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ON g-METRIZABILITY

L. FOGED

We show that a regular topological space is 9-metrizable
if and only if it is weakly first countable and admits a ¢-
locally finite k-network and that a 9-metrizable space need
not be g-developable.

0. Introduction. G-metrizable spaces were defined in [8],
where it was also shown that a space admits a countable weak base
if and only if it is weakly first countable and has a countable k-
network. In this paper we provide the corresponding result for g-
metrizable spaces and give an example of a g-metrizable space which
is not g-developable. The former result is in response to a question
in [8], the latter answers a question in [6]. All spaces are at least
regular.

1. Definition.

1.1. Let X be a space. If I' is a family of subsets of X and
¢ I' - P(X) is a function, then the pair I, {> is a weak base for
X if, in addition, the following hold:

(a) For every member G of I', {(G) is a subset of G.

(b) If G, and G, are members of I and x is an element of
UG) NLG,), then there is a member G, of I' so that z is in {(G,)
and G, is a subset of G, N G,.

(¢) A subset U of X is open if and only if for every element
z of U there is a member G of I so that x is in {(G) and U contains.
G.

This definition of weak base differs from that of [1], namely, a
collection <& = U{T,:x€ X} is a weak base for X if a set U is open
in X precisely when for each point xe€ U there exists Be T, such
that BcU. It is easy to see that our definition is equivalent to
this, for if B is as above, we let I' = <% and for Ge ', let 6(G) =
{x:GeT,} and if {I',0) is a weak base by 1.1, then we let T, =
(G:2€d(G)} and Z = U{T,:xec X}.

1.2. A space X is g-metrizable if it has a weak base (I, ()
where I' is a o-locally finite family. X is weakly first countable if
X has a weak base {I', {) so that the family {{(G): GeI} is point
countable or, equivalently, there is a function B:®w x X — ZF(X)
(called a wfc system for X) so that

(a) for all » < w and ze X, B(n + 1, ) C B(n, x);

(b) for all z in X, xe N{B(n, z): n < 0}
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(e) a subset U of X is open if and only if for every x in U
there is an # < @ so that U contains B(n, x).

If © is an element of a space X, then a subset S of X is said
to be weak neighborhood of x if every sequence converging to z is
eventually in S. One may show that if X is weakly first countable
with weak base {I', {) so that {{(G): Ge I} is point countable, then
S is a weak neighborhood of « if and only if S contains a member
G of I' so that xe(G). Thus weakly first countable spaces are
sequential [4].

1.8. If X is a space, a collection I" of subsets of X is said to
be a k-network [7] for X if for any compact subset K of X and
any neighborhood U of K, there is a finite subcollection I of I' so
that Kc Ul cU.

2. g¢g-metrizability and k-networks.

LemMmA 2.1, If X is a space in which points are G, and if
I, &> is a weak base for X, then I' is a k-network for X.

Proof. Let K be a compact subset of X and U an open neigh-
borhood of K. As K is closed, {I",{" given by I" = {GN K: Ge '}
and '(GNK)=¢GNK for all G in I', is a weak base for K.
Thus since K is Fréchet, for every G in I' {'(G N K) Cintx (G N K).
Consequently if I'* is a subcollection of I' so that K < U{l(G): GeI'*}
and UI'* c U, then a finite subfamily of I'* convers K.

THEOREM 2.2 [3]. A regular space with o o-locally finite k-
network has a o-dicrete k-network.

LEMMA 2.3. Suppose X hase {I', (> so that I' = U{l,:n < w}
where every I', ts a closure-preserving family of closed sets. If
{F,.ael} is a discrete collection of subsets of X, then there is a
pairwise disjoint collection {N,:acl} so that for every aecl and
xeF,, there is a G in I’ so that v € (@) and G C N,.

Proof. For each n < w and each acl, let
G(n, ) = U{Gel,: GN(U{Fs: B = a}) = &}
For each acl, let

N, = U [G(n, @)\U{G(m, gr:m = n, § = al] .

