PACIFIC JOURNAL OF MATHEMATICS
Vol. 98, No. 1, 1982

SYMMETRIC SHIFT REGISTERS, PART 2

JAN SORENG

We study symmetric shift registers defined by
(xl! M) xn) -_— (w27 sty Lpy xn+l)

where 2., = 2, + S(z,, * -, x,) and S is a symmetric polynomial
over the field GF'(2).

Introduction. In this paper we study symmetric shift registers
over the field GF(2) = {0, 1}. In [2] we introduced the block struc-
ture of elements in {0, 1}* and developed a theory about this block
structure. In this paper we will use the results in [2] about the
block structure to determine the cycle structure of the symmetrie
shift registers.

The symmetric shift register #; corresponding to S(x., ---, x,)
where S is a symmetric polynomial, is defined by

Os(@y, + -+, 2,) = (@, +++, ®,yy) Where ., =x, + S(@,, -+, 2,) .

g is the minimal period of A€{0, 1}* with respect to 6 if ¢ is the
least integer such that 65(4) = A. Then 4 —65(4) — --- —»0L(4A) = A
is called the cycle corresponding to A. We will for all S solve the
following three problems:

1. Determine the minimal period for each A e{0, 1}".

2. Determine the possible minimal periods.

3. Determine the number of cycles corresponding to each mini-
mal period.

Moreover, the problems will be solved in a constructive way, a
way which will describe how the minimal periods and the number
of cycles can be calculated. In [1] (see also [2]) we reduced all the
problems to the case S = K, + --- + E,,, where E; is defined by

E(&, -+, @) =1 if and only if >y, =1i.

In this paper we will only study S=E, + -+ + E,,,.

I will now roughly describe the structure of the proof. First
we need a definition. Suppose .#Z < {0, 1}* is a set such that for
all A e _# there exists an 1 > 0 such that 65(4) e _# Then we define
Index: Z —{1,2, ---} and : .#Z — _# in the following way:

Let 7> 0 be the least integer such that 6i(4)e._# then we
define Index (4) = ¢ and +(A4) = 05(A).

In the proof we need only consider certain subsets _# which
can be represented in a nice way. Each Ae_# is uniquely deter-
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mined by its block structure. In [2] we proved how we can deter-
mine the block structure of (A) by means of the block structure of
A. We continue in this way and calculate the block structure of
v*(A), ¥*(A), ---. Finally, we find a ¢ such that A and +?A) have
the same block structure. Hence A = 4%A4). Then

Index (4) + Index (¥(4)) + --- + Index (y*~(4))
is the minimal period of A .

Next we give a short outline of the paper. Section 2 contains
some definitions and notations. In §3 we compute 4 for a certain
subset .#Z and describe the main ideas. In the §§4, 5 and 6 we
solve the Problems 1, 2 and 3 respectively for the set _# In §7
we generalize the results to all A€{0, 1}». This generalization will
not be difficult.

2. Preliminaries. We must repeat some of the definitions from
[2]. First we define the blocks of A€{0, 1} ([2], Def. 8.1). Intui-
tively an i-block is 7 consecutive 1’s in A. 0, denotes ¢ consecutive
0’s in A and 1, denotes ¢ consecutive 1’s in A for 7 = 0.

We need some notation. We write a, --- a, = (a,, ---, a,) €{0, 1}*.
If A=a,---0a,€{0, 1}*, we define

f(a; - -+ a;) = (the number of 1’s in @, --- a;)
— (the number of 0’s in a, --- a;) .

If r=<i<j=<sand r+#1 or j+*s) we write aq,---a; <@, - a,
Moreover, a A b denotes the minimum of a and b, and we define w(-)
by w(a, --- a,) = >, a,.

We divide the definition of blocks into two parts by first defining
1-structures and O-structures of A. A 1l-structure (0-structure) is a
generalization of ¢ consecutive 1’s (respectively 0’s) which is succeeded
by g 0’s (respectively 1’s). We will say that a block B, is on level
¢ if it is contained in a chain B, > B, > B, > --- > B, of blocks.

DEFINITION 2.1, Part 1. Suppose A =a, --- a,<{0, 1}".

(a) Suppose a, = 1. Let s be the maximal integer such that
D=a,--- a, satisfies

(1) 0< fla, -+ a) < fa, --- a,) for tefr, ---, s}
and

(2) fr=i1sj=s, then f(a;---a;) > —(p + 1).
By definition D is a 1l-structure with respect to ».

(b) Suppose a, = 0. Let s be the maximal integer such that
D=a,---a, satisfies
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0>f(ar”'ai)gf(ar"'a’s) for ie{"',"',S}.

By definition D is a 0O-structure.

DEFINITION 2.1, Part 2. (a) Suppose A=a,---a,€{0, 1}*. We
define the blocks in A with respect to » by induction with respect
to the level of the blocks in the following way: (The 1l-structures
are defined with respect to p.)

Level 1. We decompose A in the following way A = 0, B, 0,,B; - - -
B,0,,., where B; is a l-structure. By definition B, ---, B, are the
blocks in A on level 1.

Level 2. Suppose B is a block on level 1. We decompose B in
the following way

21) B=1B1,B,---B,l, where B; is a O-structure .

‘m+1

By definition B, ---, B, are the blocks in A on level 2 which are
contained in B.

Level 3. Suppose B is a block on level 2. We decompose B in
the following way

2.2) B=0,B0,B,---B,0,, , where B;is a l-structure.

By definition B, ---, B, are the blocks in A on level 3 which are
contained in B.

We continue in this way. If ¢€{3,5,7, ---} and B is a block
on level 4, we decompose B as in (2.1). If 71e€{4,6,8, ---} and B is
a block on level 4, we docompose B as in (2.2).

(b) Let B be a block in A on level ¢©. Then we define level
(B) =1, type (B) = | f(B)| A (p + 1) and m(B) = |f(B)|. Moreover, if
type (B) = q we say that B is a g¢-block or that B is a block of
type q.

We illustrate Definition 2.1 by the example »p = 2 and
A=0100111001011011000010110110011101

LI 1 Lou (01 O O R U B
B, B. | B B,\ B, B, B
B,

where

B, B,, B,, B,, B, and B, are blocks of type 1
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B, and B, are blocks of type 2
B, and B,, are blocks of type 3
B, B,, B, and B, are blocks on level 1
B,, B,, B;, B, and B, are blocks on level 2
B, is a block on level 3.

We establish the convention that B always denotes a block.
Moreover, we suppose k¥ and p are fixed integers such that 0 < k <
k+ p<mn — 1. Theblock structure is always determined with respect
to p and we always work with S=E, + --- + E,,,. We write
0 = 6s. These conventions do not concern §7.

If A=aqa,---a,, we write [ (a;,---a;) =1 and r.(a;--- a;) = j.
Next we define d(B) which measures how far the block B is to the
left in A. Suppose A =a, --- a,. We define

dq(al v aj) =g - Z {q A type (B): l4(B) = .7}
— 2 {g A type (B): 74B) = j} -

If Bis a block of A, then we define d(B) = 0 if [,(B) = 1. Otherwise,
dB) =d/ a,---a;) where j=10,B)—1and q = type(B).
In our example in this section we get

(d(Bl)’ d(BZ)’ d(B3)7 d(B4)’ d(B5), d<B6)) = (19 5, 69 10, 11’ 15)
(d(By), d(By)) = (3, 7)
(d(By), d(B.)) = (2, 4) .

