
PACIFIC JOURNAL OF MATHEMATICS
Vol. 98, No. 1, 1982

A NOTE ON LINEARLY ORDERED NET SPACES

JAMES R. BOONE

The linearly ordered net spaces are introduced in this
paper. This concept is a generalization of both the sequential
spaces and the linearly ordered base spaces. The funda-
mental properties of this class, including mapping properties,
are presented. Various applications of a general nature are
given as well as some applications to weak covering axioms.
The class of lo-net spaces is characterized as the class of
well-ordered net spaces.

L Introduction. In this note the large class of linearly ordered
net (lo-net) spaces is introduced, the fundamental properties of this
class are presented and the study of applications is initiated. The
lo-net spaces are very useful simultaneous generalizations of sequen-
tial spaces and linearly ordered base spaces. The applications of
sequential spaces are numerous and well known. The linearly ordered
base (lob) spaces were studied by Davis [6] and applications of a
general nature were presented along with the beginnings of important
applications to weak covering axioms. In [7] the applications of
lob-spaces to various weak covering axioms were studied extensively.

Section 2 contains the definitions of the notions associated with
the linearly ordered net spaces, as spaces with the weak topology
generated by a class of subsets. The fundamental structural
properties and some of the basic applications are presented in §3.
In §4 some of the results of [6] and [7] are reexamined from the
broadened view of lo-net spaces. The subtle differences between
lo-net and very lo-net spaces are illustrated by examples. In
particular, Lemma 2.3.1 of [7] is not true and a corrected version
is presented along with its lo-net version. Finally the true nature
of the lo-net spaces as a generalization of sequential spaces and lob-
spaces is revealed in §5, where the class of lo-net spaces is charac-
terized as the class of well-ordered net spaces.

II. Preliminaries. A linearly ordered net (lo-net) is a net whose
directed set is linearly ordered. The collection of linearly ordered
nets φx in a space X determines a natural cover [9] of X. Many
of the notions in this study are specific applications of concepts and
properties introduced and developed by Stan Franklin [9]. A
topological space X will be called a linearly ordered net (lo-net) space
provided H c X is closed if and only if for every convergent lo-net
in H9 say xλ —» x, we have x e H. That is X is a lo-not space
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provided X has the weak topology determined by the collection © x .
The class of lo-net spaces is very large including all sequential
spaces and lob-spaces. (A space is a lob-space provided every point
has a nhood base which is linearly ordered by set inclusion [6].)
The lob-spaces and results of [6] are the primary motivation for
this work. The terminology used by Arhangelskii, very &-space, is
quite indicative of the property described and I use it as follows:
X is a very lo-net space if for each x e cl (H) there exists a con-
vergent lo-net (xx) in H such that xλ —> x. For each i d , let
lo-cl (A) = {p: p is the limit of a convergent lo-net in A}. Recall
the essential subtle point that lo-cl (A) is not necessarily closed,
even in a lo-net space. For each A c X, let A0 = A, A1 — lo-cl (A),
for any fixed ordinal β where Aa is defined for each a < β, if β =
7 + 1, define Aβ = lo-cl (Ar) and if β is a limit ordinal let Aβ =
\J{Aa:a < β}. The lo-net characteristic of a space X, λ(X), is the
least ordinal a such that Aa = cl (A), for each AaX. X is a lo-net
space if and only if X(X) exists, and in this case λ(X) ^ (t(X))+

where t(X) is the tightness of X. X is a very lo-net space provided
X(X) = 1. The lo-net spaces are particularly cases of the β-net
spaces studied by Jerry Vaughan [12], and in fact, they are the
well-ordered net spaces (§5).

Ill* Lo-net spaces* In this section we present various properties
of lo-net spaces and some fundamental applications of lo-net spaces.

