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DUALITY CONDITION AND PROPERTY (S)

SU-SHING CHEN

We consider some geometric aspects of Borel’s density
theorem and property (S) of Selberg for simply connected
complete Riemannian manifolds of nonpositive curvature.
We also have some results on simply connected complete
Kihler manifolds of nonpositive curvature.

A subgroup I of a topological group G is said to have property
(S) in G if for each neighborhood U of the identity e of G and each
element g in G there exists and integer » > 0 such that g"e U-I"- U.
In [3], Borel has proved the density theorem for subgroup I' of
property (S) in a connected semi-simple Lie group G without compact
factors. Intuitively, it means that I is the product of some simple
factors {G;} of G = 1%, G, by a discrete group in the product of
other simple {G,} of G (see p. 179 of [3]).

In [5], the duality condition for a group I" of isometries of a
simply connected complete Riemannian manifold M of nonpositive
curvature was introduced. I satisfies the duality condition if for
each infinite geodesic ¢ of M there is a sequence {v,} C I" such that
Yu(p) — (o) and v,%(p) — o(— ) for each p in M. If the quotient
space M/I" is compact or has finite volume, then I satisfies the
duality condition [6], [7].

In this paper, we shall prove that if I" is any subgroup of the
isometry group I(M) satisfying the duality condition and if M is a
simply connected complete visibility manifold (see [6]) then either I
is discrete or M is a rank one symmetric space of noncompact type
and ('), = I(M) or I’ is of finite index (less than [I(M), I,(M)] in
I(M). Thisis an analogue of Borel’s density theorem. In fact, the
theorem is true if M satisfies a weaker condition of [1] and [8], that
is, some geodesic ¢ of M does not bound an imbedded flat totally
geodesic half plane. We shall compare the duality condition with
the property (S). The duality condition is apparently weaker than
property (S) for noncompact symmetric spaces.

In [12], Heintze has proved that a subgroup I" of property (S)
of the noncompact semi-simple Lie group G satisfies the duality con-
dition. We shall prove that the duality condition is equivalent to a
condition on the set of axial transformations (or transvections [18])
in G similar to the property (S). The last part of this paper is
concerned with the complex version of several main theorems in [5].
These results seem to be interesting in the area of simply connected
complete Kidhler manifolds of nonpositive curvature investigated by
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Greene and Wu [10], [11].

We are most grateful to P. Eberlein for his valuable suggestions
so that the paper can be in this final, readable form and to the
Sonderforschungsbereich “Theoretische Mathematik” at Math. Institut
of Univerisity Bonn for their support.

1. Preliminaries. Let M be a simply connected complete
Riemannian manifold of nonpositive curvature. Any noncompact
symmetric spaces has nonpositive curvature [13]. Any two distinct
points of M can be joined by a geodesic. Two geodesics o, and o,
(with the same speed) are asymptotic in M if d(o,(t), 0.(t)) < ¢ for
some constant ¢ > 0 and all £ = 0. An equivalence class of asymp-
totes is a point at infinity for M and M(o) denotes the set of points
at infinity. The space M = M U M(e) with the cone topology of
Eberlein and O’Neill [6] is homeomorphic to the closed ball.

Any geodisc o can be extended to the boundary M(c). The
asymptote classes of ¢ and its reverse are denoted by o(e«) and
o(—0). If any two points = y in M(c) can be joined by a geo-
desic then M is said to be a visibility manifold [6], [7].

Let I(M) and I, (M) denote the isometry group of M and its
identity component. These isometry groups are Lie groups. For
each element ¢ of I(M), we have a displacement function g,: p —
d(p, ¢p). An isometry ¢ is called elliptic, hyperbolic or parabolic if
g, has zero, positive or no minimum respectively. A subgroup /" of
I(M) determines a limit set L(I") & M(e) which is closed in M(co)
and is invariant under I". L(I") is the set of points in M(co) that
are accumulation points of an orbit I'p of some point p in M.

Let M = M, x --- X M, be the de Rham decomposition of M into
irreducible factors. Let I' be a subgroup of I(M) satisfying the
duality condition and preserving the factors. Let I', be the projec-
tion of I" into I(M,), 1 < ¢ < k. Then each I'; also satisfies the duality
condition.

2. Property (S). The property (S) and the duality condition
are satisfied by all discrete subgroups I of a connected semi-simple
Lie group G of noncompact type such that I'/G is compact or has
finite invariant measure. In [12], Heintze has proved that if I
satisfies property (S), then I' satisfies the duality condition. The
question is whether they are equivalent or one is stronger than the
other. In this section, we shall show that property (S) is apparently
stronger than the duality condition by finding an equivalent condition
which is weaker than property (S).

