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RINGS ON CERTAIN MIXED ABELIAN GROUPS

DAvVID R. JACKETT

This paper is concerned with the ring structures sup-
ported by certain mixed abelian groups. A class -# of mixed
abelian groups of torsion-free rank one is introduced, and
properties of rings on groups in .# are discussed. We
provide complete descriptions of the absolute annihilator
and the absolute radical of groups in -#Z. These absolute
ideals are also investigated for cotorsion groups and
reduced algebraically compact groups, thus providing a
partial solution to Problem 94 of Fuchs (Infinite abelian
groups, Vol. II). The results also allow us to answer a
question raised by Rotman (J. Algebra, 9 (1968), 369-387)
concerning completions of rings.

1. Preliminaries. All groups that we consider are additive
abelian groups. A ring on a group A, denoted (4, -), is distributive,
not necessarily associative, and may not have an identity.

A subgroup B of A is an absolute ideal of A if (B, -) is a (two
sided) ideal of (A4, -) for every ring (4, -) on A. The absolute an-
nihilator of A, denoted A(*), is {acA]a-A =0 = A-a for all rings
(4, -) on A}). If (4, -) is associative, its (Jacobson) radical is denoted
J(4, ). The absolute radical of A is J(A), the intersection of all
J(4, -) over all associative rings (A, -) on A.

All other group and ring theoretical notation is standard and
can be found in Fuchs [3] and Jacobson [6] respectively.

The structures of the absolute annihilator and the absolute
radical of a torsion group are well known.

1.1) (Fuchs [3] Vol. II, p. 289). If A is a torsion group,
then A(*) = A' = N\ nA4, and J(A) = N pA, O

n

The following results, where A need not be torsion, are easily
proved.

1.2) Suppose A = @ A;,. Then A(*) = @ A(),
tel iel
and J(A) & QJ(A,.).

1.3) If B is an absolate ideal of A, then J(B) & J(A). 1

2. A class of mixed groups of torsion-free rank one. Let
# denote the class of groups A such that A has torsion-free rank
one and A can be embedded as a pure subgroup of [[, A,, where
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A, is the p-primary component of T(A), the torsion subgroup of A.
Suppose A is a mixed group. For ac][,A4, let @ denote
the image of a under the natural map [[,A4,—1I[,4,/@,4, =

1, A,/T(A).

»

ProproOSITION 2.1.

(a) If Ae_#, then AJT(A) = Q and A, 15 a direct summand
of A for each prime p. Conversely, if A is a non-splitting mived
group for which A/T(A) = Q and A, is a direct summand of A for
each prime p, then the reduced part of A is in _Z.

(b) IfAc.Z and a is an element of infinite order in A, then
A is the imverse image of {ay., the pure subgroup generated by @,
under the natural map [[, A, 11, 4,/®, A, Conversely, for p-
groups A, and any element a in [[, A, of infinite order, the group
A defined as the inverse image of (@y, under the natural map
lTp Ap - H:) A;)/@p AP s 1 A

Proof. The only statement requiring more than elementary
group theory is the second statement in (a), which can be proved
using arguments found in Rajagopalan and Rotman [8]. ]

A consequence of (a) is that if A is a reduced mixed group of
torsion-free rank one, then various conditions on either the endor-
morphism ring of A, or the rings supported by A force A to be in
.. Examples abound in the literature, see for example Fuchs [2],
Fuchs and Rangaswamy [4], Rangaswamy [9], Schultz [11], and Szele
and Szendrei [13].

If Ae. 7 then for each prime p there is a subgroup A® of A
such that 4 = A, A"”. Any ring (4,, -) on A4, can be extended to
a ring (4, ) on A by taking the ring direct sum of (4,, -) with
the trivial ring (all products are zero) on A®. This method of
extending a ring from a summand of a group to the group will be
called extending by zero and will be used frequently throughout
this paper. Clearly (4, -)* < T(A) in this case. Since there do not
exist mixed nil groups, see Szele [12], it seems natural to ask which
groups A in .~ have the property that all rings (4, -) on A
satisfy (4, - S T(A). We can partially characterise such groups.