THEOREM 3.1.

first countable = * Frechet = > sequential

lob-space => very lo-net space => lo-net space

The quotient space obtained by attaching the 0 of the 1/n-
sequence, SL, to each countable ordinal in [0, α>J is a lo-net space
which is not sequential and not very lo-net. Every lo-net closed
set is sequentially closed, but sequentially closed does not imply lo-
net closed as [0, ωx) is sequentially closed in [0, ω] but not closed.
However in countable sets we have the following.

THEOREM 3.2. Every countable sequentially closed set is lo-net
closed.

Proof. Let H be a countable sequentially closed set, and let
{pλ:XeL} be a lo-net in H where pλ->p. From Lemma 5.1, let W
be a well-ordered cofinal subset of L. Since H is countable, if
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cf (W) > a), {pλ:XeL} must be constant on a cofinal subset of W.
Since there is a constant subnet converging to p, p e iϊ. If
cf (W) = ω, choose an increasing sequence {λw: weα)} which is cofinal
in W. Then since {pλn:neω} is cofinal in {pλ:XeL}, pλn-*p. Since
H is sequentially closed, peH. Thus if contains each of its lo-net
limit points and is lo-net closed.

COROLLARY 3.3. Every countable lo-net space is sequential and
every countable very lo-net space if Frechet.

COROLLARY 3.4. // {xn} is a sequence in a lo-net space and
{xn: n e N} is not closed, then {xn} has a convergent subsequence.

The mapping properties of lo-net spaces are as follows.

THEOREM 3.5. X is a lo-net space (very lo-net space) [lob-space] if
and only if X is the quotient (pseudo-open) [open] image of alόb-space.

THEOREM 3.6. The property of being a lo-net (very lo-net) [lob
space] is preserved under quotient (pseudo-open) [open] mappings.

THEOREM 3.7. The class of lo-net spaces is a coreflective sub-
category of the category of all topological spaces.

The next two theorems and Corollary 3.10 are generalizations of
theorem 2.2 in [6] to arbitrary cardinals and lo-net spaces. An
m-lo-net space is a lo-net space whose topology is generated by lo-
nets with ranges of cardinality ^ m. The character of the point x
in a space X, X(x, X) is the least cardinal a for which there is a
nhood base at x of cardinality ^ a. The character of X, X(X) =
sup {X(x, X):xeX}. The pseudocharacter of the point a; in a space
X, ψ(x, X) is the least cardinal a such that {x} is the intersection
of <; a open sets.

THEOREM 3.8. Let x be a non-isolated point in an lob-space X.
X(x, X) ^ m if and only if there exist MaX — {x} such that
card (ikf) S m and xecl (M).

Proof. We will prove only the sufficiency. Let {x} be not open
and let I d - {x} be such that card (if) ^ m and ccecl(Af). Let
@β be a linearly ordered base at x. For each peM, let Up e ©* be
such that pi Up. If {Up:pe U} is not cofinal in @β, then there is
Ue@x such that UaUp for each p e M and thus U Π M = 0 . Thus
{Up: peM} is cofinal and X(xy X) <; m which completes the proof.
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COROLLARY 3.9. In a \oh-space, the following are equivalent,
(a) X(X) ̂  m
(b) X is an m-lo-net space
(c) t{X) ^ m
(d) // {x} is not open, then there exists a set MaX — {x} such

that card (M) ^ m and x e cl (M).

THEOREM 3.10. If X is a T± lob space, X(x, X) <> m if and only
if ψ(x, X) <; m.

Proof. The sufficiency is proven. Let {Ga: α e i } be a collection
of open sets such that card (A) <̂  m and {x} = f] {Ga: a e A}. Let @β

be a linearly ordered nhood base at x. For each aeA, choose
Uae@x such that UaaGa. If {Ua:aeA} is not cofinal in @β, there
is a Uae(Q)x such that U<z.Ua(zGai for each α e l Thus U = {x}
and Z(a?, X) = ω ̂  m. If {Ua: a e A} is cofinal, then it is a nhood
base at x of cardinality ^ m and Z(a?, X) <^ m and this completes the
proof.

The next theorem improves both Theorem 2.3 of [6] and
Proposition 1.1 of [10], and supplies a different view of a similar
theorem in [8].

