1(ψ(A)) = DP+1(A) α^d 0 ^ ^ ^ α< /or 1 ^ i ^

Index (A) = (n + p + 1) + 2rx + 4r2 + + 2-p r^ .

TΓe αiso write

PROOF, (a) φ(A) in Lemma 4.11 in [2] is equal to ψ(A). By
Lemma 4.11 (b) and (d) in [2] β< = ^(A) and rέ = r t where xt(A) and
r4 are used in Lemma 4.11. Then it is not difficult to see that this
lemma is a reformulation of Lemma 4.11 in [2]. •

LEMMA 3.4. (a) Suppose A 6 v / and yp+1 > 1. We define
rp+1, , rx and βp+1, , A inductively in the following way:

βp+1 = d{B) + f{B) - (p + 1) ^feere J5 is ίfte j^rsί (p + l)-block in A .

rp = £/&£ number of p-blocks B in A such that d{B)

βi = A+ 1 + 2r<+1 + 4r<+2 + + 2(p + 1 - ΐ)r,+1

Ti — the number of i-blocks in A such that d{B) ^
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Suppose I <* i <* p and D^A) = (tlf , ir<).

where

"™ /Si otherwise

Suppose DP+1(A) = (tlf , ίΓp+1) x (s l f , s r p + 1 ).

- ( ί j ,«;, . . . , ί ' Γ p + 1 , to x (β2, .

Moreover, we have 0 < βi < α< /or 1 <£ i ^ p and

Index (A) = βp+1 + 2rx + 4r2 + + 2(p + l)rP + 1 .

TFβ also write rt(A) = rέ α^d jS<(A) = ^ .

PROOF. Since ψ is equal to φmin in [2] this is a reformulation
of Lemma 4.13 in [2].

We will illustrate this lemma by our example in § 2. We get

^ = 2 + 1 = 3 /3 2 ^3 + 2 l = 5 & = 3 + 2-1 + 4-1 = 9

r8 = 1 r2 =• 1 rx = 3 .

Since D^A) = (1, 5, 6, 10, 11, 15) and ax = 15 we get

A ( f (A)) = (10 - βlf 11 - &, 15 - ft, 1 + αx - A, 5 + αx - ft, 6 + αx - A)

-(1,2,6,7,11,12).

Since A(^L) = (3, 7) and a2 = 8 we get

A(t(4)) - (7 - /32, 3 + α2 - ft) - (2, 6) .

Since D8(A) = (2, 4) x (1, 1) and α3 = 5 we get

D3(ψ(A)) = (4 - ft, 2 + α3 - ft) x (1, 1) - (1, 4) x (1, 1) .

In our forthcoming proofs we need not know what ^(-4) looks like.
But, if we want, we can successively construct

Kz - K3(ψ(A)) > K2 = K2(ψ(A)) > KάψiA)) - ψ(A)

as in the proof of Lemma 4.1 in [2]. We will only sketch this
method:

Kz = 01111000001111
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since iΓ3 is the unique vector satisfying: Kz contains only 3-blocks,
D3(K5) = DZ(A) and the length of K3 = n - 2y, - 4τ2 = 14.

By putting in 1100 or 0011 between certain positions in iΓ3 we
get a vector K2 which only contains 2- and 3-blocks and satisfies:
DIK2) = Dt{A) for i = 2, 3 and the length of K2 = n - 2%. = 22.
we get

Kt = 0111001110000011001111 .

By putting in 10 or 01 between certain positions in K2 we finally
get:

f(A) = K3 = 0101101100111010010000110100101111 .

Next we will determine q such that D3 (ψq(A)) — Dά{A). To do
this we must be able to determine Dά{ψq(A)) directly from Dβ(A).
We will develop a method in Lemma 3.6. First we need more
notation.

DEFINITION 3.5. When it is clear which A e {0, 1}* we are working
with, we define (s = 0, 1, 2, )

- βj(fs(A)) and r^s)
= /3/(0) + + /3y(β -1) and ^ ( β ) = r/0) + + r/β -1) .

LEMMA 3.6. Suppose Ae^t, 1 <; j <; p α^ώ Z>5 (A) = (ίx, , ίrp.
e determine Ds(ψ'(A)) in the following way:

We determine integers f and β* such that

^j( 8 ) = f.a§ + β* and 0 ^ /3* < α, .

We let r* = the number of coordinates tt in Dά(A) such that
^ β*.

Then we have

t, _ Λ + «, -
— /3*

(// r * = τ y , then Dβ{f\A)) = (tj, , t'ri).) Moreover, ^ ( β ) = / 7y+r*.

PROOF. We suppose the lemma is true for s, and we will prove
that it is true for (s + 1). We write

Dά{f\A)) = (ulf • • - , % , ) .

By Lemma 3.3 or Lemma 3.4 we have (β** = β3 (s) and r** =
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, u'l}, u'u ••-, «;..) w h e r e

ut + <Xj - β** for 1 ^ i ^ r**

' [u{ - /3** for i > r** .

We suppose /3* + /3** ̂  tf; (the case β* + /?**< α̂  is treated analo-
gously). We observe

Hence we get

and

D5{f8+\A)) = (Ci, , «*, C , *'.') where

(ί, + α, - (/3* + β** — αy) if 1 <; i ^ v

l*i — (/S + β — ai) if i> v .

(For example, if 1 ^ i ^ i; we get: t'/ = ίί + α y — /3** = (t< + α, — /3*) +
a5 — β** = ί< + «y — (/3* + /β** — as)).

