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ON MAPS RELATED TO σ-LOCALLY FINITE AND
σ-DISCRETE COLLECTIONS OF SETS

E. MICHAEL

Over the past decade or so, two closely related classes
of maps have been introduced and studied independently:
The co-<7-discrete maps of R. W. Hansell and the <τ-locally
finite maps of the author. The principal purpose of this
note is, first, to study the relationship between these maps
and introduce consistent terminology (which Hansell is also
adopting), and second, to prove a theorem which relates these
maps to quotient s-maps between metric spaces.

The paper is arranged as follows. General properties of our
maps, which were previously studied by Hansell and the author in
[4], [5], [9], [11], are established in §§ 2-4. After summarizing some
(mostly known) results relating our maps to open maps and closed
maps in § 5, we shall prove a result (see Theorem 6.1) about quotient
s-maps between metric spaces which will be applied by Hansell in
[6]. In § 7 we obtain some examples related to results in §§5 and
6, and in § 8 we extend a result from [11] and fill a gap in its proof.

No continuity or separation properties are assumed unless ex-
plicitly indicated.

2* Base-σ-locally finite and base*σ-discrete maps* We begin
by establishing some terminology. The collection of subsets of X is
denoted by &*{X). If if, ^d^{X), then ^ is a refinement of
g7 if U ^ = U & and every F e ^ is a subset of some E e ξf,
and ^ is a base for i? if every Ee g7 is a union of elements of
^\1] If i?c«^*(-Z"), then g7 is locally finite (resp. discrete) if every
x e X has a neighborhood intersecting at most finitely many (resp.
one) Ee if; we call g7 σ-locally finite (resp. σ-discrete) if E — \J™=1 i?Λ

with each ^n locally finite (resp. discrete).

DEFINITION 2.1. A map /: X-* Y is base-o'-locally finite (resp.
base-o--discrete) if, whenever & a&(X) is locally finite (resp. discrete),
then f(&) has a σ-locally finite (resp. σ-discrete) base.2)

Most of our results for base-σ-locally finite and base-σ-discrete
1 This definition of a base for if is due to Hansell [5]. A base for £f which is also

a refinement for if was called a baselike refinement for if by the author in [11]; clearly
every base for if contains a baselike refinement for &.

2 Base-σ-discrete maps were called co-tf-discrete by Hansell in [4] and [5]. (Note,
however, that base-σ-locally finite maps do not coincide with the σ-locally finite maps
introduced in [11]; see Footnote 4).
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maps are parallel. We shall state and prove these results only for
base-σ-locally finite maps, and indicate the validity of the parallel
result by Footnote 3.

Before stating the main result of this section, we record the
following lemma from [11].

LEMMA 2.2. [11, Lemma 2.1]. Every locally finite g " c ^ ( X )
has a locally finite, disjoint base.

PROPOSITION 2.3.3) The following properties of a map f: X—>Y
are equivalent.

(a) / is base-o'-locally finite.
(b) Every locally finite if c ^ ( X ) has a base έ% such that

f(^) is σ-locally finite.
(c) Every locally finite i f c ^ ( X ) has a refinement JF' such

that /C^Π is σ-locally finite.
(d) Every locally finite g " c ^ ( X ) has a refinement J^ such

that f(^) has a σ-locally finite base.

Proof. (a)-»(b). If if c ^ ( X ) is locally finite, then f(&) has
a σ-locally finite base & by (a). Let

&' = {EΓ\f-\B): Eeϊf, ΰ e ^ , Bczf(E)} .

Then &' is a base for If, and f(0?') = & is σ-locally finite.
(b) —> (a). Clear, for if & is a base for g7 then f{0) is a base

for /(if).
(b) -»(c) -> (d). Clear.
(d)->(b). Let i f c ^ ( X ) be locally finite. By Lemma 2.2, if

has a locally finite, disjoint base <3f. By (d), Sf has a refinement
^ such that f{^) has a σ-locally finite base, and hence, as in the
above proof of (a) -> (b), J^ has a base ^ with f{0) σ-locally
finite. Since Sf is disjoint, ^ is actually a δαsβ for ^ , and hence
& is a base for g7.

REMARK. I don't know whether /: X-+ Y being base-σ-locally
finite is equivalent to the formally weaker requirement that, when-
ever g ' c ^ ( X ) is locally finite, then /(if) has a σ-locally finite
refinement. See, however, Proposition 4.4 and the discussion fol-
lowing it.