3. Main ideas. In this section we let v, - -+, 7,4, be fix integers
such that v, =0 for 4 =1, ---,p and v,,; > 0. Moreover, we will
only work with A €{0, 1}* which contains v, i-blocks for 1 =1, ---,
p + 1, and such that w(4A) =k + p + 1. That is; A contains (k¥ +
p+ 1) Us.

In [2] we described how the blocks move by applying the shift
register. We will reformulate these results by introducing new
notation. First we have to repeat a lot of the notation from [2].
Moreover, we will mention some of the problems we must solve and
describe the main ideas on an example.

In [2] we defined (¢ =1, ---,p + 1)

ai:n+i-271—472_ c —27/71,—27:(71,4.1"' M +'Yp+1).

3.1)
m=k+p+1—’)’1—2’)’2—3’73'—”'“(p+1)7p+1'

Since «; and m are very important constants, we will give an inter-
pretation of them. To do this we define a subset _Z {0, 1}" in
the following way
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wA) =k+p+1.

A starts with 0 or a (» + 1)-block .

A contains v, i-blocks for ¢ =1, ---,p + 1.
A ends with a (p + 1)-block .

3.2) Ae. A —

In the §§3-6 we will study this subset, and in §7 we reduce the
general problem to _# It can be proved that

(3.3) a,; = max {d(B): B is an i-block in A}

for each Ae_# For some Ac_« we will have equality in (3.3).
Next, we will give an interpretation of m. We use the function
f(-) defined in § 2. From the definition of blocks we have f(B) = p + 1
when type(B) = p + 1. We suppose A€ _# Then it can be proved
that

m=>{f(B) — (p +1): B is a (p + 1)-block in A}.
m is in a way the sum of the superfluous 1’s in the (p + 1)-blocks
in A.
The subset _#Z we defined in (3.2) is very important. We will
now study the key map +: . # — _# defined by
if Ae_#, then (A4) = 6*(A) where ¢ is the least integer

3.4
3-4) such that #‘(A)e_#. Moreover we define Index (4) =7 .

In [2] we called this map ®,,. Moreover, if v,,, = 1 then @ = @,
in [2]. By Lemma 4.11 (the case v,,; =1) and Lemma 4.13 in [2]
there exists a bijective correspondence (which we also call )

(3.5) r: {the blocks in A} —— {the blocks in (4)}
which satisfies Condition 4.9 in [2]. That implies that the map (3.5)

have a lot of nice properties which we describe now. We have
“type (B) = type ((B)) and  [|f(B)| = |f(¥(B))|

where f is as in §2. In [2] we also write m(B) = | f(B)|. But the
most important thing which Condition 4.9 in [2] gives us is the fol-
lowing: Let 4 be an integer such that 1 <7< p + 1 and

B, -, B,

?

are the i-blocks in A ordered from left to right. Then there exists
an integer 7 (depending on %) such that

VBois), ¥(Byis), -+, ¥(Br), ¥(B), -+, ¥(B,)
are the i-blocks in +(A) ordered from left to right. Moreover, there
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exists an integer B (depending on %) such that

dB) — B when d(B) =< g

d('l/f(Bi)) = d(B;) — B + a; otherwise .

We calculated these integers » and g8 in [2]. Unfortunately, these
calculations are very complicated. We will return to these calcula-
tions in Lemmas 3.3 and 3.4. Moreover, we proved in [2] (Lemma
4.1(b) in [2]) the following fundamental result:

If A  A'e _«# and there is a correspondence B—— B’
between the blocks of respectively A and A’ such that

(3.6) and d(B) = d(B') for each block B
f(B) = f(B') for each (p + 1)-block B,
then A = A’.

Now we need a simple way to describe the block structure. To each
Ae _# we define (p + 1) vectors which contains all information about
the block structure of A.

DEFINITION 3.1. Let Ae_# Suppose 1=<i<p+ 1 and
B,---, B

i

are the ¢-blocks in A ordered from left to right. If 1 <7< p, we
define

-Di(A) = (d(B1)7 ) d(Bri)) .
If i =p + 1, then we define

D,4(A) = (d(By), - -+, d(Br,,,) X (f(By)
-+, -, f(Br,)—(@+1)

where f is as in §2. As a convention we let D,(A) be the empty
vector if v, = 0.

The last part of D,,,(A4), namely (f(B) — (® + 1), .-, f(Br,,) —
(p + 1)) tells us how large each (p + 1)-block in A is. Let A be as
in our example in §2. Then n = 34 and by putting p =2 and k = 15
we get Ae_# Moreover, we get

v =6, Y, =2, v, =2, a, =15, a, =8,
o, =5 and m=2.

D,(4) = (1,5, 6,10, 11, 15) , D,(A)=(3,17) and
Dy(A)=(2,4) x (1,1).

(3.7
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These results from [2] indicate that we must solve the following
3 problems: Let Ae _#Z

1. Let 4 be an integer such that 1< i< p+ 1. How ecan we
obtain D,(v*(A)) = D,(A4)?

2. How can we determine an integer ¢ such that D,(4'(4)) =
D,(A) for all 1¢{1, .-+, » + 1}.

3. Suppose we have solved Problem 2. By (3.6) we have (4) =
A. How can we determine an integer “per” such that '(4) = 6*7(4)?

By using Definition 3.1 we can define a map

g=D XD, X +++ XD,y .
By (3.6) g is a bijective correspondence
9: A —g(A) .

One of the main ideas in this paper is that we work with g(_#)
instead on _#Z. For example, later we will count some subsets of
_#. Then we instead count the corresponding subset of g(.#). In
[2] we described g(_#) in a nice way as in the following lemma.

LEMMA 3.2. (@) If 1=1 = p, then
D(AZ) = {(t, "‘;tri):létlétzé étriéai}-

We use the convention that D(.#) = {(D)} where (&) is the empty
vector, when v, = 0.

(b)
Dp+l(‘/z) = {(tu ) tTpH) X (8, =, 37,,+1): t, = 0, 5, =0,
S+ s =mt s =ty @C=1, 0, 7n— 1)
and tr,,, + 8r,,, = Qpu} .
(e)
P41
9 A) = z)=(1 D(.A) .

Proor. The lemma is a reformulation of Lemma 4.1(c).

Instead of : . #Z — _# we will later use the corresponding map
on g(.#). That is; we will find a map + such that the following
diagram commutes:

%’Tg(%)
5 .
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+ will be defined implicitly in Lemmas 3.3 and 3.4. We do not need
an explicit definition of 4.

The next two lemmas describe how we calculate D,(4(4)) from
D,(A).

LEMmA 3.3. (a) Suppose Ae #Z and v,,=1. We define
P * oy ¥ ANA By, + -+, By inductively in the following way:

Br=1
r, = the number of p-blocks B in A such that d(B) < 3, .

Bs : P+1—13)+2r +4r, +6r,+ -0 +2(p — V)7,
7, = the number of i-blocks B im A such that d(B) =< ;.

Suppose 1 <1 < p and D(A) = (¢, ---, t;,). Then we have

Dt(”#(A» = (tfl‘i+15 Tty ti”i’ t;’ Tt t;',;)
where )
_tf+ai—6i if J=7

t.
ot -6 otherwise .