Now we will prove that this is in accordance with the lemma:

1) - faά + β* + /3** - (/ + l)αy + (/3* + /β** - α^ .

If 1 ^ ΐ ^ v, then we have

U = (ί, + αy ~ /S*) + /3* - α, = t\ + /3* - αy ^ /S** + /8* - α, .

If v < i ^ r*, then we have

*i = (** + «y - β*) + β*~ ** = <ί + /3* - «y > £** + /3* - αy .

If v > r*9 then we have

tt > β* ^ β* + /3** - a, .

Hence, t; = the number of coordinates tt in Dά(A) such that ί< ^

We observe v = r* + r** — ys. Hence,

.^es(8 + 1) = ^i(s) + r** - / 7y + r* + r** = (/ + 1) 7; + v

and the proof is complete.

Now we return to our example. We divide the treatment into
5 steps:

Step 1. We have D2(A) = (3, 7) and a2 = 8. If /3* = 0, 1, 2, , 7
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respectively in Lemma 3.6 we get that D2(ψs(A)) is equal to (3, 7),
(2, 6), (1, 5), (4, 8), (3, 7), (2, 6), (1, 5), (4, 8) respectively. Hence, β* = 0
or 4 gives D2(fs(A)) = (3.7) and therefore

(3.8) D2(ψs(A)) = D2(A) <=> M(s) is a multiple of 4 .

Step 2. In the same way as in Step 1 we get

(3.9) Dx{ψ{A)) = D,{A) <=> ^ ( s ) is a multiple of 5 .

Step 3. By using Lemma 3.4 we get

DZ{A) = (2, 4) x (1, 1) β,{A) - 3 rz(A) -

A(f(A)) = (1, 4) x (1, 1) ft(f(i)) = 2

D5(ψ\A)) = (2, 4) x (1, 1) .

Hence, we get D,(A) = D3(ψ\A)) = A(^4(-A)) = and

- 5 , ^ 3(4) = 10,

= 2 , ^ 8 (4) = 4,

where Xz is an integer.

4. We will determine Y such that Dt(ψr(A)) = A(4) for
i = 2, 3. By Step 3

F = 2 X3 for an integer X5 .

By Lemma 3.4 and Step 3

Y—l

s=0

By (3.8) ^ ( F ) must be a multiple of 4. Hence, the possible
values of Xz and Y = 2 X3 are

X3 - 4, 8, 12, and Γ = 8,16, 24, - .

Direct calculation gives us

^ 2(8) = 9 , ^2(16) - 18 , ^(24) = 27 , etc.

Later, of course, we must do this in a more sofisticated way. But
at the present stage, this will obscure the ideas.

Step 5. We will determine Y such that Di(φr(A)) = Dt(A) for
i = 1, 2, 3. The possible values of 7 are 7 = 8, 16, 24, . By
Lemma 3.4 we have
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= Σ A(β) + 2r2(s) + 4r3(s) = ^J(Γ) + 2.^2(F)
s=0

Hence, by Step 3 and Step 4 we get

+ 2.5?2(8) + 4^3(8) = 20 + 18 + 3 2 - 7 0

which is a multiple of 5. Hence Y = 8 is the least F such that
= A.

Now I will try to sketch thoroughly the ideas on the case S =
Ek + j©ft+1 + Ek+2. Instead I will delete the general proof of how the
minimal periods are determined. We suppose A e ^£y yp+1 > 1 and
again we divide the treatment of A into 5 steps.

Step 1. Suppose D2{A) = (tlf •• , t r 2 ) . We will find a formula
similar to (3.8). To do this we define Λ2 in the following way:

If tλ = = tr = 1 and tr+1 > 1 we define Λ2(tlf " ,tr, , th) =

(tr+1 - 1, , ίr2 - 1, t[, - , t;) where ίj = = t'r = α2 .

By Lemma 3.4 we get

D2(f(A)) =

The next problem is to determine when Λ2(D2(A)) = A(-A) First
we observe that this is true for a = α2. Next we let a be the least
a such that Aζ(D2(A)) = A(^). We will now describe how A(-A)
looks in this case. We must have a2 = ra for an integer r. We
let 7 be the maximum integer such that tr ^ α. By definition of Λ2

α

we get

Λ%(D2(A)) = ( ί r + 1 - α , , ί r2 - a, tx + α 2 - a, - ,tr + a2- a)

Now we get obviously that D2(A) must have the form

(3.10) Part 1 Part 2

tx + ( r - l ) α , •• , t r + ( r -
I

Part r
where a2 = rα.

Now we will prove that (3.10) is a sufficient condition. There-
fore we suppose (3.10) is true. Then we get by Lemma 3,2 that



216 JAN S0RENG

tr2 = tr + (r — l)α ^ α2 and ίr > 0 .

Hence
tr <^ a and ίr+1 > α .

Hence, Λa(D2(A)) =
We let α2* be the least a such that Λ*(A(il)) = D2(A). We get

= D2(A) <=> ̂ (s) = X2α2* for an integer

Moreover, if ^ 2 ( s ) = X2α2*, then

(3.11) όet(8) = X272* where 7? = - ^ 7 2 .
a

We prove (3.11) as follows: If 0 <; z < r, then by (3.10) the num-
ber of coordinates less than or equal to z-a$ is z-y*. We suppose
^ ( β ) = (wr + 2)α2* = ^ α 2 + 2; α2* where 0 ^ z < r. By Lemma 3.6
we get

and the proof of (3.11) is complete.