We now turn to the relationship between base-σ-locally finite
and base-σ-discrete maps. Recall from [1] that a space X is sub-
paracompact if every open cover of X has a σ-discrete closed refine-

3 This results remains valid with "locally finite" replaced everywhere by "discrete".
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ment (or, equivalently by [1, Theorem 1.2], a σ-locally finite closed
refinement). Clearly every paracompact space is subparacompact.

LEMMA 2.4. If Z is subparacompact, then every locally countable
has a σ-dίscrete base.

Proof. Let ^/ be an open cover of Z such that each U e ^
intersects at most countably many E e g7, and let *s>f be a σ-discrete
refinement of ^/. Then {Af]E: A e ^ ί e g 7 } is a σ-discrete base
for gf.

COROLLARY 2.5. // X is subparacompact, then every base-σ-
dίscrete map f: X—>Yis base-σ-locally finite.

COROLLARY 2.6. // Y is subparacompact, then every base-σ-
locally finite map f: X—> Y is base-σ-discrete.

It follows from Corollaries 2.5 and 2.6 that base-σ-locally finite
and base-6r-discrete maps are identical under the mild restriction that
domain and range be subparacompact. I don't know whether they
are identical without any restriction, at least for maps between
completely regular spaces.

3* Indexed collections and maps* This section deals with the
indexed analogues of such concepts as discrete, locally finite, and
point-countable, and with maps defined in terms of them. All these
indexed concepts are pretty self-explanatory; for example, an indexed
collection {Ea: ae A} of subsets of X is index-o'-locally finite if
A = U^=i An such that, for each n, {Ea: a e An} is index-locally finite
(i.e., each xeX has a neighborhood U which intersects Ea for only
finitely many aeAn). We shall use the prefix "index-" whenever
appropriate, and we make the convention that if /: Jf—> Y and
8 " c ^ ( X ) , then {f(E): Eeξf} is to be regarded as being indexed
by gf.

We begin with the following lemma, whose simple proof is
omitted.

LEMMA 3.1.3) The following are equivalent for any indexed

(a) {Ea} is index-o-locally finite.
(b) {Ea} is σ-locally finite, and {a: Ea = S} is countable for

every SaX.

Following Hansell [5], we call an indexed collection {Ea} c &
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σ-discretely decomposable if Ea — U«=i Ea>n with {Eaι%}a index-discrete
for all n; σ-locally finitely decomposable is defined analogously. We
now have the following characterization, where the implication (c) —>
(a) was kindly communicated to me by R. W. Hansell.

LEMMA 3.2.3) The following are equivalent for any indexed

(a) {Ea} is σ-locally finitely decomposable.
(b) {Ea} is index-point-countable and has a σ-locally finite base.
(c) {Ea} is index-point-countable, and if Ef

a c Ea for all a, then
has a σ-locally finite refinement.

Proof, (a) -> (b) and (b) -> (c). Clear.
(b) —> (a). Let & be a σ-locally finite base for {Ea}, with B Φ 0

for all ΰ e ^ . For each Be<^, let A(B) = {a: BaEa}. Then A(B)
is countable (since {Ea} is index-point-countable), so we can write
A(B) = {am(B): meN}. Write & = \Jn=i &n, with each &n locally
finite. For each a, let

EaM=\J{Be^n: am(B) = a} .

Then {Ea>m>n} is a σ-locally finite decomposition of {Ea}.
(c)->(b). For each x, write {a: xeEa} as {an(x): neN}. For

each a and n, let Ea>n = {ίC6£7α: αn(cc) = α}. Then J5̂ β = \JnEa>n for
all α, and {Eatn}a is disjoint for all n. By (c), {2£αfΛ}α has a σ-locally
finite refinement Sfa since {j&β,Λ}« is disjoint, SΊ is actually a base
{EaJa. Hence ,$^= U ^ ^ is a σ-locally finite base for {i?α}.

DEFINITION 3.3. A map /: X-+ Y is index-o'-locally finite (resp.
index-σ-discrete) if, whenever {i?α} cz &*(X) is index-locally finite
(resp. index-discrete), then {f(Ea)} is σ-locally finitely decomposable
(resp. σ-discretely decomposable).4*

Analogously to Proposition 2.3, we now have the following result.

