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DUALITY CONDITION AND PROPERTY (5)

SU-SHING CHEN

We consider some geometric aspects of BoreΓs density
theorem and property (S) of Selberg for simply connected
complete Riemannian manifolds of nonpositive curvature.
We also have some results on simply connected complete
Kahler manifolds of nonpositive curvature.

A subgroup Γ of a topological group G is said to have property
(S) in G if for each neighborhood U of the identity e of G and each
element g in G there exists and integer n > 0 such that gn e U Γ-U.
In [3], Borel has proved the density theorem for subgroup Γ of
property (S) in a connected semi-simple Lie group G without compact
factors. Intuitively, it means that Γ is the product of some simple
factors {(? J of G — ΠJU Gt by a discrete group in the product of
other simple {(?,-} of G (see p. 179 of [3]).

In [5], the duality condition for a group Γ of isometries of a
simply connected complete Riemannian manifold M of nonpositive
curvature was introduced. Γ satisfies the duality condition if for
each infinite geodesic σ of M there is a sequence {yn} c Γ such that
Ύn(p) —>or(co) and Ί*\P) —• ff(— °°) for each p in M. If the quotient
space M/Γ is compact or has finite volume, then Γ satisfies the
duality condition [6], [7].

In this paper, we shall prove that if Γ is any subgroup of the
isometry group I(M) satisfying the duality condition and if ikf is a
simply connected complete visibility manifold (see [6]) then either Γ
is discrete or M is a rank one symmetric space of noncompact type
and (Γ)o = UM) or Γ is of finite index (less than [/(ikf), /0(Λf)] in
I(M). This is an analogue of BoreΓs density theorem. In fact, the
theorem is true if M satisfies a weaker condition of [1] and [8], that
is, some geodesic σ of M does not bound an imbedded flat totally
geodesic half plane. We shall compare the duality condition with
the property (S). The duality condition is apparently weaker than
property (S) for noncompact symmetric spaces.

In [12], Heintze has proved that a subgroup Γ of property (S)
of the noncompact semi-simple Lie group G satisfies the duality con-
dition. We shall prove that the duality condition is equivalent to a
condition on the set of axial transformations (or transvections [18])
in G similar to the property (S). The last part of this paper is
concerned with the complex version of several main theorems in [5].
These results seem to be interesting in the area of simply connected
complete Kahler manifolds of nonpositive curvature investigated by
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Greene and Wu [10], [11].
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1* Preliminaries. Let 1 be a simply connected complete
Riemannian manifold of nonpositive curvature. Any noncompact
symmetric spaces has nonpositive curvature [13]. Any two distinct
points of M can be joined by a geodesic. Two geodesies σ1 and σ2

(with the same speed) are asymptotic in M if d(σ1(t)9 σ2(t)) <ί c for
some constant c > 0 and all t ^ 0. An equivalence class of asymp-
totes is a point at infinity for M and Λf(©o) denotes the set of points
at infinity. The space M = M U M(°°) with the cone topology of
Eberlein and O'Neill [6] is homeomorphic to the closed ball.

Any geodisc σ can be extended to the boundary M(°o). The
asymptote classes of σ and its reverse are denoted by σ(°°) and
σ(— co). If any two points x Φ y in lf(°o) can be joined by a geo-
desic then Mt is said to be a visibility manifold [6], [7].

Let I{M) and I0(M) denote the isometry group of M. and its
identity component. These isometry groups are Lie groups. For
each element φ of I(M), we have a displacement function gφ: p —->
d(p, φp). An isometry φ is called elliptic, hyperbolic or parabolic if
gφ has zero, positive or no minimum respectively. A subgroup Γ of
I(M) determines a limit set L(Γ) £ Λf(©o) which is closed in Λf(oo)
and is invariant under Γ. L(Γ) is the set of points in Λf(oo) that
are accumulation points of an orbit Γp of some point p in M.

Let M = Mx x x Mk be the de Rham decomposition of M into
irreducible factors. Let f be a subgroup of I(M) satisfying the
duality condition and preserving the factors. Let Γt be the projec-
tion of Γ into I(Mi), 1 <; ΐ ^ fc. Then each Γέ also satisfies the duality
condition.