Let us recall some basic facts about geodesic flows in noncompact
symmetric spaces [16]. This is needed, because the duality condition
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can be stated in terms of geodesic flows [1], [6], [7]. Let M = G/K
be a noncompact symmetric space where G is a connected semi-simple
Lie group with compact factors and with finite center and K is a
maximal compact subgroup of G. The Lie algebra & of G has the
Cartan decomposition & = & @ B, where B is the orthogonal subspace
to the subalgebra £ for K with respect to the Killing form. Thus
B can be identified with the tangent space to G/K at the point
K. For each Xe%B, exp(tX) is a l-parameter subgroup of G and
(exp tX)K if a geodesic through K in G/K. Conversely, every geo-
desic is of this form. Let F, denote the geodesic flow in the unit
tangent bundle T,(M) = T, (G/K) of G/K. There is a natural action
of G on T.(G/K). For each ge (@G, the geodesic through the point
gK of G/K in the direction of the unit tangent vector ¢X is
glexptX]K. The geodesic flow F, associated to G/K is given by
F(9X) = glexptX]X, where Xe T(G/K), g€G and teR.

The following theorem gives equivalent conditions to the duality
condition [5]. The first two equivalences are valid in any complete
simply connected Riemannian manifold of nonpositive curvature. The
condition (2) is used in Ballmann’s work [1].

THEOREM 1. Let M = G/K be a moncompact symmetric space
where G is a connected semisimple Lie group without compact fac-
tors and with finite center. Let I' be a subgroup of G. Then the
Jollowing are equivalent.

(1) I satisfies the duality condition.

(2) For each unit tangent wvector v in T(G/K) there exist
sequences

rpel', (ISR and {v}< TU(G/K)

such that t, — +o, v,—v and v, F, v —>v as n— .

(38) There exists a dense subset Z of G X L (with the product
topology) such that for every (g, X) € Z the transvection ¢ = g(exp X)g™*
has the following property: given a meighborhood U of e in G there
exists an integer n =1 and elements w, v and k of G such that

" = Yok

where we U, yel and k fixes the tangent vector gX e T(G/K).

REMARK 1. In condition (3) it would be nicer to say that there
exists a dense subset T* of the set T of all transvections such that
¢ satisfies the properties of (3) for every ¢c T*. Clearly the exist-
ence of a dense subset Z < G X P with the properties of (3) implies
the existence of a dense subset T* & T with the same properties.
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However, if T* is given as a dense subset of T it is not clear how
one then obtains a dense subset Z & G x B. In particular, if {¢,}
is a sequence of transvections converging to a transvection ¢ =
g(exp X)g™ for some g€ G, X e can one find sequences {g,} S G and
{X,} €% such that g, — g, X,— X and ¢, = g,(exp X,)g;'? Part of
the difficulty is that the representation of a transvection as
glexp X)g™* is not unique.

Actually, one would need only a weaker result to use 7'* in the
statement of (3) instead of Z. It would suffice to know that if {g,}
is a sequence of transvections converging to a transvection ¢, and
if 0,, 0 are geodesics translated by ¢,, ¢ then o,() — d() and
0,(—o0)— o(—c0) as n— co. This would follow immediately if one
could show that ¢,(0) — ¢'(0) as n — o« for a suitable choice of o,
and o.

Proof of Theorem 1. The equivalence of (1) and (2) is proved
by Eberlein in Proposition 3.7 of [7]. We prove (8) — (1) and (2) —
(3).

(8)—(1). Let o be an arbitrary geodesic of M and let p denote
0(0) = gK for some gcG. Then

a(t) = glexp tX)K = g(exp tX)g~'(p)

for a suitable Xe$3. By hypothesis there exists a sequence
(9., X,) & Z that converges to (¢, X). Let o, be the geodesic of
M = G/K given by

0.(t) = g.(exptX,)K = g,.(exp tX,)9,(D.) ,

where p, = g, K —» as n— . Clearly o,(0) — ¢’(0) and it follows
that ¢,(c0) — 0(e) and 0,(— =) — 0(— ) as n — + oo,

It suffices to prove that ¢,(c) is dual to o,(— ) relative to I’
for every n. Assuming this to be proved let {U,}, {V.} be neighbor-
hood bases in M = M U M() for o(e), 0(—c). For each integer
k= 1 the points ¢,(«), 0,(—) lie in U,, V, for sufficiently large
7. Since ,() is dual to o,(—o), there exists ¢,€I" so that
é.(p) e U, and ¢; (p) € V,, and this proves that (o) is dual to g(— ).