PROPOSITION 3.4.3) The following properties of a map f: X —> Y
are equivalent.

(a) / is index-σ-locally finite.
(b) Every locally finite if c &{X) has a base & such that

{f(B): Be^} is index-σ-locally finite.
(c) Every locally finite i? c &(X) has a refinement J*" such

that {f(F): Fe^} is index-σ-locally finite.

* In [11], a map f:X-+Y was called σ-locally finite if it satisfies condition (c) of
Proposition 3.4 below. Hence Proposition 3. 4 implies that our index-σ-locally finite
maps coincide with the σ-locally finite maps of [11].
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(d) Every locally finite i? c &{X) has a refinement J?~ such
that {f(F): Fej^} is σ-locally finitely decomposable.

Proof. The implications (a) —> (b) and (d) -> (b) are proved as
for Proposition 2.3, and (b) —• (c) -» (d) is clear. It remains to prove
(b) -> (a).

Let {Ea}a^(X) be index-σ-locally finite. By (b), {Ea} has a
base & such that {f(B): Be&} is index-σ-locally finite. This implies
that {f(Ea)} is index-point-countable and that f(&) is a base for
{f(Ea)}. Hence {f(Ea)} is σ-locally finitely decomposable by Lemma
3.2 (b) -> (a). That completes the proof.

Analogously to Lemma 2.4 and Corollaries 2.5 and 2.6, we have
the following results.

LEMMA 3.5. If Z is subparacompact, every index-locally count-
able {Ea} c έ^(Z) is σ-discretely decomposable.

Proof. By Lemmas 2.4 and 3.2 (with Footnote 3).

COROLLARY 3.6. // X is subparacompact, every index-o'-discrete
map f: X—>Yis index-o-locally finite.

COROLLARY 3.7. // Y is subparacompact, every index-o-locally
finite map f: X-^Y in index-o'-discrete.

4* Maps with y^-compact fibers: The relation between in-
dexed and non-indexed maps* Recall that a space X is called ^ x -
compact if every closed discrete subset is countable. Clearly every
Lindelof space X is y^-compact, and the following lemma, whose
proof we omit, implies that the converse is true if X is paracompact
(or even merely subparacompact).

LEMMA 4.1.3) A space X is ^^compact if and only if every
locally finite collection of subsets is countable.

COROLLARY 4.2. If f: X—> Y has ^^compact fibers, and if
{Ea} c ^(X) is index-σ-locally finite, then {f(Ea)} is index-point-
countable.

PROPOSITION 4.3.3) / / / : X-> Y has closed fibers,^ then the fol-
lowing are equivalent.

(a) / is index-σ-locally finite.
5 This assumption is needed only for (a)—•(b).
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(b) / is base-σ-locally finite and has ^^compact fibers.

Pi-oof. (a) -» (b). Assume (a). Then / is surely base-α-locally
finite. To see that each f~\y) is fc^-compact, let Tdf~\y) be closed
and discrete. Then (a) implies that {fix): xeT} is index-point-
countable, so T must be countable.

(b)-*(a). This follows from Corollary 4.2 and Lemma 3.2.

The following result, which was kindly called to my attention
by R. W. Hansell, is related to Proposition 4.3.

PROPOSITION 4.4.3) If f: X-+Y has ^-compact fibers, the fol-
lowing are equivalent.

(a) / is base-σ-locally finite.
(b) If g* czέ^(X) is locally finite, then /(if) has a σ-locally

finite refinement.

Proof, (a) -> (b). Clear.
(b)->(a). Assume (b). Let if c ^ ( X ) be locally finite. Then

{f(E)ι EeW} is index-point-countable by Corollary 4.2. Now if
E'aE for each Ee^f then {Ef: Ee&} is also locally finite, so
{/(£"): Ee&} has a σ-locally finite refinement by (b). Hence
{f(E): Eeξ?} has a σ-locally finite base by Lemma 3.2 (c) -> (b), and
that completes the proof.

REMARK. I don't know whether the hypothesis that / has in-
compact fibers can be omitted from Proposition 4.4. It can, however,
be shown that this hypothesis on the fibers can be replaced by the
following hypothesis on Y:

( * ) Every Sa Y which is not cr-discrete in Y has a subset S'
of cardinality V^ which is not σ-discrete in Y.