2. Property (S)* The property (S) and the duality condition
are satisfied by all discrete subgroups Γ of a connected semi-simple
Lie group G of noncompact type such that Γ/G is compact or has
finite invariant measure. In [12], Heintze has proved that if Γ
satisfies property (S), then Γ satisfies the duality condition. The
question is whether they are equivalent or one is stronger than the
other. In this section, we shall show that property (S) is apparently
stronger than the duality condition by finding an equivalent condition
which is weaker than property (S).

Let us recall some basic facts about geodesic flows in noncompact
symmetric spaces [16]. This is needed, because the duality condition
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can be stated in terms of geodesic flows [1], [6], [7]. Let M = G/K
be a noncompact symmetric space where G is a connected semi-simple
Lie group with compact factors and with finite center and K is a
maximal compact subgroup of G. The Lie algebra © of G has the
Cartan decomposition ® = S 0 φ, where 3̂ is the orthogonal subspace
to the subalgebra ί£ for K with respect to the Killing form. Thus
Sβ can be identified with the tangent space to G/K at the point
K. For each J e ^ , exp(ίX) is a 1-parameter subgroup of G and
(exp tX)K if a geodesic through K in G/K. Conversely, every geo-
desic is of this form. Let Ft denote the geodesic flow in the unit
tangent bundle Tλ{M) = T^G/K) of G/K. There is a natural action
of G on Tλ{G/K). For each geG, the geodesic through the point
gK of G/K in the direction of the unit tangent vector gX is
g[exptX]K. The geodesic flow Ft associated to G/K is given by
Ft(gX) = g[ex$tX]X, w h e r e Xe T^G/K), geG a n d teR.

The following theorem gives equivalent conditions to the duality
condition [5]. The first two equivalences are valid in any complete
simply connected Riemannian manifold of nonpositive curvature. The
condition (2) is used in Ballmann's work [1].

THEOREM 1. Let M = G/K be a noncompact symmetric space
where G is a connected semisimple Lie group without compact fac-
tors and with finite center. Let Γ be a subgroup of G. Then the
following are equivalent.

(1) Γ satisfies the duality condition.
(2) For each unit tangent vector v in T^iG/K) there exist

sequences

W g Γ , {tn}QR and {vJ^T^G/K)

such that tn —> + oo, vn —> v and ynFtnv -*v as n —> °°.
(3) There exists a dense subset Z of G x ty (with the product

topology) such that for every (g, X) 6 Z the transvection ψ = #(exp X)g~1

has the following property: given a neighborhood U of e in G there
exists an integer n ^ 1 and elements ω, j and k of G such that

Φn = yωk

where ωeU, jeΓ and k fixes the tangent vector gXe T{G/K).

REMARK 1. In condition (3) it would be nicer to say that there
exists a dense subset T* of the set T of all transvections such that
Φ satisfies the properties of (3) for every φeT*. Clearly the exist-
ence of a dense subset Z £ G x $ with the properties of (3) implies
the existence of a dense subset T* £ T with the same properties.
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However, if T* is given as a dense subset of T it is not clear how
one then obtains a dense subset Z £ G x Sβ. In particular, if {φn}
is a sequence of transvections converging to a transvection ^ =
g(exj)X)g~1 for some # e G , I e $ can one find sequences {gn}ζZG and
{Xn} £ 5β such that gn -> flr, Xn -> X and ^ = ^(exp X J ^ 1 ? Part of
the difficulty is that the representation of a transvection as
g(exipX)g~1 is not unique.

Actually, one would need only a weaker result to use Γ* in the
statement of (3) instead of Z. It would suffice to know that if {φn}
is a sequence of transvections converging to a transvection φ, and
if σn, σ are geodesies translated by φn, φ then α n(oo) —> cr(oo) and
0"n(— °°) —> ff(— °°) as ^—>oo. This would follow immediately if one
could show that σ'n(0) —> cr'(O) as n —> co for a suitable choice of σn

and a.

Proof of Theorem 1. The equivalence of (1) and (2) is proved
by Eberlein in Proposition 3.7 of [7]. We prove (3)->(l) and (2)-•
(3).