Step 2. Suppose D^A) = (ίx, ••-, t r i ). Analoguosly with Step 1
we define Λ1 in the following way:

If tx = = t r = 1 and t r + 1 > 1 we define Ax{tl9 , ίr i) = (ί r + 1 — 1,

ίr+2 - 1, , th - 1, ίί, , K) where t[ = = *; = αx .

We let at be the least integer such that Λf^D^A)) = A(-A) Analo-
gously with Step 1 we get

(β) = -Σiα* for an integer Xt

and

If ^ ( S ) = χ x αf, then ^ ( s ) = X^ί where 7? = ^-Ί, .

a

Step 3. Suppose D5(A) — (ίlf , ίrg) x (slf , sr3). Now we will
determine when D3(ψq(A)) = A(Ά) Again we define a function Λ3

in the following way:

Λ(<i, , *r3) X (βi, β2, , Sh) = (t'2, , «;8, tί) X (S2, , Sr3, 8X)

where

+ α3 — («i + ί j = az — sx for i = 1
U '• • for i = 2,8,-,7,.

We observe by Lemma 3.4 that



SYMMETRIC SHIFT REGISTERS, PART 2

= Λ3(DB(A)), , A ( f q(A)) = Λ&DZ(A)),

By definition of Λ3 we have for 1 <; g <; 73 that

i, " ,trj X ( « i , •• , β r 8 )

217

(3.12) where

~ (sg + tg) for i = q + 1,

For example if q = 2 and i > 2 we get

Specially, if g = τ3 we get (sr3 + tΐd = α3 by Lemma 3.2)

ί ' = ίt + α3 - (srs + tr.) = ti for i = 1, , τ3 .

Hence, A '(DB{A)) = D,(A).

If DZ(A) = ft, , ίrs) x (sx, , srs) and 1 ^ g ^ τ3, we have by Lemma
3.4 that

where

ί**

' "

+ α8 - (A(0) + + βs(q - 1))

= t, + α3 -

, sq)

**-08.(0) + . . . + A ( ί _ l ) )

Hence,

(3.13) = sq + ίg for 1

for 1 ^ i <

for i > q .

I 73

The next problem is to determine when Λr(Dz{A)) = DZ{A). Next
we suppose 7 is the least integer such that Λr(Ds(A)) - D8(A). Then
we have 7δ = ry for an integer r, and by (3.12) we get that DZ{A)
has the form

DZ(A) = ft, , ίr, «! + α, , ίr + α,
ParΓl Part 2

(o. 14)
(r -

Part r
\su ' ' ' > sr, 8l9 , Sr, ' , Slf , Sr)

Part 1 Part 2 Part r
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where ar — α3 (which is equivalent to a — sr + tr). (We get directly
from (3.12) that (3.14) is true with a — sr + tr. But this is equivalent
to ar = α3 because sh + tΪ3 = (sr + tr) + (r — l)a = α3 by Lemma 3.2.)

We let 73* be the least integer 7 such that Λl(D&(A)) — DZ(A).
Then we have

F(A)) = A(A) —> Γ - X3T? for an integer X3 .

Moreover, if F = -X37*, then

(3.15) ^z(Y) = X*a* where at = - ^ α 3 .

We prove (3.15) as follows: By (3.13) and (3.14) we have

«̂ 8(9 7?) = ίg rj + sq.n = qa* for 0 ^ g < r ,

where r = 73/73*, and

^ttnί) = .^3(7s) - sr, + ί,3 = α8 = rα3* ,

and (3.15) follows.

Step 4. Next, we will determine Y such that D<ffi(A)) =
for i = 2, 3. By Step 3 we must have Y = X 3 73*. Moreover in
this case

Moreover, by Step 1, we must have

^ 2 ( Γ ) = X2α2* for an integer X2 .

Hence, we get the equation X2α2* = X^af + 2X373*.

Step 5. Next, we will determine Y such that Di{ψγ{A)) =
for i = 1, 2, 3. By Step 2 this is true for i = 2, 3 if and only if
there exist integers X2 and Xz such that X2α? = X3af + 2X37? and
y = X37?. Moreover by the previous steps we have

8 ( ) 3 ? , l ) 2 and

= X272* .

Hence,

. ^ ( Γ ) = .^3(Γ) + 2^ 2 (Γ) + 4,5?8(Γ) - X3α* + 2X272* + 4X373* .

Moreover, by Step 2 we must have

= X^f for an integer X1 .
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Hence, we get the equation

Xxa* = X3α3* + 2X272* + 4X373* .

Conclusion. ψγ(A) = A <=> Dt(φγ(A)) = D^A) i = 1, 2, 3 <=> There
exists integers Xx, X2 and X3 such that

X2α* - X3α* + 2X373*

2X27*
3 7 3

2 7 2 *

Γ =

Let X2, X,, X3 be the least integral solution. Then C^(Γ) = X^ί
follows from Step 2)

Σ Index (ψs(A)) = ΣA(β) + 2n(s) + 4r2(s) + 6r3(s)
0 0

+ 4X272* + 6X373*

which is the minimal period of A.
If A 6 ^ and 7P+1 = 1 we must use Lemma 3.3 instead of Lemma

3.4. Then we have always Ds(ψ(A)) = Z)8(A). Hence, we need only
to modify Steps 4 and 5 as follows.

Step 4. By Lemma 3.3 we get ^2(Y) = IT. We must have
= Γ = X2α* for an integer X2. In this case ^ 2 ( Γ ) = X272*

5. By Lemma 3.3 we get

= Σ (2 + 2r2(s)) = 2F + 2,^2(Γ) - 2Y + 2X272* .