It remains to show that if o¢(t) = g(exptX)K, where (g, X)e Z,
then o(ce) is dual to o(— ). If ¢ = glexp X)g™* then by the hypo-
thesis of (8) there exist sequences {n,}) S Z, {w;} S G, {v;} S I and
{k;} € G such that

¢" = 7.0k,

for every %, where w, — 1 and k,(9X) = ¢X e T(G/K) for every 1.
We consider first the case that {n,} has a subsequence converging
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to some integer m. Since k,; fixes gK = pe M for every ¢ we may
choose a subsequence of {k;} that converges to an element %k that
fixes gX. By passing to an appropriate subsequence we find that
o™ = vk for some yeI'. It follows that v translates the geodesic o
.and hence () = lim,_., v"(p) is dual to o(— ) = lim,_., v™"(p).

Suppose next that #, » +c as 42— +o. Then {v;} can have no
convergent subsequence and in particular d(y,p, p) — « as ¢ — + oo,
We show that v,(p) — 0(«) as 7 — + . Since ¢" = v,w;k, for each
1, where w; — 1 and k,(9X) = gXe T(G/K) for each 4, we have

¢ni(p) = ¢ni<gK) = ’Yiwiki<gK) = 7iwigK = 7iwi(p)
and
g(exp n, X)K = g(exp n,X)97(9K) = ¢"i(p) = 7.0,p) .

It follows that o(n,) = v.@,p. From d(v,(p), p) — = as t— + oo, we
have

Lp(0(2), 7:p) = Lp(0(0), 7:i(p) + L(vi@i(p), (D))
= J,(0(0), 6(ny)) + I, (7:wi(p), V(p)) — 0 .

Thus v,(p) — 0() as © — + co.

To show that v;%(p) — 0(— ) as 12— o one first needs to observe
that ¢ commutes with %, for each 4; otherwise k;* is in the wrong
position in the formula for ¢ ":. Note that the l-parameter group
of transvections (k,9)(exp tX)(k,9)* translates the geodesic with initial
velocity %,9X = gX and hence must equal the l-parameter group
glexptX)g™. One now sees that ¢"k;* = k'™ = 7,0, and hence
ok, = w77t and ¢ = w;7*v;'%k;t. One now applies the same argu-
ment as above to conclude that ;' (p) — o(— o) as ¢ — . This
shows that (3) — (1).

(2)—(8). We need the following fact which may be found,
for example, on p. 464 of P. Eberlein, “Lattices in Spaces of Non-
positive Curvature,” Annals of Math., 111 (1980), 435-476. Let A =
T.M, where M = G/K, be the set of vectors v such that there exists
a sequence {t,} — +co and a sequence {v,} S I" such that (v, )F, v —v
as n— co. Then A is dense in T.M if I' satisfies the duality con-
dition.

Next we need a result whose proof is postponed temporarily.

LEMMA. Let I, =[a,b] be any interval with a >0 and let
{t.} = + oo be any divergent sequence. Then there exists a point
x € I, and divergent sequences {m,}, {r,} of positive integers such that

[tm, — 12| — 0 as k—— +oo.
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Assuming this lemma, we continue the proof of (2) — (8). Let Z =
{lg9, X)eG x : 6 = glexp X)g™* satisfies the conditions of (3)}. We
show that Z is demse 1n G X B. Let (g9, X) be an arbitrary element
of G X B and let v=9XeTM. Let A* = {ta:ac A, t=0}. Then
A* is demse in TM and every monzero element of A* satisfies the
same I'-recurrence property as expressed in the definition of A. By
the density of A*™ we can choose a sequence (¢,, X,) converging to
(g9, X) such that v, = ¢,X, € A* for every n.

Now let V, W be arbitrary neighborhoods in G, of g, X respec-
tively. Then ¢g,eV and X,e W for » sufficiently large. Fix such
an integer # and let ¢* = g¢g,, X* = X, and v* = v, = g"X*. By the
definition of 4 and A* we can find a sequence {¢,} — + < and a
sequence {v,}  I' such that (v,)F, v* —v* as m — +co. Choose an
integer M > 0 so large that éX*e W for every cel, =[1 — (1/M),
1+ (1/M)]. Applying the lemma above to I, we obtain divergent
integer sequences {m;} S Z" and {1} S Z* and a point &¢I, such
that |¢,, — 7.5 —0 as k— +co. Clearly (¢%, éX*)eV X W and we
assert that (g% £X*)e Z, which will prove that Z is dense in G X P
and complete the proof of (2) — (3).