If a =(ay,a, ---,a, ---)in A has infinite order, define supp (a) =
{primes p|a, #= 0}.

LEMMA 2.2. Let Ae. 7 and a = (ay, a, --+,a, ---) be an ele-
ment of infinite order in A. If for almost all pcsupp (a), (o, is
a direct summand of A,, then there is an assoctative ring (A, -) on
A such that (A, - & T(A).
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Proof. If (a,> is a summand of A, define an associative ring
({a,y, -) on <a,> by letting a,-a, = a,, and extend this by zero to
obtain an associative ring (4,, -) on A,. If ¢ is a prime for which
{a,» is not a summand of A,, define (4,, -) to be the trivial ring on
A,.

Now take the ring direct product of the rings (4,, -) to obtain
an associative ring (I, 4,, -) on [], 4,. For almost all p € supp (a),
a,-a, =a, so a-a— acT(A). Since A has torsion-free rank one,
(2.1)(b) shows (A4, ) is a subring of ([, 4,, -) with the desired
property. ]

If Ae.# and a = (a,, a,, -+, a,, ---) is an element of A, then
for each prime p the p-indicator of a in A, U,(a) = (h,(a), h(pa), ---),
is the indicator of a, in A,. Hence if U,(a) commences with an
ordinal (and not <o), then U,(a) contains at least one gap, namely
the jump from ordinal to oo.

Now let a have infinite order in A. For p€supp(a), we say
U,(a) is reasonable (of type I) if U,(a) = (co, oo, --+), and U,(a) is
reasonable (of type II) if U,(a) commences with 0 and contains only
one gap. The first type can occur if A = T(A) P Q and a€Q; the
second type can occur if (@, is a summand of A. The height
matrix 77(A) is a reasonable matrix if, for almost all p € supp (a),
U,(a) is reasonable. #7(A) is very reasonable if, for almost all p e
supp (a), U,(a) is reasonable of the same type. Since A has torsion-
free rank one, if b is another element in A, 2~ (¢) is (very) reason-
able if and only if .97°(b) is (very) reasonable.

PROPOSITION 2.8. Suppose Ae . 2 and a is an element of infinite
order in A. If there is a ring (A, -) on A such that (A, -)* & T(A),
them 277°(a) is reasomable. Conversely, if 7 (a) s very reasonable,
then there is an associative ring (A, ) on A for which (A, -)* & T(A).

Proof. Suppose -~ (a) is not reasonable and consider any ring
(4, -) on A. For infinitely many pecsupp (a) there exist integers
k(p) and ordinals «,, such that h,(p""a) = a,,, where k(p) <
O < co. In particular p**'ac p*®*A, so there is an a’'€ A for
which  p*?(a-a) = p(a’-p**'a). Now h,(p**(a-a)) = k(p) +1, so
27 (a-a) is not equivalent to ~77(a). Since any two elements of
infinite order have equivalent height matrices, (A4, -)* £ T(A).

Next suppose 27 (a) is very reasonable, and consider the two
cases.

(i) For almost all p esupp (a), U,(a) = (co, oo, --+). Thereisa
positive integer n for which na belongs to the divisible part of A,
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so A =T(A)@P A’ for some subgroup A’ of A, A’ = Q. By defining
the field on A’ and extending by zero, we obtain the desired ring.
(ii) For almost all p € supp (@), U,(a) commences with zero and
contains only one gap. Writing a = (a,, a;, ---, a,, --+) it is clear
that for almost all pesupp(a), Uy(a)=(0,1, ---,n, —1, 00, 0, -++)
where 7, = order of a,>1. <(a, is now a summand of A, so
simply apply Lemma 2.2. O

Complete descriptions of the absolute annihilators and the
absolute radicals of groups in _# can be given.