Moreover, D, ,(4(A)) = D,,(A) and 0 = B, = a; for L= 1= p and
Index(A)=(mn+p+1)+2r, +4r,+ --- + 2:p-7,.
We also write r(A) = r, and B;(4) = B;.
Proor. (a) @(A4) in Lemma 4.11 in [2] is equal to +(A4). By
Lemma 4.11(b) and (d) in [2] B; = 2,(A) and 7, = 7, where x,(4) and

7, are used in Lemma 4.11. Then it is not difficult to see that this
lemma is a reformulation of Lemma 4.11 in [2]. O

LemMMA 3.4. (a) Suppose Ae . #Z and v,.,>1. We define
Pprty * 0y T A0 Byyy, «++, B inductively in the following way:
Bpi1 = A(B) + f(B) — (p + 1) where B 1is the first (p + 1)-block in A .
Tpr1 = 1

By :'Bp—l-l + 27,4
7, = the number of p-blocks B in A such that d(B) = 3, .

Bi=Bpir+ 20y + 4+ - + 20+ 1 — )7,
v, = the number of i-blocks in A such that d(B) < 3; .
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Suppose 1 < 1 = p and D(A) = (t, ---,t;). Then we have
Dy(y(A) = (Grpusy o5 Gy 1, 005 82)

where
” {tﬂ'—i_ai—ﬁi if j=;
R 2 otherwise .
Suppose D, ,(A) = &y, +-+, tr,,) X (8, -+, 8,,,). Then we have
Dp+1("1j\(A)) = (t;, t;; v 'y t;p+1, t;) >< (82’ °c '7 STP.H, sl)
where

t’,:{tj_Bp-H if j=z2
Tl — B = — 8 if j=1.

Moreover, we have 0 < B, < a; for L= 1= p and
Index (A> = Bp+1 =+ 27'1 + 47‘2 d e + Z(p + 1)Tp+1 .
We also write r,(A) = r, and B,(4) = B..
ProoFr. Since + is equal to @,;, in [2] this is a reformulation

of Lemma 4.13 in [2].
We will illustrate this lemma by our example in §2. We get

B=2+1=3 B =8+21=5 Bi=3+21+41=9
ry=1 7, =1 r=3.
Since D,(A) = (1, 5, 6, 10, 11, 15) and a, = 15 we get

Dl(%b‘(A)) = (10 - Bu 11— ;81, 15 — Bn 1+ a,— Bb 5+ o, — 81: 6 + a, — Bl)
=(1,2,6,7,11,12) .

Since D,(A) = (3,7) and a, = 8 we get
Dy((A)) = (T — B 3 + . — B) = (2, 6) .
Since Dy(4) = (2,4) X (1, 1) and a; =5 we get
D(yp(A) =4 — B2+ a;—B) X (L, 1) =(1,4) x (1, 1).

In our forthcoming proofs we need not know what (A) looks like.
But, if we want, we can successively construct

K; = Ky(y(4)) — K, = Ky(y(4)) — Ki(y(4)) = ¥(4)

as in the proof of Lemma 4.1 in [2]. We will only sketch this
method:
K, = 01111000001111
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since K, is the unique vector satisfying: K, contains only 3-blocks,
D,(K,) = D,(A) and the length of K, = n — 2v, — 47, = 14.

By putting in 1100 or 0011 between certain positions in K, we
get a vector K, which only contains 2- and 3-blocks and satisfies:
D(K,) = D,(A) for 2 =2,3 and the length of K,=mn — 2y, =22.
we get

K, = 0111001110000011001111 .

By putting in 10 or 01 between certain positions in K, we finally
get:

¥(A) = K; = 0101101100111010010000110100101111 .

Next we will determine ¢ such that D;(4%(4)) = D;(4). To do
this we must be able to determine D;(1%(4)) directly from D;(4).
We will develop a method in Lemma 8.6. First we need more
notation.

DEFINITION 3.5. When it is clear which A €{0, 1}* we are working
with, we define (s =0,1,2, ---)
Bi(s) = Bi(v*(4)) and ri(8) = 7i(y*(4))
F8) = Bi(0)+---+Bis—1) and  Fs) =r;0)+---+ris—1).

LEMMA 3.6. Suppose Ae _#, 1< j=p and Di(A) = (&, ---, tr,).
Then we determine Di(y°(A)) in the following way:
We determine integers f and B* such that

Bi(s) = fra; + B* and 0sp*<a.
We let r* = the number of coordinates t, in D;(A) such that

= B*.
Then we have

D,(q/J"(A)) = (t"r*+1; Tt t;'j’ t;; Tty t;-*) where
[t + a; — B* when 1sisr*
ot — B when 1> r*.

(If r*=";, then Dy (A)=(&, -+, t;,).) Moreover, F&,(s)=f-v;+r*

¢

PROOF. We suppose the lemma is true for s, and we will prove
that it is true for (s + 1). We write

Dj("#s(A)) = (uly *t %y uTi) .

By Lemma 3.8 or Lemma 3.4 we have (B** = By(s) and r** = r,(s))
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D.i(")l"s+l(A)) = (u;“+1’ Tty u/"j; u;, Tty u;“) where
u;, + a; — B** for 11 r**

’
u = )
Y lu, — B for > r**.

We suppose B8* + B** = a; (the case g* + B** < a; is treated analo-
gously). We observe
b=ty — B =a, — =B
Hence we get
Di(*(A)) = (bresy =y brjy by ooy By Ty =20y 60)

— [(ul’ . e e u""l’ Wprngyy *° .)

and

D (A) = sy -+, 85 8, -+, t))  where
Lta;—(B*+B* —ay) if 1si=svw
t— (B + B — ay) if i>0.

£ =

(Forexample,ifl< i< vweget:t/ =t;+a;,—8* =, + a;, — B8%) +
a; — B** =1t +a; — (B* + 8% — ).
Now we will prove that this is in accordance with the lemma:

Fis + 1) = fa; + B* + g** = (f + Da; + (B* + 8" — ) .
If 1 <4<, then we have
t=C+a;— BN+ B —a;=t+p8*—a; = B+ B*—a;.
If » <1< r* then we have
=CG+a, =B+ B —a;, =t +p*—a;>p"*+8*—a;.
If v > »*, then we have
L>BR =R+ B —a;.

Hence, v = the number of coordinates ¢, in D;(A) such that ¢ <
B* + ﬁ** —_ aj'
We observe v = r* 4+ r** — v,. Hence,

FBs+ 1) =F@ )+ r**=fv;+r*+rF = +Dv;+v

and the proof is complete.

Now we return to our example. We divide the treatment into
5 steps:

Step 1. We have D,(A) =(3,7anda,=8. Ifp3*=0,1,2,---,7
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respectively in Lemma 3.6 we get that D,(y°(A)) is equal to (3, 7),
2, 6),1,5),4,8),3,7,2,6), 1, 5), (4, 8 respectively. Hence, 3* = 0
or 4 gives Dy(y°(A)) = (8.7) and therefore

(3.8) Dy(*(A)) = Dy(A) — <B(s) is a multiple of 4 .

Step 2. In the same way as in Step 1 we get
3.9) D,(4*(A)) = D,(A) == Z(s) is a multiple of 5.

Step 3. By using Lemma 3.4 we get

Dy(4) = (2,4 x (1, 1) Bs(A) =3 r(4) =1
Dy(p(4)) = (1, 4) X (1, 1) Bu(y(A) =2  n(y(4)) =1
Dy(y*(A)) = (2,4 x (1, 1) .

Hence, we get Dy(A) = Dy(4y*(A)) = Dy(4p*(A)) = --- and

2 =5, #FH=10,---, F2-X)=5X, -
.@3(2) = 2 ’ <@3(4) = 4, Tty @3(2){3) = 2'X3, ot

where X, is an integer.