THEOREM 3.11. A 2\ lo-net space X is sequentially compact if
and only if it is countdbly compact.

Proof. We proof the sufficiency. Let {xn} be a sequence in X.
If {xn: neN} is closed, then it is countable and compact. Hence
{xn: n e N} is first countable. If {xn: n e N) is finite there is a con-
vergent subsequence. If {xn: n e N} is infinite there is a cluster
point in {xn: neN} and a subsequence converges to it. If {xn: neN}
is not closed, then it is not lo-net closed. Since countable sequentially
closed sets are lo-net closed, by Theorem 3.2, {xn: neN} is not se-
quentially closed. Thus there is a sequence {xnje} in {xn} that converges
to some p£ {xn: neN}. Thus X is sequentially compact and this
completes the proof.

COROLLARY 3.12. // Xa is a Tι countably compact lo-net space
for each a e ωu the Π{Xa: a e ωλ} is countably compact.

COROLLARY 3.13. If X is a T2 countably compact lo-net space
and ψ(X) ̂  c, then card(X) <^ c.

IV* Further Applications* The introductory lemma in this
section is the essential tool used in the applications of lo-nets to
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various weak covering theorems. The published proof of Theorem
2.4 [6] was modified to be an argument using a linearly ordered
base. However, the unpublished proof of this theorem in the pre-
print of [6] is particularly relevant to the lo-net argument. A
variation of this construction is presented here as the proof of the
following lemma. It is given here for completeness and because it
shows clearly the essential interaction between lo-nets and closures of
unions which are at the center of the applications that follow.

LEMMA 4.1. If (x?)λeL is a lo-net in U© with xλ —>x, then either
there is some G e © where x e cl (G) or there is a subcollection ©' c ©
and a choice function y on ©' such that x e cl ({y(G): G e ©'}).

Proof. Suppose αgcl(G) for each G e © . Well order ©. Let
XLeL and let Gx be the first set that contains xλl. Suppose for each
a < β, Xa and Ga are such that

(1) if xλ e \Jϊ<a Gr, then X < λα,
(2) xλa £ \Jr<a Gr and
( 3) Ga is the first set such that xλ(χ e Ga.

Of particular importance to the definition of the choice function is
the following: if η < v, then xκ g (Jr<> G> Thus, xκ & Gη and xXu e Gv.
Hence for η Φ v, Gv = Gv. If {Xa: a < β} is cofinal in L, then xλa -^ x
and we are finished by letting ©' = {Ga: a < β} and let y{Ga) = xλσ,
for each a < β. Then y is a choice function on ©' such that x e

If {λα: α < /3} is not cofinal in L we continue as follows. If
β — v + 1, then by hypothesis Gv is the least set such that xXu 6 Gv,
^ , £ Uro Gr and if α?2 e Ur<, Gr then λ < λy. Since a? g cl (Gv), {λ: x2 e GJ
is bounded. Let XβeL be such that λ < λ̂ , for each xλ e Gw and
let Gβ be the first set such that xλβ eGβ. If xxe \Jr<β Gr =
(Ur<v Gr) U Gvy then λ < λv < λ̂  or xr e Gv and λ < λ̂  and in either case
λ < Xβ. Thus α?λ3 g (Jr<^ Gr. Otherwise, if β is a limit ordinal, let
λ/j be any index such that Xa < λ̂  for each a < β and let Gβ be the
first set such that Xa < λ̂  for each a < β and let Gβ be the first set
such that xλβeGβ. If «; 6 U«</i G«, then xλeGao for α0 < β. Thus,
^ e U{G«: oί < α0 + 1} and λ < λαo+1 < λ .̂ Also, if xλβ e Gr for Ί < β,
then λ̂g < λr < λ̂ s and this contradiction implies xλ 0 \Jr<β Gr. Thus
appropriate λ̂  and Gβ are selected in either case. Since β is bounded
by card (L)+, the induction continues until a cofinal case is reached.
This completes the proof.