THEOREM 2.4. Let Ac_. If A is reduced A(*) = A*; otherwise
A(*) = (T(4))

Proof. Consider A reduced and let ac€ A have finite height.
There is an integer ¢ for which a gap occurs between h,(p‘a) and
h,(p**'a), where h,(p'a) =k, is finite. There is now an a’€ A such
that p‘*'a = pa’ and h,(a') = k; + 1, so p'a — @’ # 0 is an element of
order p and height k,. Writing p'a — o’ = p** o” where a”’ € A, (")
is a summand of A. Define a"-a"” = a” and extend by zero to obtain
aring (4, -)on A. Now (p'e — a')-a"” = p’a-a”, since h,(a') =k, +1
and a'’ has order p**'. But (p‘a — a')-a” = (p*a’’)-a"” #~ 0, so a ¢ A(*).
Thus A(*) € AL

Next let a € A, and suppose ¢ € Hom (A, F(A)) defines the ring
(4, -). Since (@) =0, ¢(a) factors through A/T(A), i.e., ¢(4) is
a composite A — A/T(A)— A. But A/T(A) is divisible and A is
reduced, so ¢(a) =0. Thus A(*) = A'. (Notice that the latter
argument actually shows that A/T(A) divisible implies A' & A(*) for
every reduced group A (not necessarily in _#).)

Consider now A nonreduced. It suffices to prove A(*) < (T(A)).
If A contains a divisible torsion subgroup D, write A = D@ A’ for
some subgroup A’ of A. Embed A’ in its divisible hull D' Q,
where D' is torsion, and consider the element a of infinite order in
A. Let the nonzero components of @ in 4’ and @ be a, and a,
respectively. As in Szele [12] define an associative ring (DPQ, -)
on DEP Q such that a,-a,# 0 and (DPQ, -)*<S D. Extending this
ring by zero we obtain an associative ring on D@ D’ P Q which
contains (4, -) as a subring. This ring also satisfies a-a, = a,-a, # 0,
so A(*) < (T(A)).

If A does not contain a divisible torsion subgroup, then A
splits, A = T(A) &P A’ for some subgroup A’ of 4, and A'=Q. Now
(1.1) and (1.2) show A(*) & (T(A)(*) D A'(*) = (T(A4)). O

COROLLARY 2.5. If Ae _# 1is reduced and A'# 0, then there
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does not exist an identity in any ring on A.

Proof. A(*) # 0 implies any ring on A cannot have an identi-

ty. |

THEOREM 2.6. Suppose Ae_#, and a€ A is an element of in-
finite order. Then J(A) =), pA when =7 (a) is mot a reasonable
matriz and, for almost all primes p, U,a) does not commence with
zero. Otherwise J(A) = N, p(T(A4)).

Proof. For the prime p write A =A,P A®, where A? is
some p-divisible subgroup of A. Then J(4) < J(4,) @ J(AP) S
DA.

Suppose 57 (a) is not reasonable and for almost all p, U,(a) does
not commence with zero, and consider an associative ring (4, :) on
A. Clearly there is an integer » for which na € ), pA. Proposition
2.3 yields (4, -)* < T(A), so for every be A, na-be ), p(T(4)). T(A)
is an absolute ideal of A, so (1.1) and (1.83) show (), »(T(4)) =
J(T(A)) € J(A, -). Now na-b is a (right) quasi-regular element of
(4, -). Since J(A4, -) can be characterised as the set of all a’c 4
for which a’-b’ is quasi-regular for all b’ € B (see for example McCoy
[7]1, p. 132), nacJ(4, -); that is A/J(A, -) is torsion. Thus
N, p(A/J(4, ) = J(A/J(A, -)) =0, so N,pA S J(4, ). Since the
associative ring (4, -) was chosen arbitrarily, N, p4 < J(4).