Step 4. We will determine Y such that D,(:+"(4)) = D,(4) for
1=2,3. By Step 3

Y =2-X, for an integer X,.
By Lemma 3.4 and Step 3

FUY) = 5, i) + 2rs) = BUY) + 25(Y)
= Z,2X,) + 2#,(2X,) = bX; + 4X, = 9X, .

By (8.8) <Z(Y) must be a multiple of 4. Hence, the possible
values of X, and Y = 2. X, are

X, =4,812 --- and Y =28,16,24, ---.
Direct calculation gives us
#8) =9, Z2(16) = 18, B (24) = 27 ,- ete.

Later, of course, we must do this in a more sofisticated way. But
at the present stage, this will obscure the ideas.

Step 5. We will determine Y such that D,(4"(4)) = D,(A) for
2=1,2 3. The possible values of ¥ are Y =28,16,24, ---. By
Lemma 3.4 we have
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B(Y) = E Ba(8) + 21y(8) + 4ry(s) = ZB(Y) + 28(Y) + 4Z(Y) .

Hence, by Step 3 and Step 4 we get
F(8) = Z(8) + 27,(8) + 4#,(8) =20 + 18 + 32 = 70

which is a multiple of 5. Hence Y = 8 is the least Y such that
y'(A) = A.

Now I will try to sketch thoroughly the ideas on the case S =
E, + E,,, + E,.,. Instead I will delete the general proof of how the
minimal periods are determined. We suppose A€ _# v,., > 1 and
again we divide the treatment of A into 5 steps.

Step 1. Suppose D,(A) = (¢, -+, t;,). We will find a formula
similar to (3.8). To do this we define 4, in the following way:

If t,=..- =t =1and ¢, >1 we define A, ---, ¢, ---, &) =
(tpr—1, oo, t, — L b, -+, 1) Where ] = -+ =1, = a, .

By Lemma 3.4 we get

D(4) = 45 4(D{4)
DWH(4)) = A0+ ¥ (D(A)) = AF+*(Dy(4))

Dy(i(A)) = o = A (Dy(A)) .

The next problem is to determine when A5(D,(A)) = D,(A). First
we observe that this is true for &« = a,. Next we let a be the least
a such that A%(D,(4)) = D,(A4). We will now describe how D,(A)
looks in this case. We must have a, = ra for an integer ». We
let v be the maximum integer such that ¢, < a. By definition of A5
we get

AF(Dy(A) = (brpy — @, -, by, — 0, 8, +ay —a, -, b+, — @)
= Dy(A) .

Now we get obviously that D,(A) must have the form

Dz(A)z(tly”'ytTytl—i_a)”'ytT+ay“°)
| S L i)
(3.10) Part 1 Part 2
't1+(lr—~1)ay ”'yt7’+(’r"1)al)
’ Part r

where a, = ra.
Now we will prove that (3.10) is a sufficient condition. There-
fore we suppose (3.10) is true. Then we get by Lemma 3.2 that
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t,=t+ @ —-1Da=a, and t,.>0.

Hence
=« and tr > Q.

Hence, 4%(D,(A)) = Dy(A).
We let af be the least a such that A%(D,(A)) = D,(A). We get

D,(4°(A)) = Dy(A) — B(s) = X,y for an integer X, .
Moreover, if <z(s) = X,af, then

(3.11) (s) = Xy where ¥ =Yg,

We prove (3.11) as follows: If 0 <z < 7, then by (3.10) the num-
ber of coordinates less than or equal to z-af is z-v¥. We suppose
Z(s) = (wr + 2)af = wa, + z-af where 0 <2< r. By Lemma 3.6
we get

FB(8) = W, + 275 = (wr + )75
and the proof of (3.11) is complete.
Step 2. Suppose D,(A) = (¢, ---, t;,). Analoguosly with Step 1
we define 4, in the following way:

Ift,=---=t¢t =1and ¢, >1 we define A4, ---,¢) = (. — 1,
bppo — 1, ooyt — 1,8, -+, 1) Where t; = -+ =t =@, .

We let af be the least integer such that 4fi(D,(A)) = D,(4). Analo-
gously with Step 1 we get

D,(y*(A)) = D(A) = FA(s) = X,af for an integer X,
and

If ZZ(s) = X.af, then 8(s) = X,y where v = %l .

1

Step 3. Suppose Dy(A) = (t, +-+, t,) X (8, -+, 8). Now we will
determine when D;(4%A4)) = D,(4). Again we define a function 4,
in the following way:

A3(t1’ tt 0y tTg) X (31; Sgy 'y 873) = (té, ) t;gv t;) X (82, *tty Sryy sl)
where
b t,+a,— (s, +t)=a,—s, for 1=1
T t,— (s, +t) for 1=2,3, -+,7.

We observe by Lemma 3.4 that
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Dy(y(A)) = Ay(Dy(A)), - - -, Dy(y*(A)) = A4(Dy(4)), -+ .
By definition of 4, we have for 1 < ¢ < v, that

Ag(tly ) tT3) X (31’ ) 373)
= (t;’-i-ly Tty t t;,’ ) t;') X (sq+1; ctty 81y 8y 0y sq)

i3y
(8.12) {where
P = ti+a3——(sq+tq) for i:l’...’q
\ i_ti—(sq'l‘tq) for i=q+1’....

For example if ¢ =2 and 7+ > 2 we get
tW=ti—(+t)=t—(+1t)—8— & — (s +t))
=1, — (8 +1t).
Specially, if ¢ = v, we get (s;, + t;, = @, by Lemma 3.2)
=t +a,— (s, +t)=1¢t for i=1,.---, 7.

Hence, 43:(D,(A)) = Dy(A).
If D(A) = (¢, -+, t) X (s -+, 8;,) and 1 < ¢ < 7, we have by Lemma
3.4 that

Ds("l"q(A)) = ( :1,+1y ) t'r;’ t;'9 i ') X (8q+11 *t gy 81y 8y 0y sq)
where

(T, + g — (Be(0) + « -+ + Bilg — 1))
o =t +a,—ZBq for 1=i=gq
o lti - (,33(0) + e+ Bilg — 1))
=t, — Q) for 1>¢q.

Hence,

(3.13) Z(Q) =8, +1 for 1=qg=7,.

The next problem is to determine when A7(D,(4)) = D,(4). Next
we suppose v is the least integer such that A7(D,(4)) = D,(A). Then
we have v, = rv for an integer », and by (3.12) we get that D,(A)
has the form

D(A) =, -, tr, 6, +a, -, & +a, -,
[ — oL ]

Part 1 Part 2
(3.14) t+ (r—Da, -, 4 + (r — Da)
Part »

X (31’ cee, 87,81, v, 8, e, 8y, e, sr)
R — |
Part 1 Part 2 * Part r
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where ar = a, (which is equivalent to @ = s; + t;). (We get directly
from (3.12) that (3.14) is true with a =s;,+¢,. But this is equivalent
to ar = a; because s;, + &, = (s; + ;) + (r — D)a = @, by Lemma 3.2.)

We let v be the least integer v such that Ai(D,(A)) = D,(A).
Then we have

Dy(y"(A)) = D(A) = Y = X,;v¥ for an integer X,.
Moreover, if Y = X,v¥, then

(3.15) Z(Y) = X;af where af = '77;‘&3 .
3

We prove (3.15) as follows: By (3.13) and (3.14) we have
Q%) = by + 8pry = qaf for 0=q <7,
where » = v,/v¥, and
B(ry) = B(Vs) = 8r, + by = g = raf,

and (3.15‘) follows.