Of course {N, aecl} is pairwise disjoint; we now verify that
{N,: a € I} is the desired collection. Let a €I and let 2€ F,. Find an
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n<w and a G, in I', so that x € {(G,) and so that G, misses the closed
set U{Fs: 8+ a}. Pick G,eI so that 2 €{(@,) and so that G, misses
the closed set U{G(m, B):m =mn, B+ a}. Now there is a G,cI" with
x e {(G,) so that G, is a subset of G,N G,, hence G;C N,, as desired.

We are now in a position to prove the main result of this
section.

THEOREM 2.4. A regular space is g-metrizable if and only if
it 18 weakly first countable and admits a o-locally finite k-network.

Proof. The necessity follows from Lemma 2.1. For the sufficien-
cy: by Theorem 2.2, for each n < w let 4, be a discrete collection
of closed subsets of X so that 4 = U{4,: n < ®} is closed under finite
intersections and is a k-network for X. Let

I' = {UA*: A* is a finite subset of 4 so that NA* = @} .
For A* a finite subset of 4 with N4* # @, let
C(UA*) = {xe nA4*: U4* is a weak neighborhood of x} .

Note that {(@G): Ge I} is point-countable. We now show that (I, {)
is a weak base for X. One easily verifies that (a) and (b) of 1.1
are satisfied. For (c), observe that if U is a subset of X so that
for every x e U there is a Ge I so that 2e€{(G) and U contains G,
then U is sequentially open, hence open. Conversely, suppose U is
open and there is an element 2 of U so that U contains no member
G of I' such that x<{(G), i.e. the union of no finite subset of
{Lj:j < w}={Led:xeL, LcU} is a weak neighborhood of x. Let
B a wfe system for X so that B(l,x)cU. Inductively pick a
sequence {z,: n < w} so that x, e B(n, )\U{L;: § = n}. The sequence
{x.: » < w} converges to x, hence {x} U {x,: n < w} is compact. Let
A" be a finite subset of 4 so that {#} U {x,:n < w}c U4 U and let
A* ={LeA:xeL}. The closed set U(4\4*) omits «, so there is an
m < @ so that {2} U {x.: n = m}c U4*. Also4*Cc{LcAd:xeL, LCU},
so there is an r = m so that A* c{L;: < r}, which implies that
x, € UA*C U{L;: 7 < r}. This contradicts the fact that x, was picked
in the complement of U{L;: j < 7}. Thus if U is open, then for
all xe U, U contains a Ge I’ so that xe{(@); so {I,{ is a weak
base for X.
Note that if » < w,

I', ={ud4*. A4* is a finite subset of U{4;: j < n} so that NA* = @}

is a closure-preserving collection, hence I' = U{[,: n < w} is og-con-
servative.
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For every finite subset S of w, let
Ay ={4%: for n < w A*N A, + @ if neS;, N4* # @}

and write Ay = {4*: a« € I(S)}. Further, as {N4}: a € I(S)} is a discrete
collection, use Lemma 2.3 to find a pairwise disjoint collection {N,:
a e I(S)} so that for every a in I(S) N, is a weak neighborhood of
nAx.

Now if n < w, S is a finite subset of w, and if a € I(S), let

Gn,a) = U{Gel,:GC(UA) NN, .
and let
E(Gn, @) = ULG) NEUAN): Gel,, G (UAH NN .
If n < ® and if S is a finite subset of w, let
I'(n, S) ={G(n, a): xe I(S)} .

The collections ['(n, S) are conservative and, since G(n, @) Z N, for
every «acl(S), pairwise disjoint, hence discrete. Let I be the
family of all intersections of finite subcollections of U{l'(n, S): n < @,
S a finite subset of w} and extend ' to I by (N, Gn, ) =
Nei, I(G(n,;, a,)). Observe that I’ is o-diserete; we will show that
I, ' is a weak base for X, completing the proof.