Theorem 2.4 [6] is the key theorem for the many applications
of lob spaces to the various weak covering theorems in [6] and [7].
This important theorem is true for the weaker notion of very lo-net
spaces and is restated here as a consequence of Lemma 4.1.
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THEOREM 4.2. [Davis] If X is a very lo-net space and U is a
collection of subsets such that p e cl (U ©) then either there exists a
G e © such that xecl (G) or there exists © ' c © and a choice function
y on ©' such that x e cl ({y(G): G e ©'}).

Thus this class of pseudo-open images of lob-spaces suffices to
insure the validity of many results found in [6] and [7]. The natural
question is then if the weaker lo-net spaces suffice to prove Theorem
4.1. The counterexample is extremely simple and is a well known
lo-net space.

EXAMPLE 4.3. Theorem 4.1 is not true for lo-net spaces.

Consider the space S2 = {(0, 0)} U {(1/n, 0):neN}{J {Q/n, 1/m):
n, m € N} in [1] and [4]. Let Un = {(1/n, 1/m): m e N}. Then (0, 0) <g
cl(E7») for each n and any choice function y on © = {Un: neN}
selects one point y(Un) = pn in each U%. But (0, 0) <£&({pn: neN}).

A space X is called a quasi k-space if a subset H c X is closed
if and only if JP Π C is closed in C for every countably compact
subspace CczX. Theorem 4.2 has an interesting companion theorem;
Lemma 2.3.1 of [7]. However, Lemma 2.3.1 is false as the previous
example shows. S2 is sequential and thus is a jfc-space. Hence S2

is a quasi-ft-space. Since (0, 0) e el (U©)\U {cl (Un):ne N}, {Un:ne N}
is not closure preserving. Any set formed by choosing a finite
number of points in each Un has no limit points. In particular, the
choice function must be defined on the closures of the sets in some
subcollection ©'. This is a subtle point relating to the weak to-
pology induced by a class of sets and is extremely important here.
A corrected version of this lemma follows.

THEOREM 4.4. If X is a quasi k-space and © is a collection of
subsets which is not closure preserving, then there is a subcollection
©' c © and a choice function y on {cl (G):Ge ©} such that {y(c\ (G)):
G e ©'} has a cluster point.

Proof. For some subcollection ©* c ©, U{cl (G): Ge©*} is not
closed. Then there exists a countably compact set C such that C Π
(U{cl(G):Ge©*}) is not closed in C. Let ©* be well ordered,
using an initial set of ordinals, and let v be the least ordinal such
that CD (U {cl(GΛ): a < v}) is not closed in C. Then v is a limit
ordinal and for each a in a cofinal subset of [1, v), there is a point
xae(Cf] cl (Gα))\ U {cl (Gβ): β < a}. Choose this xa = y(c\ (G«)) from
each cl (Gα) for this cofinal set of [1, v) and let ©' be the subcollec-
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tion of © is lexed by this cofinal set. Thus, {y(cl (G)): G e ©'} is an
infinite subset of C and thus has a cluster point. This completes
the proof.

Of additional interest is the following modified extension of
theorem 4.2. This extension to the lo-net spaces is a parallel theorem
to the previous theorem 4.4. This is parallel in the sense that this
theorem also uses the weak topology induced by a collection of sets,
namely the lo-nets, as theorem 4.4 used the countably compact sub-
spaces. However, it is completely independent because Examples
3.7 and 3.8 of Davis [6] also show there is no subclass relationship
between lo-net spaces and quasi A -spaces.

THEOREM 4.5. If X is a lo-net space and © is a collection of
subsets of X which is not closure preserving, then there is a sub-
collection ©' c © and a choice function y on {cl (G): G e ©'} such that
{y(c\ (G)): G 6 ©'} has a cluster point.