Step 4. Next, we will determine Y such that D,(v'(4)) = Di(A)
for 1 =2,3. By Step 3 we must have Y = X;-v¥. Moreover in
this case

Z(Y) = Z(Y) + 22(Y) = Xyaf + 2X;75 .
Moreover, by Step 1, we must have
(YY) = X,af for an integer X, .
Hence, we get the equation X,af = X,af + 2X,vF.
Step 5. Next, we will determine Y such that D,(s"(4)) = D,(4)
for ¢ =1,2,3. By Step 2 this is true for ¢ = 2,3 if and only if

there exist integers X, and X, such that X,a} = X,af + 2X,vF and
Y = X,v¥. Moreover by the previous steps we have

B(Y) =X,  BAY)=Xyd, ZY)=Xoaf and
FY) = X5

Hence,
B(Y)=B(Y) +2(Y) + 42(Y) = Xa¥ + 2X,vF + 4Xv¥ .
Moreover, by Step 2 we must have

Z(Y) = X,af for an integer X, .
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Hence, we get the equation
Xaf = Xsa:;k + 2X,7F + 4X37§k .
Conclusion. " (A) = A<= D,(4"(4)) = D,(4) © =1, 2, 3 = There
exists integers X,, X, and X, such that

Xoaf = Xyaf + 2Xv3
Xaf = Xaf + 2XvF + 4 Xy
Y = Xy .

Let X, X,, X, be the least integral solution. Then (FZ(Y) = X~}
follows from Step 2)

Y—1 Y—1

Z;) Index (+°(4)) = 2—16 Bs(8) + 2r,(s) + 4ry(s) + 674(s)

=Z(Y) +2R(Y) + 472(Y) + 6 Z(Y)
= Xja¥ + 2X,vF + 4X,vF + 6Xyvs

which is the minimal period of A.

If Ae # and v,,, = 1 we must use Lemma 3.3 instead of Lemma
3.4. Then we have always D,(4(A4)) = D,(A). Hence, we need only
to modify Steps 4 and 5 as follows.

Step 4. By Lemma 3.3 we get Z,(Y)=Y. We must have
F(Y) =Y = X,af for an integer X,. In this case .Z(Y) = X;v¥.

Step 5. By Lemma 3.3 we get
BY) = ’z: @ + 21y(s) = 2 + 298(Y) = 2Y + 2X,7F .

We must have Zi(Y) = 2Y + 2X,vF = X,af for an integer X,. In
this case .Z(Y) = X,v¥.

Conclusion. A = "(A) < There exist integers X, and X, such
that X,af = Y and Xaf = 2Y + 2X,v¥. Suppose X, X, is the least
solution. Then we get

20 Index (y*(4)) = IZ;O [(n + 8) + 27(s) + 4ry(s)]

= Y(n +8) + 28(Y) + 4(Y)
= Y(n + 8) + 2XvF + 4X,7

which is the minimal period.

4. The minimal periods. Now I will formulate the results
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from §3 for a general p and very roughly sketch the proof. As
before

wA)=k+p+1

A starts with 0 or a (p + 1)-block

A contains v, i-blocks for 1 =1, ---,p + 1

A ends with a (» + 1)-block .

Ae%=

The blocks in A are determined with respect top. D,4A) (=1, ---,
» + 1) is defined in Definition 3.1.

DEFINITION 4.1. Let Ae _# be given.
(a) Suppose 1< j=<p and Di(A) = (, ---, t;,). We define 4;
in the following way:

If ¢, =---=t.=1 and ¢,.,>1 we define
Aj(tl, '”ytTj) = (tr+1 - 1; ""tT,‘ - 1; t;y "'7t:')
where t; = -+ =1t, = a; .

Let af be the least integer such that
45i(D;(4)) = Dy(4) .

(b) Suppose D, (4) =, -+, tr,,) X (8, -+, 8,,,). We define
4,., in the following way:

Ap+1(t17 ) tTp_H) X (81’ Tt s?’p_{.l) = (té, ) t;’p.;.ly t;) X (829 Yy Srp+1, sl)

where
v Cpry — 8 for 1=1
-

T lti—(si+t) for i>1.
Let v}, be the least integer such that
A25(Dyis(A)) = Dyua(A) .
(¢) If 1 <4< p, we define v} = v,-af/a;. Moreover, we define

* L
Ay = Opyr Vi Vpsr

As in the previous section we can prove that v} (1 £ ¢ < p) and
ak,, are integers.

THEOREM 4.2. Suppose Aec_ We associate p equations to A
in the following way:

(p) ay- X, = aznX,n + 275X,
-1 a;.X,, = aznX,n + 273X, + 475X

® af X, = o5, X + 27X, + X + -0+ 20750 X -
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If v; =0, we replace equation (i) by X, =0. We let X, ---, X,,, be
the least integral solution of the equations.

Then X, af,, + >0 20-vF- X, is the minimal period of A with
respect to the shift register (x;, ---, x,) — (@, * - -, Tuyy) Where

Lpy1 = X3 + (Ek + e + Ek+p)(x2i ) 90,,) .

If v,=0fori=1, -, p, we observe that the minimal period
= X, + 2(p + V75X = af + 200 + D5 = (V30/ V) (@pys —
20 + Dp) = (VT + 2 + 1),

The existence of the minimal solution X, ---, X,,, is proved as
indicated in §3 in [2].

Proof. We only sketch the proof since it is only a generaliza-
tion of the case p = 2 which we treated in §3.

First we suppose v, > 1.

We get

D, (" (A) = D, ,(A) — Y = X, .7}, for an integer X, .

In this case &, (Y) = X, ,af,and 2, ,(Y) =X, v5.. H1<j=<0»
we get (if v; = 0)

D" (A)) = Dj(A) = Z(Y) = X,af for an integer X;.

In this case we have (YY) = X;v}.
Suppose X, ---, X,,, satisfy the equations. Put Y = X, v},..
We prove by induction that

4.1) Z(Y)= X,af when ~v,%#0 and 1=Zi1=Z9p.
Suppose (4.1) is true for t =p,p — 1, ---, 5 + 1. Then we have

FY) = Zps(Y) + 2F(Y) + -+ + 20 + 1 — ) Fp(Y)
= Xpu@u + 270X + - + 20 + 1 = X, = af X .

Hence (4.1) is true for j =1, ..., p. Then we get " (4) = A and
P (A) = 6*(A) where

t= (YY) +22(Y) + -+ + 2 + 1).%,.,(Y)
P+1
= X, 03 + é 207X, .
Moreover, it is easily seen that all Y such that " (4) = A is obtained
in this way.

Finally, we suppose 7,,, = 1 and v; # 0 for at least one + < p + 1.
We only sketch the proof since the proof is analogous with the case
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Yo > 1. We get
Y(A)=Ae— F(Y)=X,caf when v,#0 and 1=i=<0p.
In the same way as in §3 (the case v,,, = 1) this is equivalent

to: X, .-+, X,, Y satisfy the equations (1), ---, (p)’ given by

=q+1

(q),{Xq'a«T =Yp+1—4¢q + tipl 20t — ) Xyy¥ if v, #0
Xq:O if "/q—"—'O.

Let X, - -+, X,, Y be the least solution of the equations (1)’,- - -, (p)".
Then Y is the least Y such that " (4) = 4. We calculate the mini-
mal period of A in the following way

=Yn+p+1+ Zii-r\/f.Xi.