Condition (*) is clearly satisfied if card Y ^ y^ or if Y is Lindelof
(more generally, y^-compact). It is also satisfied if Y is a metric
space of weight ^ y$x (see [14, Corollary 1]) or if Y is a complete
(more generally, an absolutely analytic) metric space [3]. On the
other hand, there exist paracompact spaces (such as the space Y of
Example 7.6) in which (*) is false, and a result of W. R. Fleissner
[2] implies that it is consistent with (ZFC) for (*) to be false even
in metric spaces.6)

Our next result is related to [5, Proposition 3.7 (ii)] and [11,
Proposition 2.2 (a)].

6 I am grateful to R. W. Hansell for calling my attention to the results and refer-
ences in this paragraph.
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PROPOSITION 4.5.7) Let f: X-+ Y have ^-compact fibers, with
X paracompact. Then the following are equivalent.

(a) / is base-o'-locally finite.
(b) If ^ is a locally finite collection of open subsets of X, then

has a σ-locally finite base.

Proof. (a)->(b). Clear.
(b) ~> (a). Let g7 cz^(X) be locally finite. Pick a locally finite

cover ^ of X such that each Ue^ intersects only finitely many
Eeξf. Then f(%f) has a (/-locally finite base T by (b), and if VeT
then Vczf(U) for only countably many UeΉS by Corollary 4.2.
Hence

{Vnf(Uf]E): Ve T, UG<&, Ee&, Vaf(U)}

is the required σ-locally finite base for

COROLLARY 4.6.3) If f: X—> Y has ^-compact fibers, with X
metrizable, then the following are equivalent.

(a) y is base-σ-locally finite.
(k) f({Uc:X: U open in X}) has a σ-locally finite base.

REMARK. Example 7.3 shows that Proposition 4.5 and Corollary
4.6 become false if one does not assume that/has fc^-compact fibers,
even when X and Y are both metrizable.

5* Open and closed maps* The following result summarizes
some sufficient conditions, mostly obtained in [5] and [11], for a map
to be base-tf-locally finite or base-σ-discrete.

PROPOSITION 5.1. Among the following conditions on a continu-
ous f: X-> Y, (a)-(d) and (f) imply that f is base-o-locally finite,
while (a) and (c)-(e) imply that f is base-σ-discrete.s)

(a) X is ^-compact.
(b) / is perfect.
(c) / is closed, f has Lindelof fibers, and Y is subparacom-

pact.

7 This results remains true if "locally finite" is everywhere replaced by "discrete",
and "X paracompact" can then even be weakened to "X collection wise normal". The
proof of (b) -> (a) need only be modified by taking ^ to be a discrete family {UE: £e£f}
of open sets in X with EaUE for all £c£f. Alternatively, this modification of Proposi-
tion 4.5 follows from HanselΓs [5, Proposition 3.7 (ii)], Corollary 4.2, and Lemma 3.2
(b)->(a) (with Footnote 3).

8 In all but (d), / is actually index-σAocdλXy finite or md£#-σ-discrete; see Proposi-
tion 4.3.
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(d) / is closed and Y is metrizable.9)

(e) / is open, f has ^-compact fibers, X is collectionwise nor-
mal, and Y is a σ-space.10)

(f) Same as (e), but with X paracompact.

Proof, (a) By Lemma 4.1.
(b) Perfect maps preserve locally finite collections. (See [11,

Proposition 1.1 (c)].)
(c) That / is base-σ-locally finite was proved in [11, Proposition

1.1 (c)]. Hence / is also base-σ-discrete by Corollary 2.6.
(d) This was proved in [5, Proposition 3.10], where the proof

shows that / is both base-σ-discrete and base-c-locally finite.
(e) See [5, Proposition 3.11]. (While that result assumed that

Y is metrizable, the proof remains valid if Y is only a σ-space.)
Alternatively, (e) follows immediately from Proposition 4.5 and Foot-
note 7.

(f) This follows from Proposition 4.5. (Alternatively, it follows
from (e) and Corollary 2.5.)

6* Quotient s-maρs* The principal purpose of this section is
to prove the following theorem, which will be applied by Hansell in
[6].