( 3 ) -> ( 1 ) . Let σ be an arbitrary geodesic of M and let p denote
(j(0) = gK for some g e G. Then

σ(t) = ^(exp ίZ)£Γ = </(exp tX)g~\p)

for a suitable X e φ . By hypothesis there exists a sequence
(flfn, Xn) S Z that converges to (flr, X), Let crn be the geodesic of
M — G/K given by

*»(*) = flrn(expίXn)ϋΓ - δfn(exp tXn)g~\Vn) ,

where p n = g n i ί —> p as ?ι —> co. Clearly <7i(0) -> CJ'(O) and it follows
that crTO(oo) —» α(oo) and σn(— oo) —>σ(— oo) as ^ - > + o o .

It suffices to prove that σn(oo) is dual to σn(— oo) relative to Γ
for every n. Assuming this to be proved let {Uk}, {Vk} be neighbor-
hood bases in M — M\jM(co) for σ(oo), σ(— oo). For each integer
& ̂ > 1 the points <7n(°°), σn(— oo) lie in Uk, Vk for sufficiently large
n. Since σn(oo) is dual to σn(— co), there exists ^ e Γ so that
^Λ(p) 6 Uk and f̂c(p) 6 F fc, and this proves that σ(oo) is dual to σ(—°°).

It remains to show that if σ(t) = βr(exp tX)K, where (g, X) e Z,
then σ(co) is dual to σ(—co). If φ = ^(exp l ) ^ " 1 then by the hypo*
thesis of (3) there exist sequences {%<} S Z, {α)J £ G, {TJ £ Γ1 and

G such that

for every i, where α)* —> 1 and kt(gX) — gXe T(G/K) for every i.
We consider first the case that {nt} has a subsequence converging
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to some integer m. Since λ̂  fixes gK ~ p eM for every i we may
choose a subsequence of {&J that converges to an element k that
fixes gX. By passing to an appropriate subsequence we find that
φm = yk for some 7 e Γ. It follows that 7 translates the geodesic σ
and hence σ(©o) = limn_oo 7n(p) is dual to σ(— 00) = l i m ^ ^ " " ^ ) .

Suppose next that % —• + °° as i —> + 00. Then {7J can have no
convergent subsequence and in particular d(7iP, p) —• 00 as i —> + 00.
We show that 7t(p) —> cr(oo) as i—> +°°. Since ^n< = 7*0)*^ for each
i, where ωi—>l and kt(gX) — g Ί e T(G/K) for each i, we have

and

It follows that σ(%) = 7t(ύtp. From d(7i(p), p) —> ̂  as i —• + ° ° , we
have

+ ^(TiCOXp), 7,(i>)) -^ 0 .

Thus 7i(p) -> σ(oo) as i —> + °°.

To show that 7i\p) -^ σ(— 00) as i —> 00 one first needs to observe
that φ commutes with kt for each i; otherwise kjι is in the wrong
position in the formula for φ~nκ Note that the 1-parameter group
of transvections (fc4flf)(exp tX^k^Y1 translates the geodesic with initial
velocity ktgX = gX and hence must equal the 1-parameter group
#(exp tX)g~ί. One now sees that φnίkiι = fcrVn< — 7*ω£ and hence
φ-niki = ω^ΎT1 and φ"ni = ω^^kj1. One now applies the same argu-
ment as above to conclude that 7l\p) -* o{— 00) as i-+oo. This
shows that (3) -» (1).

(2)—>(3). We need the following fact which may be found,
for example, on p. 464 of P. Eberlein, "Lattices in Spaces of Non-
positive Curvature," Annals of Math., I l l (1980), 435-476. Let A £
ϊyiί, where M = G/K, be the set of vectors v such that there exists
a sequence {tn} —> + co and a sequence {7J £ Γ such that (7n)Ftnv —> 1;
as w —> 00. Then A is dense in TXM if Γ satisfies the duality con-
dition.

Next we need a result whose proof is postponed temporarily.

LEMMA. Let Io = [a, b] be any interval with a > 0 and let
{̂m} —> + °° δ# 0̂ 2/ divergent sequence. Then there exists a point
xelo and divergent sequences {mk}, {rk} of positive integers such that

0 as k > + 00 .
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Assuming this lemma, we continue the proof of (2) —»(3). Let Z ~
{(g, X)eG x y$:φ = g(ex$ X)g~1 satisfies the conditions of (3)}. We
show that Z is dense in G X ^β. Let (g, X) be an arbitrary element
of G x *β and let v = gXe TM. Let A* = {ta: a e A, t ^ 0}. Then
A* is dense in TM and every nonzero element of A* satisfies the
same Γ-recurrence property as expressed in the definition of A. By
the density of A* we can choose a sequence (gn, Xn) converging to
(g, X) such that vn = gnXn e A* for every n.