We must have ^ ( Γ ) = 2Γ + 2X272* = X^a? for an integer Xt. In
this case

Conclusion. A = α^F(A) <=> There exist integers Xx and X2 such
that X2α2* = Y and I A * = 2Y + 2X272*. Suppose X1? X2 is the least
solution. Then we get

Σ Index (ψs(A)) = Σ ί(n + 3) + 2rx(β) + 4r2(s)]
8=0 8=0

= Y(n + 3)

= Y(n + 3)

which is the minimal period.

4. The minimal periods. Now I will formulate the results
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from § 3 for a general p and very roughly sketch the proof. As
before

'w(A) = k + p + 1

A starts with 0 or a (p + l)-block

A contains yt i-blocks for i = 1, , p + 1

A ends with a (p + l)-block .

The blocks in A are determined with respect to p. D^A) {i — 1, ,
p + 1) is defined in Definition 3.1.

DEFINITION 4.1. Let A e ^ / be given.
(a) Suppose 1 ̂  j ^ p and D^A) = (ίlf , £ri). We define Λά

in the following way:

If tx = . . . = t r = l and ύr+1 > 1 we define

where ίj = = t'r = α̂  .

Let α* be the least integer such that

(b) Suppose J5,+1(A) - (tlf , t r,+ 1) x (sx, , ^ + 1 ) . We define
Λp+1 in the following way:

where
(a — <? f o r γ — 1

^ = = Ί

l*< — (»i + *i) for i > 1 .

Let 7*+1 be the least integer such that

(c) If 1 ̂  i ^ p, we define 7? = 7 i α*/αi. Moreover, we define

As in the previous section we can prove that 7** (1 ̂  i ^ p) and

+1 are integers.

THEOREM 4.2. Suppose A e ̂ £. We associate p equations to A
in the following way:

(p) at'Xp = aϊ+1Xp+1 + 2y%+1Xp+1

(p - 1) αjU-X,.! = α*+1Xp+1 + 27?XP + 47?+iXP+i

(1) afXί = α?+1-X:p+1 + 272*X2 + 473*X3 +
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If j . — 0, we replace equation (i) by Xt = 0. We let Xl9 , Xp+1 be
the least integral solution of the equations.

Then Xp+1a*+1 + Σfίi 12i τt* X; is ί^e minimal period of A with
respect to the shift register (xl9 , xJ —» (α?2, , a?Λ+1) where

If j . = 0 for i — 1, , p, we observe that the minimal period

The existence of the minimal solution Xu , Xp+ι is proved as
indicated in § 3 in [2].

Proof. We only sketch the proof since it is only a generaliza-
tion of the case p = 2 which we treated in § 3.

First we suppose yp+1 > 1.
We get

Dp+1(ψγ(A)) = D9+1(A) <=> Y = Xp+17*+1 for an integer Xp+1 .

In this case ^ + 1 ( Γ ) = -Xp+xαJ+i and &P+1(Y) = Xp+1yϊ+1. lΐ 1 ^ j ^ p
we get (if jj Φ 0)

D3 (ψr(A)) - Z>,-(A) <=> ̂ j(Y) = X, af for an integer X3 .

In this case we have &ά{Y) = X, 7*.
Suppose Xj, •• ,Xί,+i satisfy the equations. Put Y — XP+1Ύ*+1.

We prove by induction that

(4.1) &i(Y) = ^α** when 7, Φ 0 and 1 ^ i <> p .

Suppose (4.1) is true for i — p, p — 1, , j + 1. Then we have

Hence (4.1) is true for j = 1, , p. Then we get π/rF(A) = A and
where

t = ^ + 1 ( Γ ) + 2.^(Γ) + + 2(p

Moreover, it is easily seen that all Y such that ψy(A) = A is obtained
in this way.

Finally, we suppose 7̂ +1 = 1 and 7* Φ 0 for at least one i < p + 1.
We only sketch the proof since the proof is analogous with the case
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7P+i > 1. We g e t

ψγ(A) = A < = > ^ ( F ) = Xt-a* w h e n 7* Φ 0 and l ^ i ^ p .

In t h e same w a y as in § 3 ( the case yp+1 = 1) t h i s is equivalent
t o : Xu , XPf Y sat isfy t h e equat ions (1)', , (p) ' g iven b y

* a* = F(p + 1 - ?) + Σ 2(ί - g)Xί7f if 7, ̂  0
ί=g+l

; = o if 7 , - o .

Let Xlf , Xp, F be the least solution of the equations (1)', , (p)\
Then F is the least F such that ψy(A) = A. We calculate the mini-
mal period of A in the following way

Y-i r p "I . p

The proof will be complete if we can prove the following claim:
Suppose Xu , Xp+1 is the least solutions (1), , (p). Let

(0 if 7 , - 0

y = X , + , and * , = . ^ _

^ 7*

Then Xu , Xp, F is the least solution of the equations (1)', , (p)',
and

p yv p+i

Y(n + V + 1) + Σ 2 i -X, 7** - -Xp+iα +i + Σ 2i-Xt-7i .

Now we will prove this claim. Since yp+1 = 7*+i = 1, then αp + 1 =
α*+1. We use the definition of ap+1 and get

P+l

Xp+xai+i + Σ 2ί X4 7?