THEOREM 6.1. Let f: X-> Y be a quotient s-map,w with X and
Y metrizable. Then there exists a Gδ-subset Xf of X such that

f(X') — Y and f\X* in index-o-locally finite and index-o'-discrete.12)

Proof. Let & be a σ-discrete base for X, and let f be a α-
discrete base for Y. For each y e Y, let us say that ^ a3P is y-
minimal if ^ is finite and f{^) is a minimal cover of some F e Γ
which contains y. Let Xr be the set of all x e X such that, whenever
xe U with Ue^, then Ue^ for some /(cc)-minimal ^(Z^. Let
us check that this Xf has the required properties.

(a) f(Xf) = Y: Suppose not. Then there exist a y e Y and a
9 As the proof of this result in [5] shows, the assumption that Y is metrizable can

be weakened to assuming only that every open subset of Y is an Fσ and that every non-
closed subset of Y has a countable nonclosed subset. Since every continuous, closed
image of a metrizable space has these properties, the metrizability of Y may be replaced
by the metrizability of X. That some restriction on I or 7 is needed is shown by
Example 7.6.

10 A space Y is a σ-space if it has a σ-locally finite closed network (equivalently: a
σ-discrete closed network). Here a collection S*C^{Y) is called a network for Y if it
is a base for the collection of open subsets of Y in the sense of this paper.

11 An s-map is a map with separable fibers.
12 If / is open or closed, one can take Xr = X (see Proposition 5Λ). In general,

however, Example 7.1 shows that one cannot take Xf ~ X.
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^ c & covering f~\y) such that, if U e %f, then U £ J^ for any
^/-minimal j^ c ^ Since / is an s-map and F is first-countable, /
must be bi-quotient by [8, Proposition 3.3], so y e Int / ( ^ r ) for some
finite ^ c ^ we may suppose that ^ is minimal for this property
and hence ^/-minimal. But then any UeJ^ violates our assumption
about e2S.

(b) f\Xf is index-ί7-locally finite and index-σ-discrete: By
Corollaries 3.6 and 3.7 and Proposition 4.3, both these properties of
f\X' are equivalent to f\X' being base-σ-locally finite. Let έ%?' =
{5ΠΓ: fie.^}. Then &' is a base for X', so by Proposition 4.5
it will suffice to show that /(.^') has a α -locally finite base.

Since {/(!?): ΰ e . ^ } is index-point-countable (see Corollary 4.2),
a result of A. S. Miscenko [12] implies that for each S a Y there
are only countably many finite collections ^l(S) a.^f (n = 1, 2, •)
such that /Ci^(S)) is a minimal cover of S. Let

): F e ^ Be V^J

Then ^ " is σ-discrete (because <T is σ-discrete and
countable for each F e f 1 ) , so we need only show that Ύ/^ is a base

for /( .^ ') .
Suppose that jBe^P* and that y ef(Bf)X'). From the definition

of X', we have B e ^ for some ^-minimal ^ ^ c &. Hence f(^~)
is a minimal cover of some F e f 1 containing y, so J ^ = ^ ^ ( F ) for
somew. Let W= Vnf(Bf)X'). Then We W~ and y e Waf(Bf}X').
Hence 5^" is a base for / W )

(c) Z ; is a G, in X: For each Ue^f let i7* be the set of all
xe Usuch that Ue^ for some /(^-minimal ^ c ^ . Then J7* is
open in X, so U - Z7* is an Fσ. Let E = \J {U - U*: Ue<^}. Then
E is the union of a cr-discrete collection of jpys in X, so i? is also
an Fσ in X. But it is easily checked that X' = X — E, so X' is a
Gδ in X.

That completes the proof.

REMARK. AS the proof of Theorem 6.1 shows, f-\y)f]Xf is
closed in X for every y e Y. I don't know whether X' itself can
be chosen to be closed in X. I also don't know whether X' can be
chosen so that f\Xf is again a quotient map.

As Examples 7.2 and 7.5 show, the assumption that / is an s-
map cannot be omitted from Theorem 6.1, even if X is locally com-
pact or if / is open. The situation changes, however, if both of
these additional hypotheses are satisfied simultaneously, as the fol-
lowing result shows.
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PROPOSITION 6.2. / / / : X-+ Y is an open, continuous map from
a locally separable, metrizdble space X onto a paracompact space
Y, then there exists an open X' c X such that f(X') = Y and f \ X'
is index-o-locally finite and index-o'-discrete.