The proof will be complete if we can prove the following claim:
Suppose X, ---, X,,, is the least solutions (1), ---, (p). Let

(0 if v,=0
Y=2X,, and Xt:t

X, -V if v,20.
Ve

Then X,, - - -, X'p, Y is the least solution of the equations (1), ---, (p),
and

P N p+1 ’
Yn+p+1) + 2,2@'-)(,.-7;“ =X, nak, + > 20- X,-vF .
i= i=1

Now we will prove this claim. Since v,,, = 73, =1, then ,,, =
af,. We use the definition of «,,, and get

Pl
XpnQi + 21 2i- X 0¥
p+1 r ~
= Y(n+p+1- 3 2im) + 3 2i7(% + Y;’—) +2(p + Ly, Y

»
=Yn+p+1)+ 27X, .
=1

Next we prove that the following 3 equations are equivalent (we
use a}-v./vF = a,):

p+1 )
afX, = X, ok, + t% 2t — )vFX,
=i+1

A~ P ~ +1
R+ Y = Yo+ 3 2t — X+ Y S 2t — a)ve
t=2+41 t=1-+1
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A P A
Xar=Yp»+1—1) + tZ 2t — X, + Z
=i+1
where

p+1 . .
Z = Y(—a,- + a,y; + t=%1 2t — v+ — (p + 1)) .

Z = 0 follows from the definition of a,,, and «,. Hence, the proof
of the claim is complete.
Finally we will include an alternative way to determine af and ~7:

PROPOSITION 4.3. Let Ac 7.
(a) Suppose 1 < j < p. We define the map p; in the following
way: If -DJ(A) = (tu ) tT_.,')’ then
pi(D;(A) = (dyy -, dr,-)
where
tta;—t; for 1=1

d, =
: ti-l—l - tz fO’I’ 'I: > 1 .

Then i is the cycle period of (d,, ---, d;;), that is; v} is the least
integer such that

(dT;+1: Ty de, dl: Tty d?’;) = (dl’ ) dT;) .
(b) Suppose D,.,(A) = (b, -, tr,.) X (8, -+, 8r,.). Then we

define

77P+1(DP+I(A)) = (dlr Tt drp-H) X (8 +°, 37’1,4—1)
where
d, = bt Cp — (t7p+1 + 87'17+1) =t for i1=1

' bin — (b + 80) Sor i>1.
Then 3. s the least cycle period of (dy, -+, dr,,.) X (81, *++, 8r,,,)-
That is; vk, is the least integer such that

<d7;+1+l’ ety dTp+1} dl’ Tty dr;+1) X (37;+1+l’ Tty 371_‘.1’ 81, Tty 37;+1)
= (dl’ cee, d7p+1) X (31, cee, 37p+1) .

Proof. (a) By (3.10) we have that v} is the least integer such
that D;(A) has the form

Di(A)z(tly "'ytT§’t1+a;’ "',t)’;_l"a;!‘: Tty
[ ] 1 I

Part 1 Part 2
(4.2) [tl + (@ —Daf, -+, b+ (r — 1)a;l!‘) and
Part r

a; = raf .
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Moreover, this is equivalent to that o;(D;(4)) has the form

IOJ(DJ(A» = ((Lzlr ) dl?’;‘y (lzi, Tty dﬁ; Tty 'dly Ty d?’};) and
(4.3) Part 1 Part 2 Part »
di+ - +dy=ar

We indicate how this is proved: Suppose (4.2) is satisfied, then
d1:t1+aa’—'t7’j:t1 +aj— (tT}_}"(T'—l)a;{)
=1t +af — trz = t7§~+1 - tr;- = d7‘;+1 , ete.

Suppose (4.3) is satisfied, then

7L i

g
& —tio) +t,= > d, +t,=af +1,, ete.
i=2

e

Il
o

tT]'—i—I =
i

Since (4.2) is equivalent to (4.3), (a) follows easily.

(b) We define p; for j = p + 1 as in (a). Since (3.14) is analo-
gous with (3.10) we get as in (a) that v}, is the least common cycle
period for p,.(D,.,(4)) and (s, ---,s;,,). This is equivalent with
that v}, is the least cycle period of 7,.,(D,..(4)).

5. The possible periods. By Theorem 4.2 the minimal periods
of Ae_« are completely determined by (v§, ---, v¥,) since af =
(v¥/v)ea,. We define

PER (7vf, -+, 73w)
= p+1a;’:+1 + 22{17;‘k +4XyF 4+ o+ 2(p + 1)7;(+1Xp+1

where X, ---, X, is the least solution of the equations corresponding
to (vf, - -+, v¥.1) in Theorem 4.2. Moreover, we let

m=k+p+1—71~272_"'—(p+1)7p+1-

THEOREM 5.1. (a) The possible periods of the elements in #
are:

{PER (v, -+, 50 (v, -+ -, 75 corresponds to an Ae _#Z'} .

(b) There exists Ae.Z corresponding to (vi, ---, vi.) if and
only if

%
2 2

v, . v .
—_r (7,:1,"',p+1)’ ai'—/\'/l_ (ll‘:]'y“"p—i_l) and

k3

7;‘;—#1
T

m- are integers.

Proof. (a) is obvious. We let o, ---, 0,, 7,:: be as in Proposi-
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tion 4.3. By Lemma 3.2 we get easily
p+1 P+1
01 X Pz X =++ X 0, X 77p+1{)_< Di<A):AeV/Z} =X 7

where
L///zl:: {(dh "'ydh'): dl > 07 d.?' g 0 (-7 = 27 ‘.",Yi) and
di+ - +d,=a}) for 1<i=p and
,///;_{_1 = {(d], tt d;’p-(—l) X (817 Tty S)’p%_l): dl 2 0’ Si g 0’
d, + --- +d,p+1:al,+l—m and s, + - -- +Sr,,+1:m}
where m =k +p+1—7 =27 — -+ — (@ + 17,y

By Proposition 4.3 we get {the possible (v}, ---, v},,)} is equal to
the set

»+
xl{the cycle periods of elements in ../7} .

Finally, we get easily that {the possible cycle periods of elements
in _J7} is equal to the set

{7;* : li- and a,- 2 are integers}
o

i Vi
for 1 <7 < p. Moreover, we get
{the possible cycle periods of elements in . /;,,}
is equal to the set

4 Y pa1 YE Vi1 :
Viar 22 a2 and m-22L are integers
Vo+1 p+1 Tp+1

and the proof is complete.

6. The number of cycles. In this section we will count the
number of cycles & in

A ={Ae{0,1}*: 34 such that 0‘(A)e 7}

corresponding to a given (vf, ---, vi.,). That means: If Ae&n_#
then (v¥, ---, v¥.,) corresponds to A. We let £ denote “the number
of elements in”. Moreover, we let .47 (1 =1, ---,p + 1) be as in
§5. That is;

A ={dy -+, d;):d, >0,d;=Z0(j=2,---,7) and
d+ - +d,=a} for 1=i1=p and
Ny = {(dyy -+, dr,,.,_l) X (81, 37p+,)3 d; =0, s =0,
d+ - +di,,, =, —mand s, + -+ + 5, =m}.
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THEOREM 6.1. Suppose X, -+, X,., is the least solution of the
equations corresponding to (v¥, -+, Vi) wn Theorem 4.2. Then the
number of cycles in _# corresponding to (v, «--, Vi) 18

P+1

T wif X175
where
W,y = #{the elements in _1,,, with cycle period 5.}

and for 1< 55
5
w; = >, t-w;,
t=1
where

w;, = #{(d,, - -, dr)) € 45 with cycle period v} and d, =t} .