/ P + l \ P / ŝ Λyr \

= Γίw + p + 1 - Σ 2i74) + Σ 2ΛΎΐ(Xt + Y-^ ) + 2(p + 1)ΎP+1Y

\ i=i / 1=1 \ 7* /

= Γ(w + p + 1) + Σ 2 i 7? -£,

Next we prove that the following 3 equations are equivalent (we

use af'jjyf = α<):
P + l

αf X, = Z ^ α ̂  + Σ 2(ί - i)7?-Sr(

αflί +.α4Γ = Γα?+1 + Σ 2(ί - iyγ χt + Y Σ 2(ί - i)7«
«=i+i ί=i+i
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X.af = Y{p + 1 - i) + Σ 2(ί - i)7fZ + Z

where

( P+l \

-at + ap+1 + Σ 2(ί - *)γ« + * - (p + 1)1 .
ί=ί + l /

^ = 0 follows from the definition of ap+1 and a^ Hence, the proof
of the claim is complete.

Finally we will include an alternative way to determine a* and 7?:

PROPOSITION 4.3. Let A

(a) Suppose 1 <̂  j <Ξ, p. We define the map pό in the following
way: If Dά(A) = (tl9 , tTj), then

where

_ {ti + aά - tTj for i = 1

' ~ k i - «i /or ί > l

7* iβ ίfcβ cycle period of (du •• ,dr J )> *Λαί is; 7* iβ ίfcβ least

integer such that

(Aή+i, , d r i , ώx, , d r .) = (dίf , dΓ ί) .

(b) Suppose DP+1(A) = (tx, , ί r p + 1) x fe, , s r p + 1 ).

%+!(!),+!(A)) = (dl9 , drp + 1) X («i, , sΐp+1)

where

- (*< + «<) / o r i > 1 .

7 ? + i ^ ί fce Z e α s ί c τ / c ϊ e period of (dlf •• , e Z r J > + 1 ) x (* i , " • ' » s r 3 , + 1 )
is; 7?+i is the least integer such that

(dr*p+1+1, , d!rp+ι, ^1, " ', dr*p+1) x (βr*+1+i, , sTp+1, slf , sr*+1)

Proof, (a) By (3.10) we have t h a t 7* is t h e least integer such

t h a t Dά{A) has t h e form

D&A) = (ft, •••>yi, «! + α ; , , ίr; + αjf, ,

Part 1 Part 2

(4.2) «! + (r - l)α;, • -, ίr; + (r - l)α?) and
Part r
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Moreover, this is equivalent to that pά(Dj(A)) has the form

p j ( D 3 (A)) = ( d l f ••-, a / . , d l f ••-, df., , d l f •--, d/3) a n d

(4.3) Part 1 Part 2 Part r

dx+ "- + dr*. = af .

We indicate how this is proved: Suppose (4.2) is satisfied, then

d1 = t1 + as - tr. = ίx + a3 - (ί, + (r - l)α*)

= ί i + # ^ 6?-* = ^ j + i ^r* — dγ*j+1 , e t c .

Suppose (4.3) is satisfied, then

ΐ*.+l

t/j+ί = Σ (*i - ί.-ί) + ίi = Σ d. + ίi = α? + «i , etc.
i = 2

Since (4.2) is equivalent to (4.3), (a) follows easily.
(b) We define p3- for j = p + 1 as in (a). Since (3.14) is analo-

gous with (3.10) we get as in (a) that γ j + 1 is the least common cycle
period for pp+1(Dp+1(A)) and (slf •• ,s r j > + 1). This is equivalent with
that 7*+i is the least cycle period of ηp+1(Dp+1(A)).

5. The possible periods* By Theorem 4.2 the minimal periods
of 4 e ^ / are completely determined by (7?, •• ,7?+i) since a* =
{Yth%)oci. We define

PER(7f, •• ,7*+1)

= Xp+1a*+1 + 2Xat + 4X.7? + + 2(p + 1)7*+1X,+1

where X1? , Xp+1 is the least solution of the equations corresponding

to (7?, •• ,7*+i) in Theorem 4.2. Moreover, we let

m = A; + p + l - 7 i — 27 2— — (p + ϊ)ΎP+i -

THEOREM 5.1. (a) The possible periods of the elements in ^//
are:

{PER (7?, , 7ί+i): (7i*, , Ύ*+i) corresponds to an A e ^£\ .

(b) There exists Ae^^€ corresponding to (7?, •• ,7*+]) if and
only if

\ (i = 1, -',P + 1) , e v — (i = l, , p + l)

m.JjLLL are integers.

Proof (a) i s o b v i o u s . W e l e t pl9 •••, p p , rjp+1 b e a s in P r o p o s i -
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tion 4.3. By Lemma 3.2 we get easily

ft x p2 x x ft, x %+ 1jχ A(^) -A e ^/Λ = X /̂//

where

^ = {(du , dr.): d2 > 0, d, ^ 0 (i = 2, , 7*) and

cZi + + ώrί = α j for 1 ^ ί ^ p and

.Λς+1 = {(dx, , dTp+ι) x fo, , s7p+1): dt ^ 0, s< ^ 0,

dx + + d-/p+1 = α p + 1 - m and Si + + sTp+1 = m)

where m — & + p + l — 7X — 272 — — (#> + 1)7^+!.
By Proposition 4.3 we get {the possible (7?, , 7?+i)} is equal to

the set

X {the cycle periods of elements in t ^ } .

Finally, we get easily that {the possible cycle periods of elements
in ^f^} is equal to the set

*: —*- and αv-^- are integers

for l^i<Lp. Moreover, we get

{the possible cycle periods of elements in <yKp

is equal to the set

7P*+1:
 7 ζ + 1 , v — a n d m -^±i- are integers

7p+l 'J)+l /p + l

and the proof is complete.