Proof. Let {Ua} be an open cover of X by separable sets. Then
if(Ua)} is an open cover of Y, so it has an open, locally finite refine-
ment {Va} with Vaaf(Ua) for all a. Let Wa = UaΓ\f-\Va), and let

Clearly X' is open in X and f(X') = Y. If &a is a countable
base for Wa, and if , ^ = U« ̂ » t i i e n ^ is a base for X' a n d / ( ^ )
is σ-locally finite. Since f\Xf has separable fibers, it follows from
Corollary 4.6 and Proposition 4.3 that / is index-σ-locally finite.
Hence / is also index-cr-discrete by Corollary 3.7.

REMARK. Example 7.3 shows that one cannot always take Xf = X
in Proposition 6.2, and Example 7.5 shows that one cannot omit the
assumption in Proposition 6.2 that X is locally separable.

7* Examples* To state our examples as simply and sharply as
possible, we follow Hansell in saying that a map /: X—» Y is σ-
discrete preserving if f(S) is cr-discrete in Y whenever S is σ-discrete
in X. It is easy to see that every base-σ-discrete or base-α-locally
finite map (more generally, any map satisfying 4.4 (b)) is σ-discrete-
preserving, but Example 7.6 implies that the converse is false.13)

Call a map /: X —» Y inductively σ-discrete preserving if there exists
an X1 c X such that f(Xr) = Y and f\X' is σ-discrete-preserving.

In Examples 7.1-7.3 and 7.5, our proofs that certain maps are
not σ-discrete-preserving are based on the simple observation that
every ^-discrete subset of a Lindelδf space is countable. We denote
the closed unit interval by I.

EXAMPLE 7.1. A two-to-one quotient map /: X—> Y, with X
locally compact metric and Y = /, which is not σ-discrete preserving.

Proof Let Y = I and let X = Xλ + X2 (topological sum), where
X1 = /and X2 is I with the discrete topology. Let /: X—> Y be the
obvious map. Clearly / is a quotient map. But X2aX is discrete
while f(X2) = Y is not <r-discrete, so / is not σ-discrete-preserving.

EXAMPLE 7.2. A quotient map f: X—> Y, with X locally compact
metric and Y = /, which is not inductively σ-discrete-preserving.

13 R. W. Hansell has kindly informed me that, by an example of R. Pol [15, p. 141],
it is consistent with the usual axioms of set theory for the converse to be false even for
continuous s-maps between metric spaces.
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Proof. Let Y = J, let X be the topological sum of all convergent
sequences in Y, and let /: X—* Y be the obvious map. Then / is
surely a quotient map. Now suppose Xr c X and f(X') = Y. Then
one can find an uncountable S c Γ such that distinct elements of S
belong to distinct summands of X. Then S c Γ is discrete while
/OS) is uncountable and hence not σ-discrete, so / is not inductively
σ-discrete-preserving.

EXAMPLE 7.3. A continuous open surjection /: X—> Y, with X
locally compact metric and Y = I, which is not σ-discrete-preserving.

Proof. See [5, Example 3.12].

Before giving our next example, we need the following lemma.
I am grateful to R. Pol for observing that the space X in this
lemma is σ-discrete, and that the lemma therefore immediately
yields Example 7.5.

LEMMA 7.4. // Y is any (metrizahle) space, then there exists a
continuous, open map f: X —> Y from a σ-discrete {metrizahle) space
X onto Y.U)

Proof Such a map is constructed in [10, Lemma 4.2], where
all the required properties except the ^-discreteness of X are es-
tablished. To see that X is σ-discrete, it suffices to show that the
subset E* = UβeβEβ of E in [10, Lemma 4.1] is σ-discrete. To see
that, we let E(n) (where neN) be the set of all x e E such that
all but at most n coordinates of x are the same. Then E* =
\JneNE(ri), and it is easy to check that each E(n) is discrete; hence
E* is σ-discrete, and that completes the proof.

The following example combines all the features of Examples
7.2 and 7.3 except for the local compactness of X.

EXAMPLE 7.5. A continuous open surjection /: X —» Y, with X a
metric space and Y—I, which is not inductively σ-discrete-preserving.

Proof. Let Y = /, and let /: X—> Y be as in Lemma 7.4. Since
every subset of a σ-discrete space is σ-discrete, this / cannot be
inductively σ-discrete-preserving.

