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THE CAUCHY PROBLEM AND ASYMPTOTIC DECAY
FOR SOLUTIONS OF DIFFERENTIAL INEQUALITIES

IN HILBERT SPACE

G. N . HlLE AND M. H. PROTTER

l Introduction* Let H be a real or complex Hubert space
and A an operator with domain D in H. We consider the differen-
tial operators

(1.1) — - An
dt

(1.2) £ .

and we investigate the Cauchy problem for differential equations
and inequalities in which (1.1) and (1.2) are the principal parts. In
general, we shall suppose that A is a nonlinear, unbounded operator,
neither symmetric nor antisymmetric, and dependent on t. In §§ 2
and 3 we consider the case where A is a linear operator.

Operators of the type in (1.1) were considered by Agmon and
Nirenberg [1] who used a convexity argument to establish not only
uniqueness theorems for the Cauchy problem but also maximal rates
of decay as t —> oo.

In § 2 we treat linear operators A which can be represented in
the form A — M + N where M is symmetric and N is antisymmetric.
These hypotheses are used mainly for computational convenience.
Instead of symmetry, the actual principal hypothesis on Mt is the
inequality

•4- Re (M(t)u(t), u(t)) - 2 Re (M(t)u(t), u\t))
(1.3) d t

i> -7*\\M(tMt)\\\\u(t)\\ - Ύi\\u(t)\\* ,

where ys, 74 are positive constants. Thus the results of Section 2,
when applied to differential operators A, are not restricted to those
operators for which the principal part is self-adjoint. Furthermore,
the condition of antisymmetry on N is easily relaxed. The argu-
ments in § 2 are applicable almost without change if N satisfies
either the inequality

Re (iSΓ(ί)w(ί), u(t))£ Ύ(t)\\u(t) ||2

or
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for some positive function 7 = τ(t). For computational convenience
the theorems in Section 2 will be established for the case M sym-
metric and N antisymmetric. The differential inequality we inves-
tigate is of the type

(1.4)
II2 Γ f* Ί

- A(t)u(jb)\\ £ 7(t) α>(ί) + ω(s)ds
II L Jo J

dt

where

+ \\M(tMt)\\\\u(t)\\,

and 7 is a prescribed function of t. We note that (1.4) is more
than a customary semi-linear inequality since M, the symmetric
part of A, occurs on the right side. In the cases which occur most
frequently, that is when A is a partial differential operator, the
part M corresponds to the principal part of the differential operator
while N frequently corresponds to the terms of lower order. Thus
the inequality (1.4) allows the differential operator (1.1) to be
estimated in terms of the norm of its principal part. In the paper
[1], Agmon and Nirenberg decompose A into the sum of three
operators, of which one is symmetric and the other two are anti-
symmetric. While this decomposition is more general than the one
we employ of a decomposition into one symmetric and one antisym-
metric operator, the broader class of inequalities (1.4) which we
treat, together with the conditions we impose on M and N, enables
us to include the uniqueness results in [1] as a special case. The
method we employ is one of weighted L2-estimates, a technique
that was developed for differential operators in [15] and extended
by Murray [10], Murray and Protter [12], and Ogawa [13, 14].

In a series of papers Levine [5-9] employed the convexity
method to study the Cauchy problem for broad classes of first order
and second order differential inequalities. He considered principal
parts of the form P(du/dt) - An and P(d2u/dt2) + Q(du/dt) - An
where P and Q are also linear operators which depend on t. The
results he obtains overlap with ours, and it is not likely that the
weighted L2-method which we employ can be applied to these more
general operators without making some unusual assumptions about
the interaction of the operators P and Q with A — assumptions not
required in the convexity method.

A detailed analysis of the asymptotic behavior of solutions of
equations and inequalities has been made by similar methods for
partial differential operators. Murray [11] considered ultrahyper-
bolic operators, Ogawa [14] discussed hyperbolic operators, Knops
and Payne [3, 4], and Knops, Levine and Payne [2] investigated
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both the abstract problem and its applications to elasticity.
In § 3 we consider second order inequalities of the type

d2u

dt2
— Au\

I

r rt η
μit) + 1 μ(s)ds

L Jo J

where

μ(t) = \\u(t)\\2 + \\u'(t)\\* + \(M(jt)u(t)9 u(t))\

and A = ikf -f- iSΓ. We establish the uniqueness of solutions of the
Cauchy problem under appropriate conditions on M and N.