The other case occurs when, for infinitely many primes p, U,(a)
commences with zero, or for almost all primes p, U,(a) = (oo, oo, --:).
In the former case J(A) < (), pA shows J(A) must be torsion, so
JA) S (N, pANTA) = N,pT(A). But J(T(A)) = J(A), hence J(A) =
J(T(A)). In the latter case A splits, A = T(A)P A’ for some sub-
group A’ of A, A’ = Q. (1.2) now yields J(4) € J(T(A)) P J(A") =
J(T(A)), so again J(A) = N, p(T(A)). L]

3. Cotorsion groups, algebraically compact groups. A similari-
ty exists between these groups and groups in _#; namely, if A is
a reduced cotorsion group then A may be written uniquely in the
form A =1T1]J, A, where for each prime p, A, is a reduced cotor-
sion group which is a p-adic module. Such a group A is algebrai-
cally compact if and only if A' =0, in which case each A, is a
reduced algebraically compact group that is also complete in its p-adic
topology. It should be noted that although these groups resemble
groups in _#, they are seldom members of _Z.

THEOREM 3.1. If A is a cotorsion group, then A(*) S A'. If A
is an adjusted cotorsion group, them A(*) = A



370 DAVID R. JACKETT

Proof. If we write A = D@ R where D is divisible and R is
reduced, (1.2) shows A(*) € D(*) @ R(*). Since D(*) & D = D' we
can assume A is reduced. If we now write A =], 4, and apply
the same argument, noting [[,., 4, is p-divisible, it is clear that
we can further restrict our attention to reduced cotorsion groups
A that are also p-adic modules, for some prime p.

Let a€ A have finite p-height . If B is a p-basic submodule
of A then A =B+ p"™ A, so let a =b + p"*" o' where beB, b+0
and a’€ A. Choose a cyclic submodule (and summand) B’ of B for
which b has a nonzero component b’ in B’. Since B’ is a pure sub-
module of A that is algebraically compact, B’ is a summand of A.

B’ is either a cyclic p-group or a copy of the p-adic integers.
In either case it is possible to define a ring (B’, -) on B’ for which
b'-b" = 0. Extending this by zero to a ring (4, -) on A we see that
a-b’ =b"-b" #0. Thus A(*) < A.

If A is adjusted cotorsion then A is reduced and A/T(A) is
divisible. As in the proof of Theorem 2.4, A' & A(*). O

COROLLARY 3.2. If A 1is reduced algebraically compact group,
then A(*) = 0. O

COROLLARY 3.8. If a reduced cotorsion group A is the additive
group of a rimg with identity, then A 1s algebraically compact.

Proof. The induced ring (4, ) on A = Ext (Q/Z, A) also has an
identity, so A(*) =0. Thus A!=0; that is, A is algebraically
compact. J

THEOREM 3.4. If A is a cotorsion group J(A) = N, pA.

Proof. Again we restrict our attention to reduced cotorsion
groups A that are also p-adic modules, for some prime p. We need
to prove J(A) < pA.

Suppose a ¢ pA, and again let B be a p-basic submodule of A.
Then A = B + pA, and we can select a cyeclic submodule B’ of B
which is a direct summand of A for which the component of a in
B’ is not in pB’.

Since J(Z}) = pZ} (ZF being the ring of p-adic integers), and
since B’ is either finite cyclic or the p-adic integers, we can define
an associative ring (B, -) on B’ such that J(B’, -) = pB’. Extending
this ring by zero to an associative ring (A4, -) on A, it is clear that
that a¢ J(4, -). O

COROLLARY 3.5. If A is a reduced algebraically compact group
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J(A) = np pA = Hp pA(p)‘

Proof. Write A =1], A, where each A, is a p-adic module
complete in its p-adic topology. Since each A, is reduced, [],., 4.,
is the maximal p-divisible subgroup of A. As such it is an absolute
ideal of A, so any associative ring (A, -) decomposes as (4, -) =
(A, ) B (.2 A, -) where the direct sum is a ring direct sum.
Clearly now (A4, -) is the ring direct product of the associative rings
(A, ). Thus it suffices to prove pA = J(A) when A is a p-adic
module complete in its p-adic topology, for some prime p.