Proof. Suppose Ae._# corresponds to (v¥, ---,v¥.). In the
proof of Theorem 4.2 we prove that ¥ = X, ,,v¥,, is the least integer
such that "(A) = A. Hence, there are X,,,75., elements in _#Z on
the same cycle as A. Hence, the proof will be complete if we can
prove

p+1

#{Ad e #: A corresponds to (v}, -+, Vi)l =Tl w, .
i=1

We get by Lemma 3.2 that
#{Ae _#: A corresponds to (v¥, ---, v¥.)}
= ﬁI#{Di(A): D,(A) corresponds to v} and Ae _#}.

Hence, the proof will be complete if we can prove (1<t p + 1)
(6.1) #{D,(A): D,(A) corresponds to v} and Ae _Z} = w,.

First we will prove that (6.1) is true for 7 = p + 1. It is sufficient
to prove that the map

Do (Dpin(A): Ae A} — N pn

defined in Proposition 4.3 is bijective: Let (d, ---,dr,,) X (8, -+,
8r,,1) € #54. Then there exists one and only one D,.,(4) such that

77P+1(DP+1(A)) = (dly Ty dTp.H) X (31) Ty STp.H) .

This Dp+1(A) =, -, trpﬂ) X (8, -, srpﬂ) is given by ¢, =d,, t, =
dy +t, + s, t;=d, + t, + s, ete.
Next we will prove (6.1) in the case ¢ < p + 1, and we do the
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following observation (1 =1, ---, p):

To each (d,, ---, d;) € _#; there exists exactly d, elements
D = D(A) such that o,(D) = (d,, ---, d;,) where p, is as in
Proposition 4.3.

These elements are
(s,s+d2,s+d2+d3, ~--,s+§,dj> where s =1, ---, d, .
i=2

(6.1) follows from this observation in the case ¢ < p -+ 1.
The next theorem gives us a way of calculating w,,, and w;,,.
THEOREM 6.2. (a) We let o(r, s, t) = the number of elements in
%(?,s,t) = {(dly ”"ds):dig 0, d], =17, d1 + e 4 ds =1 a’nd

(dy -+, d,) has trivial period s} .
Then o(r, s, t) can be calculated inductively by the following formula:
t+s—r—2 s t\.s
o(r,st) = ( R > - {0(7’, — —,—>.? and

—t,— are intege'rs} .
s

() 1s the binomial coefficient.
(b) We let o(s, t) = the number of elements in
g(syt) ={(d17 "',dg):d,;;o, d1+ e +d,=t U/’nd
d, -+, d,) has trivial period s} .

Then o(s, t) can be calculated inductively by the following formula:

t -1
a(s, t) = ( e > - > {0(%, i):i and —t7 are z’ntege'rs} .
s

s—1 s s/ &

(e) The number of elements in

&8, 1) ={d, -+-,d)d;=z0and d, + --- +d, =1}

. s+t — 1)

s .

¢ ( s—1
@d w,,=0@ v af) for l=i<pand 1=t =< af.
() Let m* = m-v51/Yps. Then we have

Wppr = 11°Q1 + T2°Qy — 11772
where
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m* + 75, — 1
7= 6(V3, Q5 — M) and q, = < le >

7:+1 -
<a:+1 —m* + v, — 1>

Ty = 0(7:“; m*) and q, = *
Vo+1 — 1

Proof. (a)

{d, ---,d):d; =0, d,=rand d, + --- + d, =t}
={dy ---,d):d;=0and d, + --- +d, =t — 7}
= the number of ways to divide (¢ — 7) 1’s into

(s — 1) groups
= the number of ways to put s — 2 0’s into
(t + s — r — 2) positions

__(t—l—s—'r—2>
B s —2 )

We subtract those (d,, ---, d,) with trivial period less than s. For
each s’ such that s/s’ and ¢/s’ are integers, (d,, ---, d,) —(d,, ---, dy.)
is a bijective correspondence between

{(dly "':ds):oédi’ dl‘_—/r; d1+ s +d3:t and
d, ---,d,) has trivial period s/s}

&(r, s/s', ts) .

and

By using these correspondences (a) follows.
(b) and (¢) are proved in the same way.
(d) By definition w,, is the number of elements in the set

S = {(du ) dT,’) €N dl =% and (dly ) d?’i)
has cycle period ¥} .
The map from .7 into Z(¢, v¥, af) given by
(dly Tt dT,‘) I (dly ) dTI)

is bijective, and (d) follows.
(e) By definition w,,, is the number of elements in the set

& ={(d, -+, dr,,) X (8, -, 8r,,,) € A% Which
has cycle period v¥..} .
We define
S = {(dlr ) dT;H.l) X (8, =, 37’;+1): d;=0,s=0,
di+ -+ dy, = Qfn —m, s+ e+ 8, = m” and
(dy, --+, diyy) or (s, - -+, 87,,) has cycle period 7}..} .
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The map from .94 into .%4 given by
(dly R} d7p+1) X (31, Yy 87p+1) - (dly Tty d7;+1) X (81, Ty ST:H.I)
is bijective. We observe that
£ =71q, + 1@y — 707,
where
7 = (7, a3 —m*) and ¢, = &V, mY)
7y, = $Z(Vos, m™) and Q= &V, A — m*)
and (e) follows.
7. The reduction. We will reduce the eycle structure problem
to the set studied in the §§3-6. First we need two lemmas. C < D
means C contained in D and C=D. If D=a, --a, we define

(teD=r=<t=<s)and f,(t) = fla, - a,).
We need more precise notation. If we are working with 4 we

write
o,(A4), v,(A) and m, instead of a;, v, and m .
LemMMA 7.1. Suppose A=0,B,C0,B.C,---0,. Bywhere B; is a block
on level 1. Moreover, we suppose f(C;) = —type (B;) and 0> f,(t) =

—type (B;) for teC,.
Then we hawve

p+1
n + type (By) = <Z}2i%) +my + (G e ),

and if type (By)=type (B,) for i =1, ---, f then
atw?e(Bf)(A) =My =1 + -+ +1i;,=0.
Proof. We let C; = Oyy.(s,, and consider A* = AC; = 0,BC, -

As in the proof of Lemma 4.13 in [2] we get

the length of B, = f(B;) + >, {2-type (B*): B* < B},
the length of C, = type (B,) + >, {2-type (B*): B* < C} .
If type (B;,) = » + 1, we therefore have

the length of B,C, =[f(B;) — (p + 1)]
+ >, {2-type (B*): B* < B,C}} .
Otherwise,

the length of B,C, = 3 {2-type (B*): B* < B,C;} .
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Hence,

the length of A* = 3 {f(B)) — (p + 1): type (B;) = » + 1}
+ 3 {2-type (B*): B* a block} + (4, + +++ + i)

P41
=+ (3 207) + Gy oe i)
The equivalence follows by the definition of s, (4). ]

We write
(7-1) 0k,p = 6Ek+"'+Ek+p .

LEMMA 7.2. We suppose the block structure of A €{0, 1}* is deter-
mined with respect to p. Moreover, we suppose w(A) =k + p + 1.
Then we have

([7p11(4) # 0 and a,,,(A) = m,] or
[z = sup {i:7(4) # 0} < p + 1 and a,(4A) = 0])

— 0] ,(A) = 0] ,(A) for p >p and every j.

Proof. We suppose first 7,,,(4) # 0. By Lemma 4.4 in [2] there
exists ¢ such that A = 6] ,(A) satisfies 7,(4) = 7,(4), a,(4) = a,(4),
m, = mjz, A ends with a (p + 1)-block, A starts with 0 or a (p + 1)-
block and w(A) =k + p + 1.