6. The number o£ cycles* In this section we will count the
number of cycles & in

y / = : { A e {0, I}71: 3 i such that Θ\A) e ^^}

corresponding to a given (7?, , 7?+i). That means: If A e £T Π ^ ί
then (7f, •• ,7?+i) corresponds to A. We let # denote "the number
of elements in". Moreover, we let Λϊ (i = 1, , p + 1) be as in
§ 5. That is;

^ ς = {(dlf , dr.): dx > 0, ds ^ 0 (i = 2, , 7*) and

dλ + + dr< = α j for 1 ^ i ^ p and

): dt ^ 0, 8, ^ 0,

•1 + ' + srp+1 = m) .
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THEOREM 6.1. Suppose Xlf •••, Xp+1 is the least solution of the
equations corresponding to (γf, •• ,7?+i) in Theorem 4.2. Then the
number of cycles in ^ corresponding to (7*, , 7j+i) is

P+ln

wp+1 = $\ΐhe elements in ^/^+ 1 with cycle period

/or 1 <; j" 5g p

where

wjtt — §{(dlf , dγ3) z^sf^j with cycle period 7* and dx — t) .

Proof. Suppose Ae^t corresponds to (7*, , 7*+i). In the
proof of Theorem 4.2 we prove that Y = Xp+17*+i is the least integer
such that ψY(A) = A. Hence, there are X9+Jy$+1 elements in ^ on
the same cycle as A. Hence, the proof will be complete if we can
prove

P+l

%{A e ,^f: A corresponds to (7*, , 7*+i)} = Π w* .
i = l

We get by Lemma 3.2 that

%{A 6 Λf\ A corresponds to (7*, , 7*+i)}
2>+l

= Π %{Dt(A): Dt(A) corresponds to Ύf and A e ^ } .

Hence, the proof will be complete if we can prove (1 <Ξ i <; p + 1)

(6.1) #(DiCA): A ( ^ ) corresponds to 7t* and Ae^f} = ^ .

First we will prove that (6.1) is true for i = p + 1. It is sufficient
to prove that the map

τj9+1: {D9+1(A): A e ^ } > Λς+1

defined in Proposition 4.3 is bijective: Let (dl9 * -,dγp+^ x (su •••,
sΐp+ι) e e ^ + 1 . Then there exists one and only one D9+ι(A) such that

= (dlf -, dTp+ι) x (sl9 , Srp+1) .

This D9+1(A) = (ίx, •', ίΓp+1) x (8X, , srp+1) is given by t, = dx, t2 =

2̂ + <i + βit ί3 = ώ3 + ί2 + s2, etc.
Next we will prove (6.1) in the case i < p + 1, and we do the
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following observation (i = 1, , p):

To each (dl9 , dTi) e Λ^ there exists exactly dλ elements

D = Di(A) such that Pi(D) — (du , dr.) where pt is as in

Proposition 4.3.

These elements are

(s, s + d2, s + d2 + dZy , s + Σ <L) where s = 1, , d1 .

(6.1) follows from this observation in the case ί < p + 1.

The next theorem gives us a way of calculating wp+1 and wj}t.

THEOREM 6.2. (a) We let σ(r, s, t) = ί&β number of elements in

ίf(r, 5, t) = {(dlf - , d.): d, ^ 0, ^ = r, dx + - + ds = t and

(dlf , ds) has trivial period s} .

Then σ(r9 s, t) can be calculated inductively by the following formula:

It + s - r - 2\

— are integers\ .
s )

( ) is the binomial coefficient.
(b) We let σ(s, t) = ίAe number of elements in

s, t) = {(dx, , d8): di^O, dx + + ds = ί and

(dl9 - - , ds) has trivial period s} .

Then σ(s, t) can be calculated inductively by the following formula:

σ(s, ί) = ( ) — Σ \σ(A f —rh Λ α ? ι d -7
\ 8 — 1 / i \s' s'/ s' s

(c) Γ/̂ β number of elements in

&(s, t) — {(dl9 , dβ): dli ^ 0 α^d dx + + ds = ί}

+ ί - 1'
1

β - 1

(d) wίft — σ{t, yf, af) for 1 <; i ^ p and 1 ^ t <^ af.
(e) Lei m* = m y$+1/yp+1. Then we have

where
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(m* + 7?+i - 1

Proof, (a)

{(dlf , d,): dt ^ 0, dx - r and dx + • + d8 = tf

= {(ώ2, , da): di ^ 0 and d2 + + ds = ί - r}*

= the number of ways to divide (ί — r) Γs into

(β — 1) groups

= the number of ways to put s — 2 0's into

(ί + s — r — 2) positions

/£ + s - r - 2\

We subtract those (dl9 •• ,d s ) with trivial period less than s. For
each s' such that s/s' and ί/s' are integers, (dL, , d8) --> (e^, , ds/s.)
is a bijective correspondence between

and

, d8): 0 ^ dif d, = r, ^ + + ds = ί and

(dx, , d,) has trivial period β/s'}

By using these correspondences (a) follows.
(b) and (c) are proved in the same way.
(d) By definition wi)t is the number of elements in the set

< = {(du , dr.) e ΛΪ, d, = t and (dl9 , du)

has cycle period 74*} .

The map from Jtf[ into ^(t, 7?, αf) given by

(dx, - *,dr.) >(dx, " ,dr*)

is bijective, and (d) follows.
(e) By definition wp+1 is the number of elements in the set

= {(dlf - - , dΓp+1) x (8X, , §rp+1) e ^ ς + 1 which

has cycle period 7*+i} .