For both first and second order operators we show that solutions
which exist for all t > 0 cannot decay too rapidly as ί->oo without
being identically zero.

In §§ 4 and 5 first and second order inequalities with nonlinear
operators are considered. In the first order case, we show that the
usual convexity argument can be modified to treat inequalities of
the form

du

dt
— Au , u)\

where an appropriate one-sided bound is placed on Re (An, u). The
persistence of the zero solution of the Cauchy problem is shown
and maximal rates of decay are obtained. If A satisfies a differen-
tiability condition of the form (1.3) (with M replaced by A), then
we may perturb A by another nonlinear operator B, with appro-
priate one-sided bounds on Re (Bu, u) and Re (An, Bu), and obtain
analogous results for the inequality

du
IT

— Au — Bu

In the second order case we obtain similar results for inequalities
of the form

d2u

dt2
Au — Bu , u)\

2. First order linear operators* Let H be a complex Hubert
space with the usual inner product and norm. We shall consider
functions

u: [0, T) > H

with T = + oo allowed. The strong derivative of u,

u\t) = lim | [ t t ( ί + &) - u(t)] ,
*-o h
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where the limit is taken in the Hubert space norm, is assumed to
exist for all t in (0, T).

We shall suppose throughout this section that u satisfies the
following two conditions:

( i ) ueC([0,T); H)πC\(09T); H)
(ii) \\u\t)\\ ^ K on (0, T), K a constant.
Let A — A(t) be a linear operator on if for each t e (0, T) which,

in general, will be unbounded. We shall suppose that A can be
decomposed

A(t) = M(t) + Nit)

where M is symmetric and N anti-symmetric with respect to the
inner product of H. We assume that Du the domain of M(t) and
N(t), is a linear manifold in H.

We shall be concerned with the Cauchy problem for the differ-
ential operator

(2.1) Lu = u' - An = u' - Mu - Nu

for u(t) 6 Dt with mild restrictions on the operator A. The first
hypothesis concerns the relationship between M and N. We assume

( I ) Re(M(t)w, N(t)w)^ - 7 i | | 3 f ( ί ) w | | | | w | | - Ύ2\\w\\2

for all t e (0, T) and w eDt; 7i and τ2 are positive constants. We
note that if A is either symmetric or antisymmetric, then ( I ) is
automatically satisfied. Furthermore we assume that u(t) eDt, te
(0, Γ), that Mu, NueC((0, T); H), and that \\M(t)u(t)\\9 ||2SΓ(<Mί)||^
K on (0, T).

The second hypothesis concerns only the action of the symmetric
part of A on functions u which satisfy the differential inequality to
be treated. We suppose

(II)

d (M(t)u(t), u(t)) - 2Re(M(t)u(t), u\t))
d t

where γ3 and γ4 are positive constants. Of course, (II) implies that
(Mu, u) is differentiable, and we shall suppose for convenience that
(d/dt)(Mu, u) is continuous on (0, T).

The following weighted L2 inequality for the operator L acting
on functions with compact support is basic.

LEMMA 1. Suppose 0 < To < 1 and t0 > 0 is such that t0 + Γo<
1. Assume that u(t) has compact support on [0, T]. Then for all
sufficiently large β > 0, the size depending only on yif i = 1, , 4,
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the following inequality holds:

β2 ΓV'-V '" ' || u \\*dt + C0\
T° r V r ί || Mu \\2dt

(2.2) J o J o

gCΛ V-'||Ltt||!di
Jo

where τ = t + t0 and COf Cλ are absolute constants.

Proof. For convenience we set φ{t) = — (t + to)~β and define
^ = e~φu. Then

L% = ̂ | y + φ'v — Λ6; — Nv] ,

and defining α — a(t) a continuous function from [0, T) to R1 to be
chosen later, we have

= ||i;' + ̂  - aMv - (1 - α)M^ - iSΓ |̂|2 .

Therefore, integrating with respect to t from 0 to To, we find

\e~2φ || Lu ||2 ̂  2 Re f(v' - aMv - Nv, φ'v - (1 - α)Aίi;)

= 2 Re j ̂ ' , v) + 2Jα(l - α) || M̂ ; ||2 - 2^aφ\Mv, v)

- 2 Re f (1 - a)(v'f Mv) + 2 Re ί(l - a){Nv9 Mv)

= I,+ ... +IΛ.