Proof. For a subcollection © * c © , U{cl (G): Ge ©*} is not
closed. Since X is a lo-net space, there exists a lo-net (x?) in
U{cl (G): G 6 ©*} converging to a point x which is not in U{cl(G):
Ge©*}. Thus, agcl(G), for each G e © * and by the selection
process in Lemma 4.1 and [6, Th. 2.4] there exists © ' c © * and a
choice function y on {cl (G):Ge ©'} such that x e cl ({y(cl (G)): G 6 ©}).
Thus {ϊ/(cl (G)): G e ©'} has a cluster point and this completes the
proof.

The following definitions are due to Briggs [5]. A collection of
subsets of a space X, © = {Ha\ a e A) is a ppc-collection (^-ppc-
collection) provided: if B c A is infinite (uncountable) and if pβ and
qβ e Hβ for each β eB and a Φ β implies pα Φ pβ and qa Φ qβ, then
0 = {ĝ : /3 e ΰ} has a cluster point whenever P = {ĵ : βei?} has a
cluster point. A space is preparacompact (^-preparacompact) if
every open cover has a ppc-refinement (^-pp-refinement).

Since theorems 4.4 and 4.5 are true for the collection of closures,
we add further that ® will be called a strong ppc-collection (strong
^-ppc-collection) if the pβ and qβ can be chosen from the closures
of the sets Hβ. Also, a space will be strongly preparacompact
(strongly ^-preparacompact) if every open cover has a strong ppc-
refinement (strong y$-ppc-refinement). These notions were inde-
pendently introduced and studied by Nitta [11]. Observe in Example
4.2 the collection {Un: neN) is a ppc-collection which is not a strong
ppc-collection.

THEOREM 4.6. [Davis [6]] Let X be a very lo-net space and let
© — {Ga: a e A} be an yξ-ppc collection of open subsets of X. If there
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exists a discrete collection {Dβ: βeB} of nonempty subsets of X such
that DβdGβ for βeBaA9 then {Gβ:βeB} is either countable or
closure preserving.

Theorem 4.6 is not true for lo-net spaces as the following example
shows.

EXAMPLE 4.7. Let T be the set of countable nonlimit ordinals.
For each βeT, let Sχ(β) be a copy of the convergent 1/w-sequence
with limit point 0β. Let Xbe the quotient space formed by attaching
the limit point 0̂  of Sχ(β) to β in the ordinal space [0, ωj, for each
βeT. X is a lo-net space. If Gβ = S,(β) - {Qβ}, for each βeT,
© = {Gβ: βeT} is an ^-ppc-collection. If Dβ consists of any finite
subset of Gβ for each βeT, then {Dβ: βeT} is discrete. However,
{Gβ: βeT} is neither countable nor closure preserving.

Theorem 4.6 has the following valid variation for lo-net spaces.

THEOREM 4.8. Let X be a lo-net space (or a quasi k-space) and
let © = {Ga: ae A} be a strongly ^-pipe-collection of subsets of X.
If there exists a discrete collection {Dβ: β e B} of nonempty subsets
of X such that DβczGβ, for each βeBcA, then {Gβ:βeB} is either
countable or closure preserving.

Proof. Let B be uncontable and suppose {Gβ: β e B} is not closure
preserving. By theorem 4.5 (or theorem 4.4) there is a subset B1aB
and a choice function y on {cl (Gβ): β e 2?J such that {y(cl (Gβ)): β e Bx}
has a cluster point. Let B2 c Bt be such that for distinct elements
a,βeB2, y(c\(Ga)) Φ y(cl(Gβ)). For each βeB, choose any qβeDβ.
For βeB2, let pβ = y(cl (Gβ)) and for βeB - B2, let pβ = qβ. Then
{qβ: βeB} is a closed discrete set, but {pβ: βeB} has a cluster point.
This contradicts the fact that © is a strong ^-ppc-collection. This
proves the theorem.

Accordingly, the following variation of [6, Th. 3.3] is a valid
characterization of paracompactness in either lo-net spaces or quasi-
&-spaces.

THEOREM 4.9. If X is a regular lo-net space (or quasi k-space),
then X is paracompact if and only if X is irreducible and strongly
\ξ-preparacompact.