We define

- {(dx, , dr;+1) x (8lf , β r;+ ι): d, ^ 0, s, ^ 0,

dL + + d r;+1 = α*+1 - m*, sx + + sr;+i = w* and

(du , dr;+1) or (βl, , sr;+1) has cycle period τ?+i} .
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The map from JK into J^J given by

(dl9 , drp+ι) x (8ίf , 8r9+ι) > (dl9 , d r;+ 1) x (βx, , βr;+1)

is bijective. We observe t h a t

where

n = #^(7?+i, a%+1 - m*) and &

r2 = #^(τί+i, m*) and g2 = <&(yt+u a*+1 - m*)

and (e) follows.

7* The reduction* We will reduce the cycle structure problem
to the set studied in the §§ 3-6. First we need two lemmas. C < D
means C contained in D and C Φ D. If D = ar αs, we define
(teD*=>r^t^s) and / (̂ί) = /(αr at).

We need more precise notation. If we are working with A we
write

(Xi(A), 7i(A) and mA instead of ait 7Ϊ and m .

LEMMA 7.1. Suppose A = O ^ C A ^ C , 0<f Bfwhere Bt is a block
on level 1. Moreover, we suppose f(Ct) = —type (Bt) and 0 > /^(ί) ^
-type(B%) for teCi.

Then we have

n

if type (Bf) ^ ίype (Bt) for i = 1, , /

αί2/pe (jB/)(A) = m^ <==> ix + + if = 0 .

Proof. We let C/ = 0tyPe(β/) and consider A* — ̂ .C/ = O^B

As in the proof of Lemma 4.13 in [2] we get

the length of B, = /(£,) + Σ (2-type (£*): E* < BJ ,

the length of C, - type (SJ + Σ (2-type (5*): 5* < Q

If type (Bt) = j> + 1, we therefore have

the length of BtCt = [/(5J - (p + 1)]

Otherwise,

the length of B.d = Σ {2-type (B*): B* < ^
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Hence,

the length of A* = Σ {/(#,) - (p + 1): type (ft) = p + 1}
+ Σ {2-type (5*): 5* a block} + fa + ... + if)

/P+l \

= ^ + (Σ 2ΐ7,j + fa + + if) .

The equivalence follows by the definition of atypelBf)(A). •

We write

LEMMA 7.2. We suppose the block structure of A e {0, l}n is deter-
mined with respect to p. Moreover, we suppose w(A) — k + p + 1.

Then we have

£ 0 and ap+1(A) = mA] or

[z = sup {i: 7<(A) ^ 0} < p + 1 and aβ(A) = 0])

<==̂  θl,p(A) = βjfP/(A) /or p' > p and everi/ jί .

Proof. We suppose first 7*+i(.A) ^ 0. By Lemma 4.4 in [2] there
exists g such that A — θq

k)P(A) satisfies 7*(A) = 74(A), «i(A) = α^A),
^ ^ — wj, A ends with a (p + l)-block, A starts with 0 or a (p + 1)-
block and w(A) = A? + p + 1.

Moreover, A has the form

A = O^Cfit^Ct 0^5/ as in Lemma 7.1 .

(If / = 1, then A = 0 ^ . )
We suppose 0g>p(A) = ^^'(A) for p' > p. If ix Φ 0, then

w(̂ jblP+i(A)) = k + p + 2 Φ w(θk)P(A)). Hence, ix = 0. By Lemma 5.7
in [2] we have

w(θs

kfP(A)) = fc + p + 1 where s = length of B& .

In the same way we prove ix — = if = 0. By Lemma 7.1
αp+1(A) = mj. Hence, αp+1(A) = mA.

Next we suppose ap+1(A) — mA. Hence, αp+1(A) = mj. By Lemma
7.1 we have ix + * + i/ = 0. Hence, type (JSJ — p + l. Moreover,
let i = inf {% > 1: type (ft) = p + 1}. Put W^'CACf-B^C^
and B2" = "Bj. By continuing in this way we can suppose type (ft) = •
=type (Bf) = p + 1. Hence, by Lemma 5.6(c) in [2] we get 0ίlP(A) =
θί,,.(A) for p' > p.

Finally we treat the case z = sup* 7t(A) < p + 1. By Lemma 5.6
(a) in [2] we have θ{tP(A) = θ{vPι(A) where k1 = p + l — z and pί = z — l.
By Lemma 4.4 in [2] there exists q such that A = 0JfP(A) satisfies:
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7i(A) = 7*(A), α<(A) = at(A), mA = mA = 0, A ends with a 2-block,
A starts with 0 or a 2-block and w(A) = k + p + 1. Moreover, A
has the form

A = O^CAβzCz 0<y.B/ as in Lemma 7.1.

We suppose 0ίfl>(A) = θίtP>(A) for p' > p. As in the case 73,+1(A) Φ 0
we prove ί2 = = if = 0. By Lemma 7.1 az(A) = mA = 0.

Next we suppose αβ(A) = 0. Hence, az(A) = m4- = 0. By Lem-
ma 7.1 we have ix + + v — 0. As before we can suppose
type (Bj) = . . . = type (5/) = «. Hence, by Lemma 5.6 (c) we get

= θίt9,(A) for p* > p. Π

Previously in this paper we have not mentioned the possible
values of (yl9 •• ,7J,+i). However, by Lemma 4.1 in [2] we have
the following result (k, p and n are given)

(7i, φ, 7j»+i) is a possible vector if and only if
P+l

3m ^ 0 such that m + Σ ^ 7i — fc + p + l

and

m + 2 Σ ί Ti ^ ^ + P + 1

(w corresponds to m defined previously).