Conditions (a) and (b) of 1.1 are easily verified. Recalling that
{C(G): Ge I} is point countable, the remarks in 1.2 give that for all
Gel G is a weak neighborhood of {(G) so that if n < w, S is a
finite subset of ® and if a € I(S), then G(n, @) is a weak neighbor-
hood of {'(G(n, @)). Consequently if G'erl”, then G’ is a weak
neighborhood of {(G’). Hence if U is a subset of X such that for
every member x of U there is a member G’ of I'" with e {(G’) and
G' c U, then U is a weak neighborhood of each of its elements, thus
sequentially open, and so U is open. To complete the proof of (c¢),
let U be an open subset of X, and let x¢ U. Since (I, > is a weak
base for X, there is a finite subset A* of 4 so that xel(U4*)C
NA*c U4*cU. Find a finite subset S of @ and an «a € I(S) so that
A* = AF. Since U AF is a member of ', UA4¥ is a weak neighbor-
hood of {(U4}), hence of x; N, is a weak neighborhood of N 4%,
hence of x; thus (U4¥) N N, is a weak neighborhood of z. Again
since {{(G): Ge '} is point-countable, we have that there isan n < @
and a Gel', sothat xe{(G)and G (U4}) N N,. Thus xzel(Gn, a))
and G(n, a)C UA¥ cU. Thus (c¢) is established.

3. g-developable spaces. Generalizing a characterization of
developability given in [5], Lee [6] defined g-developable spaces to
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be those weakly first countable spaces X which have a wfc system
satisfying the following: if xe X and if {z,: n < w} and {y,: n < w}
are sequences in X so that for every n < w = and «, are elements
of B(n, y,), then the sequence {x,:n < w} converges to «.

PROPOSITION 3.1. A o-discrete weakly first countable space X is
g-developable.

Proof. Write X = U{D,: n < w}, where D, is a closed discrete
set for every n < w. X is symmetrizable [1], so let d be a
compatible symmetric function. We define B:w X X— FP(X) as
follows: if m and n are finite ordinals and if x€ D,, let

B(n, ) = {ye X:d(z, y) < 1/n\U{D,: & < m} .

One easily checks that B is a wfc system for the topology of X.
To see that B satisfies the defining condition for g-developability let
xe X and let {x,: n < @} and {y,: » < w} be sequences in X so that
for every n < w » and z, are in B(n,y,). If m < ® sothatxeD,,
then there is a j < @ so that {ye X: d(x, ) < 1/5}N(U{D;: k =< m}) =
{x}. The fact that x¢ U{B(J, ¥): ¥y #+ «} implies that if » = j, then
Y, = . Thus for all » = 5 we have z, e B(n, ), hence {x,:n < w}
converges to x, as desired.

The definition of g-developable inspires the question to which
the following is a negative answer.

THEOREM 3.2. There is a g-metrizable space which is not g-
developable.

Proof. Let R denote the set of real numbers @ the set of
rationals. Choose a countable quasibase 4 for the Euclidean topology
of R consisting of closed sets. Let X = {{x, y) € R*: either y =0,
or x€Q & 1l/ycw}, and view R as {{x,y>e X:y = 0}. For every
ge@Q and m < w, define A(m, q) = {reR:|r — q| < 1/m} U {{g, 1/n):
n > m}. Let

I'={A(m, q):m < @, qeQ} U AU {{{g, I/n)}: € Q, n < w},
and define

CA(m, ) =1{g, ifm<wandqgeq;
L) = {re R\Q: » is in the Euclidean interior of L}, if Le4;
L{<q, I/m)}) = {{q, I/n)}, ifgeQandn<w.

Give X the topology for which (", ) is a weak base. Certainly
I" is countable, so, as X is easily seen to be regular, X is g-metriza-
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ble. To show that X is not g-developable, assume that B is a wfe-
system for X satisfying the defining condition for g-developability.

Define a function ¢: R\Q - so that if rcR\Q, then r¢
U{B(#(r), 9): ¢€Q}. This is possible, for if there is an »e R\Q so
that for every n < w there is a ¢,<€@Q so that 7 € B(n, q,), then find,
for each n < w, an z,€ X\R N B(n, q,). This would imply that for
every n < ®, r and x, are in B(n, q,), but {x,:n < w} does not
converge to 7, a contradiction.

Since R\Q = U{{r e R\Q: ¢(r) < m}: » < w}, there is an m < @ so
that the Euclidean closure el {r € R\Q: ¢(r) < m} contains a Euclidean
open set U. Choose a peQNU. As B(m, p) N R is a Euclidean
neighborhood of » in R, there is an reR\Q N B(m, p) so that
é(r) = m, that is ¢ U{B(m, q): ¢ @}; this contradiction completes
the proof.
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