Let ¢ = g*(exp&X*)g*~*. We show by passing to a subsequence
if necessary that ¢ = v, ®,&, where & fixes the vector g*(X*)e
TM, w,—1 and {v,} S I', {m,} € Z* and {r,} & Z" are the sequences
constructed above. By hypothesis (v,)F, v* = 7,9 (exp ¢, X )g* ™" X
(¢FX*) - ¢g*X* = v* asm — +oo. If 4, = 7,,0%(expt, X*)g* ", then
(g X*) — ¢* X* as k — co and hence 4, converges to &, fixing g*X*
(and ¢*(¢X™)) by passing to a subsequence. Moreover (7v,,6™) ", =
g*(explt,, — &l X*)g* " —1 as k— . Hence 7,,6" — & by passing
to an appropriate subsequence. Therefore, we may write 7, 6" =
®.5, where ®,—1 as k—> o and it follows that ¢ =, '®,&.
Hence (g%, £X*)e Z.

We complete the proof of (2) — (8) by proving the lemma stated
earlier. Let I, = [a, b] and {¢,} — + = be given where a > 0. We
proceed by induction. Let & € (a, b) be an arbitrary point of (a, b).
Choose §, so that 0< 46, <1 and I, = (g — 6, & + 0,) & I, = [a, b].
We let nl, denote {n&: &€ l} = (ng — no, n& -+ nd,) for any positive
integer n. Choose n so large that ng, > b. The integer multiples
of & partition R into intervals of length & < b. Hence, we may
choose an integer m, > 1 and an integer », > n so that |¢, — & <b.
It follows that t, €».I, or equivalently that ¢, = & for some
&el,.

Choose 4§, so that 0<d,<1/2, I,=(& — 4, & +6,) S I and
[t,, — 7&] < 1/2 for all £el. Choose an integer m so that nd, > b.
Choose integers m, > 2 and 7, >n so that [¢,, — 7| <b. Then
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tm, € 721, O t, = 1,&, for some & e I,.

Proceeding in this fashion one may construct sequences {6,} S R,
gy, {r.) < Z* and {m,} S Z* so that for every k, 0 < 9, < 1/k,
&el, = (& — Ok Ebor + 00) E Lieyy by, = & and |2, — 78| < 1/k + 1
for all £€I,,,. The intervals {I,} are nested and have lengths 24,
that decrease to zero. Therefore N, I, is a single point &¢I,
Finally, [t,, — m£| < 1/k + 1 for every k since £€l;,,. This com-
pletes the proof of the lemma.

3. A density theorem. In this section, we shall prove the
following result which is an analogue of Borel’s density theorem for
simply connected complete visibility manifolds.

THEOREM 2. Let M be a simply comnected complete wvisibility
manifold and let I' S I(M) be any subgroup that satisfies the duality
condition. Then either I is discrete or M is a rank one symmetric
space of momcompact type, (I'), = I(M) and I" is of finite index in
I(M).

Proof. I(M) satisfies the duality condition because /" does. Either
I(M) is diserete or I(M) is not trivial. In the first case, I" is obvi-
ously discrete. If I, (M) is not trivial, then it satisfies the duality
condition. This follows from the argument in the proof of Theorem
5.8 of [5]. Then Corollary 4.14 of the same paper implies that M
is a rank one symmetric space of noncompact type. The subgroup
I' is not necessarily a Lie subgroup of I(M). But its closure I is
a Lie subgroup. Either I’ is discrete (hence I' is discrete) or (1),
is not trivial. By the argument in [4], we can prove that (I"), =
I(M). The main idea comes from a decomposition theorem of Mostow
[17]. Since I,(M) = (I'), € I" and the index [I(M), I,(M)] is finite, I
is of finite index in I(M) and I" 2 I(M).

4. Bergman-Kobayashi metric and hyperbolic manifold. In
this section, we recall some basic facts about two classes of complex
manifolds which will be studied in the next section. We intend to
obtain some results for these two classes of manifolds with the addi-
tional condition of nonpositive curvature.