The results obtained in this paper give a complete description of
the cycle structure of ^£ where

Λΐ = the union of all ^ defined in (3.2) corresponding to
^ ' ' the possible vectors (71? , 7p+i) satisfying 7P+1 Φ 0 .

Now we start the reduction process. For .sf c {0, 1}W, we define
the closure of ό^f with respect to θ by

We let θ = βjj.,p and we define

= {A: & ^ w(0'(A)) ^ w(A) g H p + 1 Vi}.

If A e ^ then ί*(A) = C'(A) V i, where C(αx, , α j = α2 α ^ is
the pure cycling register. Hence, it is enough to study ^ T We
define

; + i = inf w(0s(A)) ^ w(A) = k
s

Then we have obviously that
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i, j)

is a disjoint union. Hence, it is sufficient to determine the cycle
structure of the sets £&(i9 j). First we need an observation:

Observation 7.3. Suppose Θ = θk>p, w(A) = k + p + 1 and 0 ^
p' < p. Then we have

7P'+i ^ 0 and

7 P ' + 2 = - - = yp+ί = 0*=> inf w(0s(A)) = k + p - p' .
s

Proof. This follows directly from the definition of the blocks,
or for example from Lemma 5.1 in [2].

We also need very precise notation. If we are working with p
we write a\, 7? and mv instead of ai9 7< and m.

Case 1. ^ ( 0 , p + 1) = ̂ f where ^ C is as in (7.2).

Proo/. Let A e ̂ ( 0 , p + 1). By Observation 7.3 we have
By Lemma 4.4 in [2] there exists s such that ΘS(A) e ̂ C and the
claim follows.

Case 2. If 0 ̂  i < ^ < p + 1, we can determine ^ ( i , i) in the
following way: Let kf — k + ΐ, pf = j — i — 1 and let ^ ^ be as in
(7.2) with respect to kf and p'. Then

i, j) = {A e .^T: αp,+1 = 0} if i > 0

v + 1 = m} if ί = 0

where αp/+1 and m are determined with respect to pf. Moreover,
the closure of ^"(ΐ, i) with respect to θk>P and ̂ fc%p/ respectively are
equal.

Proof. Let p" = j — 1 and i e S ( i , j). By Lemma 7.2 there
are two possibilities:

(1) If 7?-+i =£ 0, then αj;;+1 = mv".
(2) If 7?" Φ 0 and 7f+Ί = = 7?''+i = 0, then αf" = 0.
We suppose first that i > 0. By Observation 7.3 we are in Case

2 with 3 = j — i since

& + p" + 1 - (i - i) - & + i ^ ^(^S(A)) ^ k + p" + 1 .

Hence, we have aξ" = ap

p7+1 = 0 and Ίl" = 7?'ίi ^ 0. Since, 7f+Ί = =
7?''+i = 0 we have
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al',+ι = ap

p'/+1 = 0 and ΎP

P>+1 - τ £ ί i Φ 0 .

By Lemma 4.4 in [2] there exists s such that 0JSp/(A) e ̂ € where
^y£ is defined as in (7.2) with respect to kr and p'.

Next we suppose i = 0. Then we are in Case 1 and p " = p \
Hence, we have ap+1 = mp' and 7?'+1 ̂  0. By Lemma 4.4 in [2] there
exists s such that θl>tP>(A) e ^£ where ^ is defined as in (7.3) with
respect to kf and p'.

Case 3. If 0 < i < j = p + 1, then

) = {4e ^ : m = 0}

where ^£ and m is defined with respect to k' = fc + ΐ and p ' = p — i.
Moreover, the closure of &(i, j) with respect to θhtP and θk*%v, respec-
tively are equal.

Proof. Let Ae&(i, j). By Observation 7.3 we have

Hence, mv' — 0. Namely, if mp> Φ 0, then (*) would not be true.
Moreover, by Lemma 5.6 in [2] we have

θiίP,(A) - θlίP(A) V s

and there exists s such that θ*k>tP>(A) e ^ ^ where ^ ^ is defined with
respect to kr and p'. Hence the proof of Case 3 is complete.

Case 4. If ί — j , then &(i, i) — 0 except in the following case:

If k + p + 1 = n, then 3f{$ + 1, p + 1) = {A = 1J.
The proof of Case 4 is obvious.
Finally we will mention how to determine the minimal period

for A e {0, l}n with respect to θktP in the following 4 steps:
1. If w{A) ${k, - ,k + p + l}9 then θktP(A) = f(A) where

ί(«Ί * an) = (̂ 2 M i ) a n d the problem is trivial. We therefore
suppose w(A) e{k, —>9k + p + l}.

2. We calculate w(A), w(βktP(A)), , ^(^ P (A)) and choose j" such
that A* = βjlP(A) satisfies

w{A*) = sup w(ffί,P(A)) - sup w(θl,p(A)) .

3. Put p ' — w(A*) — k — 1. Then we can use ίfciJ)/ instead of
θktP (Lemma 5.6 (b) in [2]). We have w(A*) = k + p ' + 1.

4. Next we determine the block structure of A* with respect
to p\ We put j = sup {i: 7?r(A) ^ 0}, and k" — pf — j and p " = j — 1.
Then we can use θk»tP» instead of θktP (Lemma 5.6 (a) in [2]). More-
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over, we have w(A*) = k" + p" + 1 and 7j"+i(A*) Φ 0, Hence, we
can use Theorem 4.2.
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