Moreover, A has the form

A =0,BC0,BC, -0, B; asin Lemma 7.1.

(If f=1, then A =0,B,.)

We suppose 6j,(A) =6],(A) for p">p. If 4,0, then
W(y,p1(4) =k + p + 2 # w,,,(A)). Hence, i, =0. By Lemma 5.7
in [2] we have

w(6;,(A) =k +p+1 where s=length of BC,.

In the same way we prove 4, =--- =i, =0. By Lemma 7.1
a,.(A) = mz. Hence, a,,,(4) = m,.

Next we suppose a,,,(4) = m,. Hence, a,,,(4A) = m;. By Lemma
7.1 we have 4, + --- + 1, = 0. Hence, type(B,) = »p + 1. Moreover.
let j=inf{i > Ll:type(B,) =» +1}. Put C"”="CB_C,: - B; ,C;_
and B,”="B;. By continuing in this way we can suppose type (B,) = - - -
=type (B;) = p + 1. Hence, by Lemma 5.6(c) in [2] we get 6] ,(A) =
6i,,(4) for p’ > p.

Finally we treat the case z = sup, v,(4) < »p + 1. By Lemma 5.6
(a) in [2] we have 6] ,(A) =0}, ,,(A) where k,=p+1—~2 and p,=2—1.
By Lemma 4.4 in [2] there exists ¢ such that A = 6] ,(A) satisfies:
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%4 = 7(A), a(4) = a(A), m, = m; =0, A ends with a z-block,
A starts with 0 or a z-block and w(4A) =%k + p + 1. Moreover, A
has the form

A =0,BC0,BC, -0, B; as in Lemma 7.1.
We suppose 6 ,(A) = 6] ,(A) for p’ > p. Asin the case v,,,(4) # 0

we prove 4, = --- =4, = 0. By Lemma 7.1 a,(4) = m, = 0.

Next we suppose a,(A) =0. Hence, a,(4) = m; =0. By Lem-
ma 7.1 we have 4, + --- +1i,=0. As before we can suppose
type (B) = --- = type (B;) = 2. Hence, by Lemma 5.6(c) we get

i .(A) = 6,(A) for p’ > p. O

Previously in this paper we have not mentioned the possible
values of (v, *++,7,.). However, by Lemma 4.1 in [2] we have
the following result (k, p and » are given)

(Yy ***, Yp41) is a possible vector if and only if

+1
Im = 0 such thatm—l—pz,i-vizlcﬁ—p—kl
i=1

and

P+1

m+ 2, =n+p+1
i=1
(m corresponds to m defined previously).

The results obtained in this paper give a complete description of
the cycle structure of _#Z where

_# = the union of all _# defined in (3.2) corresponding to

(7.2) the possible vectors (v, ---, 7,,.) satisfying v,., #0.

Now we start the reduction process. For .o~ c {0, 1}*, we define
the closure of .o~ with respect to 6 by
7 = {0/(A): Ae .} .
We let 6 = 0,,, and we define
F ={Ak=wl@A)=wA)=k+p+1Vi}.

If A¢ #, then 6'(4) = C(A) Vi, where Cla,, -+, @,) = a; - @,0, is
the pure cycling register. Hence, it is enough to study .#. We
define

DG, §) ={Ae F: k + i = inf w@(A) < wd) =k + 5} .

Then we have obviously that
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F = l(.! 20, j)

is a disjoint union. Hence, it is sufficient to determine the cycle
structure of the sets &(i, ). First we need an observation:

Observation 7.3. Suppose 6 =6,,, wA) =k+p+1 and 0
P < p. Then we have

Yprs = 0 and
Yoz ="+ =Vpu =0 =—infw@A)=k+p—p".

Proof. This follows directly from the definition of the blocks,
or for example from Lemma 5.1 in [2].

We also need very precise notation. If we are working with p
we write a?, v7 and m?® instead of a;, v, and m.

Case 1. 20, p + 1) = # where _# is as in (7.2).

Proof. Let Ae 2(0, p+1). By Observation 7.3 we have v,,,#0.
By Lemma 4.4 in [2] there exists s such that 6°(4A)e._# and the
claim follows.

Case 2. If 0=<i< j<p+1, we can determine (s, 7) in the
following way: Let ¥’ =k + 14, p =7 —1—1 and let _#Z be as in
(7.2) with respect to %" and p’. Then

90,5)={Ae #Z:0,,,=0 if ¢>0
90,7)={Ae #:0,,=m} if i=0

where a, ., and m are determined with respect to »’. Moreover,
the closure of (i, j) with respect to 6,, and 6, , respectively are
equal.

Proof. Let p”" =45 —1 and Ae 24, j). By Lemma 7.2 there
are two possibilities:

(1) If 420, + 0, then ai’,, = m*".

(2) If v»"#0and v, =--- =75, =0, then a?” = 0.

We suppose first that ¢ > 0. By Observation 7.3 we are in Case
2 with 2 = 7 — 1 since

E+9" +1—-—G—-D=k+i12w@A)k+9" +1.

Il

Hence, we have a?” =a?/, =0 and v*' =2/, #0. Since, v?},=---
v&.. = 0 we have
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ay,=ap, =0 and Vo = Vo # 0.

By Lemma 4.4 in [2] there exists s such that 6} ,(4)e._# where
_# is defined as in (7.2) with respect to &' and .

Next we suppose 7 =0. Then we are in Case 1 and p” = p'.
Hence, we have aZ,, = m* and 7%, = 0. By Lemma 4.4 in [2] there
exists s such that 6} ,(4) € # where _# is defined as in (7.2) with
respect to k' and p’.

Case 3. If 0<i<j=9p+1, then
0,5)={Ae #:m = 0}

where _# and m is defined with respect to ¥’ =k + ¢ and p' = p — 1.
Moreover, the closure of = (¢, j) with respect to ¢,,, and 6, ,- respec-
tively are equal.

Proof. Let Ae =(i, j). By Observation 7.3 we have
(") Voge =+ =V =0.

Hence, m? = 0. Namely, if m? % 0, then (*) would not be true.
Moreover, by Lemma 5.6 in [2] we have

0;.0(4) = 6; ,(A) Vs

and there exists s such that 6; ,(A)e_# where _# is defined with
respect to k' and p’. Hence the proof of Case 3 is complete.

Case 4. If i = j, then 2(4, i) = @ except in the following case:
Ifk+p+1l=mn,then Fp+1,p+1)={A=1}

The proof of Case 4 is obvious.

Finally we will mention how to determine the minimal period
for Ae{0, 1}* with respect to 6, , in the following 4 steps:

1. If wA)elk,---,k+p+1}, then 6,,A) =¢&A) where
&a, -+ a,) = (a, --- a,a,) and the problem is trivial. We therefore
suppose w(A)e{k, ---, k + p + 1}.

2. We calculate w(4), w(d,,,(4)), -- -, w@i,(A)) and choose j such
that A* = 6] ,(A) satisfies

w(A*) = sup w(f},,(A) = sup w(bi,(4)) .

3. Put p’ =w(A*) —k — 1. Then we can use 6,, instead of
0., (Lemma 5.6 (b) in [2]). We have w(4*) =k + p" + 1.

4. Next we determine the block structure of A* with respect
to p’. We put j = sup{¢: v?'(4) =0}, and k" = p ' —jand p”" =5 — 1.
Then we can use 6, , instead of 6,, (Lemma 5.6 (a) in [2]). More-
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over, we have w(A*) =k" + p” + 1 and 75, (A*) = 0. Hence, we
can use Theorem 4.2.
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