Let M be a complex manifold and H(M) be the group of holo-
morphic automorphisms of M. In general, H(M) may be infinite
dimensional. If M is a bounded domain D in C*, then H(D) is a
subgroup of the isometry group I(D) with respect to the Bergman
metric which is Kahler on D. S. Kobayashi [15] has generalized
the Bergman metric for D to a complex manifold M satisfying the
very ampleness assumption on the complex Hilbert space of holomor-
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phic n-forms which are square integrable. In the sequel, such a
manifold will be called a Kobayashi manifold. This Bergman-Kobayashi
metric is Kahler and the group H(M) of holomorphic automorphisms
is a closed subgrcup of I(M) of isometries of M.

Another class of complex manifolds called hyperbolic manifolds
has also been introduced by S. Kobayashi [14]. By considering holo-
morphic mapping of the open unit disc into a complex manifold M,
one denies a pseudo-distance d,, on M. If d, is a distance, then M
is called a hyperbolic manifold. Hermitian manifolds of holomorphic
sectional curvature bounded above by a negative constant are hyper-
bolic. For hyperbolic manifolds, the group H(M) of holomorphic
automorphisms is a closed subgroup of the Lie group I(M) of iso-
metries of M with respect to d,.

5. Complete Kdhler manifolds of nonpositive curvature. Let
M be a simply connected complete Kahler manifold of nonpositive
curvature. In particular, M is a Riemannian manifold and hence
theorems in [5] are applicable to M. We shall refer to the cor-
responding results in [5].

THEOREM 3. Let M be a simply connected complete Kahler mani-
fold of sectional curvature bounded above by a mnegative constant.
Then:

(1) If HM) acts transitively on M and satisfies the duality
condition, them M is the wunit ball in C™ (or the hermitian sym-
metric space of rank one).

(2) If M|I'" is a complete Kiahler manifold and the covering
group I' satisfies the duality condition, then either H(M) is discrete
or M is the unit ball im C™ (or the hermitian symmetric space of
rank one). I admits no solvable subgroup of finite index.

Proof. Since M has sectional curvature bounded above by a
negative constant, its holomorphic sectional curvature is bounded
above by the same negative constant and M is a hyperbolic mani-
'fold. Thus group H(M) of holomorphic automorphisms of M is a
{ closed subgroup of the isometry group I(M). To prove (1), we note
that H(M) (hence I(M)) acts transitively on M and satisfies the
duality condition. By Theorem 5.4 of [5], M is the product of a
complex Euclidean space and a hermitian symmetric space. This is
due to the fact that M has complex structure. But the Euclidean
factor has to be trivial, because there is no complex line in a hyper-
bolic manifold ([14], p. 49, [15], p. 81). The proof of (1) is finished.
The proof of (2) goes as follows. The group I' ¢ H(M) c I(M) satis-
fies the duality condition. By Corollary 5.9 of [5], either I(M) is
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discrete or M is a rank one symmetric space. The first case implies
that H(M) is discrete; while the second case gives that M is the
unit ball in C*. That I admits no solvable subgroup of finite index
follows from Theorem 5.1 of [5].

REMARK 2. This theorem is related to [10] and [11].

REMARK 3. A Kahler manifold M is holomorphically negatively
pinched if its holomorphic sectional curvature is negatively pinched.
According to Berger [2], its Riemannian sectional curvature is also
negatively pinched. Consequently, we may change the assumption
in Theorem 3 to Kahler manifolds which are holomorphically nega-
tively pinched. The conclusions remain to be true.

The following result concerns with Kobayashi manifolds of non-
positive curvature, that is, the Bergman-Kobayashi metric has always
nonpositive sectional curvature.

THEOREM 4. Let M be a simply connected complete Kobayashi
mantfold of nonpositive curvature.

(i) If M admits a group I’ of holomorphic automorphisms
with the duality condition, than either H(M) is discrete or the
identity component H(M) in a noncompact semi-simple Lie group.
Moreover I' admits no solvable subgroup of finite index. If in addi-
tion M 1is homogeneous, then M is a hermitianm symmetric space.

(ii) If D s a bounded homogemeous domain in C™ of nonposi-
tive curvature and D admits a group I’ of holomorphic automor-
phisms with the duality condition, them D is a bounded symmetric
domain in C".

Proof. The proof is similar to that of Theorem 3. We note
that Kobayashi manifolds do not admit parallel vector fields and do,
not contain complex lines [15]. Thus, Kobayashi manifolds can not '
be flat. H(M) is a closed subgroup of I(M). By Proposition 2.5 of
[5], H(M) is either {1} or a noncompact semi-simple Lie group.
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