From Fuchs [3], Vol. I, p. 166 we know A =lim, A/p*A. If

(4, -) is any associative ring on A, then A/p*A inhexfi_ts an associa-
tive ring structure we denote (A/p*A, -), and p(A/p*A) & J(A/p*A, ),
for each positive integer k. With Z* denoting the set of positive
integers it is readily checked that

A, = {p(A/p*A) ke Z"}
and
A, = {J(A/p*A, -)|ke Z},

together with the maps of the inverse system {A/p*Alke Z*"} form
two inverse systems for which there is a monomorphism ¢: 4, — A,.
Hence

lim p(A4/p*A) < lim J(A/p*A, -) .
k k
Theorem 1 of Ion [5] yields
lim J(A/p*4, -) = J(lim (A/p*4, -)),
k k

and a trivial calculation proves

p(lim A/p*A) < lim p(A/p*A) ,
k k

So

pA = p(lir_n A/p*A) < J(lim (A/p*4, -)) = J(4, -)

Since this is true for every associative ring (4, -) on A, pA <

J(A). Ll

Corollary 8.5 allows us to answer in the negative the following
question raised by Rotman [10]. If (4, -) is a semi-simple ring on a
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reduced group A, then is the induced ring (Ext(Q/Z, 4), -) on
Ext (Q/Z, A) also semisimple?

PROPOSITION 3.6. Suppose (4, -) is a semisimple ring on the
reduced group A. If A is torsiom-free, then JExt (Q/Z, A), -) # 0.
However, if A 1is torsion or A is a mized group such that A/T(A)
18 divisible, then JExt (Q/Z, A), -) = 0.

Proof. If A is torsion-free, Ext (Q/Z, A) is a reduced algebrai-
cally compact group, so we can write

Ext (Q/Z, A) = 1; (Ext(Q/Z, A))y

where each (Ext (Q/Z, A)),, is a reduced algebraically compact group
complete in its p-adic topology. Corollary 3.5 yields

JExt (Q/Z, A) = 11 p(Ext (Q/Z, A)) -

Since p(Ext (Q/Z, A)),, # 0 for at least one prime p, J(Ext(Q/Z,
A), -)=0.

If A is a torsion group or A is a mixed group such that A/T(A4)
is divisible, Ext (Q/Z, A) can be written uniquely Ext (Q/Z, A) =
I1, Ext (Z(p=),A). For each prime p, Ext (Z(p=),A)=Ext (Z(p~),T(4))=
Ext (Z(p~), 4,). From (1.1) and (1.3), p4, = J(4,, ) S J(4, ) =0,
so Ext (Z(p=), A) is a subgroup of the p-component (Ext (Q/Z, A)), of
Ext (Q/Z, A). Since [],., Ext (Z(¢=), A) is p-divisible and Ext (Q/Z, A)
is reduced, Ext (Z(p~), A) = (Ext (Q/Z, A)),. Thus for all o,
(BExt (Q/Z, A)),, -) = (A,, -). Since 4, is reduced, (Ext (Q/Z, A4), ) is
the ring direct product of the semisimple rings ((Ext(Q/Z, A)),, -).
Therefore J(Ext (Q/Z, A), -) = 0. |

Counter examples to Rotman’s question now follow from the
above, and Theorem 3.2 of Beaumont and Lawver [1]. Indeed, any
ring (Z, -) on the integers Z is semisimple, so JExt (Q/Z, Z), -) = 0.

In conclusion I would like to express my thanks to the referee
for his many helpful suggestions and comments. In particular I am
indebted to him for suggesting Corollaries 2.5 and 3.3.
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