Also, if H is an fc$-ppc collection and cl (Ga) c Ha for each ae A,
then {cl (Ga): a e A} is an ^-ppc-collection. Thus Lemma 3.4.2 [7]
which uses quasi-ft-spaces can also be stated for lo-net spaces and
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its validity follows from Theorem 4.8.

THEOREM 4.10. Let Xbe a lo-net space and let © = {Ha: a e A} be
an ^-pipe-collection such that for the collection {Ga: a e A}, cl (Ga) c Ha

for each aeA. If there exists a discrete collection {Dβ: βeBaA}
of nonempty subsets such that Dβ(zGβ, for each βeB, then {Gβ:
β e B] is either countable or closure preserving.

With ppc in place of fc^-ppc the word countable may be omitted
from the conclusion.

Sheldon Davis has been gracious enough to carefully study the
preprint of this paper and has supplied the following results, which
extend various theorems in [7]. The proofs are easily excessible as
modifications of those in [7] and are omitted here.

THEOREM 4.11. If X is a normal (regular) preparacompact (or
^-preparacompact) lo-net space, then X is collectionwise normal
(Hausdorff).

COROLLARY 4.12. // © is property such that ® plus collection-
wise normality implies paracompact, then every normal, prepara-
compact lo-net space which satisfies (P) is paracompact.

COROLLARY 4.13. If X is a normal lo-net space, then X is
paracompact if and only if X is preparacompact and Θ-refinable.

COROLLARY 4.14. IfXis a normal lo-net space and X= \J{Fn:
nea)} where Fn is closed and isocompact for each neω, then X is
isocompact (See Th. 2.6 of [7].)

COROLLARY 4.15. Isoparacompactness is Fσ-hereditary in normal
lo-net spaces.

THEOREM 4.16. // Y is a preparacompact lo-net space and
f: X-+Y is closed, continuous, finite-to-one, then X is paracompact.
(Proof of Th. 2.5 [7] suffices.)

COROLLARY 4.17. If Y is a lo-net space, f: X-+Y is closed con-
tinuous, finite to one and X is isocompact, then Y is isocompact.

COROLLARY 4.18. // X = U {Xa: aeA} is a lo-net space where
{Xa: aeA} is a closed, locally finite collection and Xa is isopara-
compact for each aeA, then X is isoparacompact.
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THEOREM 4.19. Every preparacompact lo-net space is ppc-expand-
able. (See Th. 3.2. [7].)

THEOREM 4.20. If X is a normal ppc-expandable lo-net space,
then any locally finite collection of closed sets has a ppc-expansion.

THEOREM 4.21. If X is a normal (regular) discretely ppc-
expandable lo-net space, then X is collectionwise normal (Hausdorjf).

V* Well-ordered net spaces* In this section the true nature
of lo-net spaces as a generalization of sequential spaces and lob-
spaces, is revealed in the characterization, Theorem 5.2. The follow-
ing fact is essential.

LEMMA 5.1. For each linearly ordered set, there is a well-ordered
cofinal subset.

This lemma implies that the lob-spaces of Davis [6] are precisely
the spaces which have well-ordered local bases, wob-spaces (well
ordered by reverse inclusion). The quotient spaces of wob-spaces
would be characterized as those spaces which have the weak topology
generated by the collection of well-ordered nets. Thus, I define a
space X to be a well-ordered net space (wo-net space) provided X
has the weak topology generated by the natural cover of well-
ordered nets in X. Since lob-space = wob space, the classes of quotient
spaces are identical.

THEOREM 5.2. A space is a lo-net space if and only if it is a
wo-net space.

The properties of lo-net spaces presented in §3 should be re-
examined as wo-net space properties. The class of test spaces for
the wo-net spaces (thus lo-net spaces has been determined in [3] as
the test spaces for sequential spaces were determined in [2].

I would like to express my gratitude to the referee for sugges-
tions which have improved this paper.
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