Now let V, W be arbitrary neighborhoods in G, of g, X respec-
tively. Then gn e V and XneW for n sufficiently large. Fix such
an integer n and let g* = gn, X* = Xn and v* = vn = #*X*. By the
definition of A and A* we can find a sequence {tm} —> + oo and a
sequence {τm} £ Γ such that (ym)Ftmv* —> v* as m-» +oo. Choose an
integer I f > 0 so large that ζX*'eW for every ζ e IQ = [1 - (1/M),
1 + (1/Af)]. Applying the lemma above to Io we obtain divergent
integer sequences {mk} Q Z+ and {rk} £ Z + and a point ξ e Io such
that \tmk - m | -> 0 as k -> + oo. Clearly (#*, fX*) e F x W and we
assert that (gr, fX>:<) e Z , which will prove that Z is dense in G x 3β
and complete the proof of (2) —> (3).

Let © = flr*(expξX*)flr*~1. We show by passing to a subsequence
if necessary that φrk = 7«iωAf0, where £0 ^x^s the vector g*(ξX*) e
TM, ωk —> 1 and {Y/J £ Γ, {m/c} £ Z + and {rfc} £ Z+ are the sequences
constructed above. By hypothesis (ym)Ftnv* = 7«^*(expίwX*)flf*~1 x
(flr*X*) -> flr*X* - v* as m -> + oo. If ^ fc =* 7WJfcflr*(exp tmkX*)g*-\ then
ψk(g*X*) -> flf*X* as fc —> oo and hence α/r/c converges to <f0 fixing gf*X*
(and g*(ξX*)) by passing to a subsequence. Moreover (ymkφ

rk)~1ψk =
^*(exp[έm/c - nfJX*^*- 1 -> 1 as k—>oo. Hence 7«^rjfc -> fo by passing
to an appropriate subsequence. Therefore, we may write 7mjcφ

rk =
(Okξ0, where ωk —> 1 as k - > oo and it follows that ώrjc = Ίmk~

ι(θkξQ.
Hence (g*, ξX*)eZ.

We complete the proof of (2) -> (3) by proving the lemma stated
earlier. Let IQ = [a, b] and {tm} —> + oo be given where a > 0. We
proceed by induction. Let ξ0e(a9 b) be an arbitrary point of (α, b).
Choose Sx so that 0 < δ, < 1 and £ = (f0 - δl9 ξ0 + δ j C /0 = [α, 6].
We let wii denote {w|: ξ e /J = ( ^ 0 — w^, <̂J0 + w^) for any positive
integer n. Choose n so large that nδ1 > 6. The integer multiples
of ξQ partition R into intervals of length ξQ < b. Hence, we may
choose an integer m1 > 1 and an integer i\ > n so that | ί m i — 7\ξo\ < 6.
It follows that tmχ e rj.x or equivalently that tmχ = r ^ for some

Choose δ2 so that 0 < δ2 < 1/2, I2 = fe - δ2, ξ1 + δ2) £ /x and
\tmi — riζ\ < 1/2 for all f e/ 2. Choose an integer n so that nδ2> b.
Choose integers m2 > 2 and r2 > n so that \tm — n f j < b. Then
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tm2 e rj2 or tm2 = r2ζ2 for some ξ2 e I2.

Proceeding in this fashion one may construct sequences {δk} £ R,
{£*} £ ί), {rk} £ Z+ and {mk} S Z+ so that for every k, 0 < 3k < I/A?,
5* e 2* = (f,-i - δfc, ffc_! + δ4) £ !*_!, ίmfc - nί f c and |ίmjk - n £ | < 1/fc + 1
for all ξ e /fc+1. The intervals {Ik} are nested and have lengths 2δk

that decrease to zero. Therefore Γ\ΐ=ih *s a single point f e l o

Finally, \tm]e — rkξ\ < 1/& + 1 for every k since ξBlk+1. This com-
pletes the proof of the lemma.

3* A density theorem* In this section, we shall prove the
following result which is an analogue of Borel's density theorem for
simply connected complete visibility manifolds.