EXAMPLE 7.6. A continuous, closed, σ-discrete-preserving map
14 R. Pol has recently shown [16] that, if Y is first-countable and Tίf the map/can

even be chosen to have discrete fibers.
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f:X-+Y9 with X and Y hereditarily paracompact, which is neither
base-σ-locally finite nor base-σ-discrete.15)

Proof. Let Y be the space of cardinality fc$2 with only one
nonisolated point p in which a set UaY is a neighborhood of p if
peU and | F — Z7| ̂  Ki Let szf be a disjoint collection of sub-
sets of 7 - {p} such that \^r\ = fc^ and |A| = ^ 2 for all i e j / .
For each A e j / , let A+ = AU{p). Let I = I { i + : i G J / } (the
topological sum), and let f:X-*Y be the ovbious map. We will
show that / has the required properties.

(a) / is closed: It suffices to show that, if A'aA+ is closed for
all A e j ^ , then E = \J{A': A e .$%?} is closed in 7. If p e E this is
clear. If piE, then \A'\ ̂  fc^ for all Aejzf, hence \E\ <: #19 so
again E is closed in Y.

(b) / is σ-discrete-preserving: Every closed map has this pro-
perty.

(c) / is neither base-σ-locally finite nor base-σ-discrete: Since
{A+: A e j y } is a discrete collection of subsets of X, it will suffice
to show that {A+: A e Jzf) has no d-locally finite refinement in Y.

Suppose & were such a refinement. Without loss of generality,
we may assume that each ΰ e ^ is closed in Y. Since Szf is dis-
joint, each ΰ e ^ intersects at most one Ae j y , and hence \&\ <. Jζlβ

Let &' = {Be^ipe^}. Then &' is countable, so \J&' in-
tersects at most countably many 4 e j / , and hence some
does not intersect \J&'. Let &" = & - &. Then \&"\
Ki Also \B\ ̂  χ x for all 5 G ^ " (since B is closed and p$B), so
l U ^ ' Ί ^ Xi Since |ΛI = ^2, it follows that ^ " does not cover
Ao. Hence & does not cover Ao, which is impossible.

8* Two characterizations* The purpose of this section is to
extend [11, Theorem 1.3] and to fill a gap in its proof. For the de-
finition of σ-spaces, see Footnote 10; for strong I'-spaces, see K.
Nagami [13] or [11, §3].

THEOREM 8.1. The following properties of a regular space Y
are equivalent.

(a) Y is a σ-space (resp. strong Σ-space).
(b) Y is the image under an index-o'-locally finite continuous

map of a metrizable space (resp. paracompact M-space).
(c) Y is the image under a base-σ-locally finite continuous map

of a metrizable space (resp. paracompact M-space).
15 As the proof shows, there is a discrete ^ c ^ ( Z ) such that /(if) does not have a

o -locally finite refinement. In particular, / does not even satisfy condition 4.4(b).
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Proof. The equivalence of (a) and (b) is asserted in [11, The-
orem 1.3], and the proof given there for (b) —» (a) actually es-
tablishes the sharper implication (c)—>(a). That (b) —> (c) is, of
course, trivial.

Let us take this opportunity to fill a gap in the proof of the
implication (a) —> (b) for strong I'-spaces which was given in [11,
§ 6]. Adopting the terminology used in that proof, denote g~\&)
by §f. After showing that g7 is a (mod &)-network for X and that
{f(E): Eet?} is σ-locally finite, the proof in [11] invokes [11, Pro-
position 1.1 (d)] to conclude that / is index-ovLocally finite. That is
not quite justified, however, since the hypothesis of [11, Proposition
l.l(d)] requires that {f(E):Eeίί} be index-σ-locally finite (see [11,
Footnote 3]). To establish this sharper fact, one needs the follow-
ing two additional properties of έ%f and / which were not recorded
in [11] but which are clear from Reference 5 of [11] from which
& and / were obtained.

( i ) & is tf-locally finite.
(ii) The fibers of / are Lindelδf.
It now follows from (i) that §f must be σ-locally finite, so (ii)

and our Corollary 4.2 imply that {f(E): Eβtf} is index-point-count-
able. Since we know that {f(E): Ee<if} is σ-locally finite, it follows
from our Lemma 3.1 that {f(E): Ee'ίf} is index-σ-locally finite, and
that completes the proof.
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