THEOREM 2. Let M be a simply connected complete visibility
manifold and let Γ £ I(Mt) be any subgroup that satisfies the duality
condition. Then either Γ is discrete or M is a rank one symmetric
space of noncompact type, (Γ)o = IQ(M) and Γ is of finite index in
KM).

Proof. I{M) satisfies the duality condition because Γ does. Either
I(M) is discrete or I0(Λf) is not trivial. In the first case, Γ is obvi-
ously discrete. If I0(M) is not trivial, then it satisfies the duality
condition. This follows from the argument in the proof of Theorem
5.8 of [5]. Then Corollary 4.14 of the same paper implies that M
is a rank one symmetric space of noncompact type. The subgroup
Γ is not necessarily a Lie subgroup of I(M). But its closure Γ is
a Lie subgroup. Either Γ is discrete (hence Γ is discrete) or (T)o

is not trivial. By the argument in [4], we can prove that (Γ)o =
J0(Λf). The main idea comes from a decomposition theorem of Mostow
[17]. Since IQ(M) = (Γ)o £ Γ and the index [I(M), I0(M)] is finite, Γ
is of finite index in I(M) and Γ 2 I0(M).

4* Bergman-Kobayashi metric and hyperbolic manifold* In
this section, we recall some basic facts about two classes of complex
manifolds which will be studied in the next section. We intend to
obtain some results for these two classes of manifolds with the addi-
tional condition of nonpositive curvature.

Let J i b e a complex manifold and H(M) be the group of holo-
morphic automorphisms of M. In general, H(M) may be infinite
dimensional. If M is a bounded domain ΰ in C71, then H(D) is a
subgroup of the isometry group I(D) with respect to the Bergman
metric which is Kahler on D. S. Kobayashi [15] has generalized
the Bergman metric for D to a complex manifold M satisfying the
very ampleness assumption on the complex Hubert space of holomor-
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phic %-forms which are square integrable. In the sequel, such a
manifold will be called a Kobayashi manifold. This Bergman-Kobayashi
metric is Kahler and the group H(M) of holomorphic automorphisms
is a closed subgroup of I(M) of isometries of M.

Another class of complex manifolds called hyperbolic manifolds
has also been introduced by S. Kobayashi [14]. By considering holo-
morphic mapping of the open unit disc into a complex manifold M,
one denies a pseudo-distance dM on M. If dM is a distance, then M
is called a hyperbolic manifold. Hermitian manifolds of holomorphic
sectional curvature bounded above by a negative constant are hyper-
bolic. For hyperbolic manifolds, the group H(M) of holomorphic
automorphisms is a closed subgroup of the Lie group I(M) of iso-
metries of M with respect to dM.

5* Complete Kahler manifolds of nonpositive curvature* Let
M be a simply connected complete Kahler manifold of nonpositive
curvature. In particular, ΛC is a Riemannian manifold and hence
theorems in [5] are applicable to ikf. We shall refer to the cor-
responding results in [5].

THEOREM 3. Let M be a simply connected complete Kahler mani-
fold of sectional curvature bounded above by a negative constant.
Then:

(1) // H(M) acts transitively on M and satisfies the duality
condition, then M is the unit ball in Cn (or the hermitian sym-
metric space of rank one).

(2) // M/Γ is a complete Kahler manifold and the covering
group Γ satisfies the duality condition, then either H(M) is discrete
or M is the unit ball in Cn (or the hermitian symmetric space of
rank one). Γ admits no solvable subgroup of finite index.

Proof. Since M has sectional curvature bounded above by a
negative constant, its holomorphic sectional curvature is bounded
above by the same negative constant and ikf is a hyperbolic mani-
fold. Thus group H(M) of holomorphic automorphisms of M is a

^closed subgroup of the isometry group I(M). To prove (1), we note
that H(M) (hence I(M)) acts transitively on M and satisfies the
duality condition. By Theorem 5.4 of [5], M is the product of a
complex Euclidean space and a hermitian symmetric space. This is
due to the fact that M has complex structure. But the Euclidean
factor has to be trivial, because there is no complex line in a hyper-
bolic manifold ([14], p. 49, [15], p. 81). The proof of (1) is finished.
The proof of (2) goes as follows. The group Γ c H(M) c I(M) satis-
fies the duality condition. By Corollary 5.9 of [5], either I(M) is
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discrete or M is a rank one symmetric space. The first case implies
that H(M) is discrete; while the second case gives that M is the
unit ball in Cn. That Γ admits no solvable subgroup of finite index
follows from Theorem 5.1 of [5].

REMARK 2. This theorem is related to [10] and [11].

REMARK 3. A Kahler manifold M is holomorphically negatively
pinched if its holomorphic sectional curvature is negatively pinched.
According to Berger [2], its Riemannian sectional curvature is also
negatively pinched. Consequently, we may change the assumption
in Theorem 3 to Kahler manifolds which are holomorphically nega-
tively pinched. The conclusions remain to be true.

The following result concerns with Kobayashi manifolds of non-
positive curvature, that is, the Bergman-Kobayashi metric has always
nonpositive sectional curvature.

THEOREM 4. Let M be a simply connected complete Kobayashi
manifold of nonpositive curvature,

( i ) If M admits a group Γ of holomorphic automorphisms
with the duality condition, than either H(M) is discrete or the
identity component H0(M) in a noncompact semi-simple Lie group.
Moreover Γ admits no solvable subgroup of finite index. If in addi-
tion M is homogeneous, then M is a hermitian symmetric space.

(ii) If D is a bounded homogeneous domain in Cn of nonposi-
tive curvature and D admits a group Γ of holomorphic automor-
phisms with the duality condition, then D is a bounded symmetric
domain in Cn.

Proof. The proof is similar to that of Theorem 3. We note
that Kobayashi manifolds do not admit parallel vector fields and do^
not contain complex lines [15]. Thus, Kobayashi manifolds can not
be flat. H(M) is a closed subgroup of I(M). By Proposition 2.5 of
[5], H0(M) is either {1} or a noncompact semi-simple Lie group.

REFERENCES

1. W. Ballmann, Eining neue Resultate iίber Mannigfaltigkeiten nicht positiver Kriίm-
mung, Bonner Math. Schriften. No. 113, 1978.
2. M. Berger, Pincement Riemannien et pincement holomorphe, Ann. Scude, Norm.
Sup. Pisa, 14 (I960), 151-159.
3. A. Borel, Density properties for certain subgroups of semi-simple Lie groups with-
out compact components, Ann. of Math., 72 (I960), 179-188.
4. S. Chen, Complete homogeneous Riemannian manifolds of negative sectional curva-
ture, Comm. Math. Helv., 50 (1975), 115-122.



322 SU-SHING CHEN

5. S. Chen and P. Eberlein, Isometry groups of simply connected manifolds of non-
positive curvature, Illinois J. Math., 24 (1980), 73-103.
6. P. Eberlein and B. O'Neill, Visibility manifolds, Pacific J. Math., 46 (1973), 45-109.
7. P. Eberlein, Geodesic flows on negatively curved manifolds I, Ann. of Math., 95
(1972), 492-510.
8. f Lattices in spaces of nonpositive curvature, Ann. of Math., I l l (1980),
435-476.
9. S. Goldberg, Curvature and Homology, Academic Press, 1962.
10. R. Green and H. Wu, Curvature and complex analysis, Bull. Amer. Math. Soc, 77
(1971), 1045-1049.
11. , Function theory on manifolds which possess a pole, Lecture Notes in
Math., Vol. 699, Springer-Verlag, 1979.
12. E. Heintze, Mannigfaltigkeiten negativer Krϋmmung, Universitat Bonn, preprint.
13. S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962.
14. S. Kobayashi, Hyperbolic Manifolds, Marcel Dekker, 1970.
15. , Transformation Groups in Differential Geometry, Springer-Verlag, 1972.
16. F. Mautner, Geodesic flows on symmetric Riemann spaces, Ann. of Math., 65
(1957), 416-431.
17. G. Mostow, Some new decomposition theorems for semi-simple Lie groups, Mem.
Amer. Math. Soc, 14 (1955), 31-54.
18. J. A. Wolf, Spaces of Constant Curvature, 1972.

Received October 12, 1979 and in revised form March 2, 1981.

UNIVERSITY OF FLORIDA

GAINESVILLE, FL 32611

AND

UNIVERSITY OF MARYLAND

COLLEGE PARK, MD