We estimate each of the integrals It\

Iί = \(Φ'\\v\\2)'-\φ"\\v\\2= -\φ"\\v\\2 •

We now restrict the choice of a(t) so that 0 < a < 1/2. Hence

J2 =

We use the Cauchy inequality in J3 to obtain

J3 - -2J(Mi;, α ^ ) ^ - Jδ || ikfi; ||2 - Ji-αV || v |

for any δ > 0. For /4 we employ hypothesis (II) to get

J4 = - 2 Re ί(l - α ) « Mv) = -2Reί( l - a)e~2φ(u' - φ'u, Mu)

= - 2 Re ((1 - a)e-2φ(u', Mu) + 2^(1 - a)e~2φφ'(u, Mu)
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, u) - 7,|| Aftt|| | | a | | - 7* IN II1]

[(i a)e{Mu, u)] - a'e~^(Mu, u)
αί

- 2(1 - a)φ'e-**{Mu, u) - 7,(1 - α)e"2*|| || Λfw || || u ||

- 7«(1 - a)e-^| | t t | | 2 l + 2J(1 - a)e-**φ'(u, Mu)

= \f_-a\Mv, v) - 7,(1 - α) II Aft; II II«II - %d - «)lbll2]

Using the Cauchy inequality again, we find

where

K I « Ί + —(1
2 \ Si ε2

and εί9 ε2 are arbitrary positive quantities. We employ (I) to
estimate J5:

where

dz - 7i(l — α)e3, d4 = 7i(l — α ) — + 2τ2(l — α)

and ε3 is an arbitrary positive quantity. Combining the estimates
for Ilf , 75, we obtain

+ II ΛCv ||«[« — « — Λx — cίβ] .

We choose δ = ^ = cί3 = α/4. Then the coefficient of ||Λft;||2 is
(l/4)(α). Also, we select ε2 = (l/4)α/|α'|, e2 = (l/4)α/τ8(l - α), ε3 =
(l/4)α/7i(l — α). Finally, we set

and taking into account the values φ" = — β(β + l)τ~β~2, φ'2 = β2τ~2β~2
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we get, for sufficiently small kQ and sufficiently large β, the coeffi-
cient of \\v\\2 in the form

where kx is a numerical constant, and clearly β depends only on
the 7t.

We now consider functions u which satisfy a differential
inequality of the form

(2.4) || (Lu)(t) ||2 ̂  τ[ ω(t) + J Vβ)d*] , t e (0, T)

where L is given by (2.1) and

(2.5) ω(t) = || u{t) ||2 + || M(t)u(t) || \\u(t) \\ .

THEOREM 1. Suppose condition (I) holds, and u satisfies (II)
and is a solution of (2.4). If u(0) — 0, then u ΞΞ 0 on [0, T).

Proof. We shall show that u = 0 on [0, Γo) for sufficiently
small Γo. Then a step-by-step procedure establishes the result on
[0, T). Let ε > 0 be given and define the C°° function ζ(t) = 1 for
0 <: ί ^ To - ε, =0 for t ^ Γo, and such that 0 < ζ < 1 for To - ε <
ί < To.

The function ζw satisfies property (II), since

Jί-(M(ζu)9 ζu) - 2Re(AT(ζw), (ζ<)

d w) - 2ζ2 Re (Mu, u') - 2ζζ'(ilί^, u)dt

= ζ(-A-(Mu, u)-2Re (Mu, u')Ί
L dt J

^ ^ ζ 2 [ 7 3 | | M ^ | | | μ | | + 7 4 | | u ! | 2 ]

Properties (i), (ii), and the other hypotheses of Lemma 1 are easily
verified for ζu. Hence we may apply Lemma 1 to the function ζu
to obtain

(2.6) β > 6 / t + °*° ^
S C\ e>*-β || Lu \\*dt + Cx e*-β || L(ζu) \\>dt .

Jo JTQ—S

From (2.4) we find
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+ Ύ p ' V ' " ' Γ<w(s)ds<Zί
Jo Jo

<p-βω(fi)dt + 7\ \ ωW
0 JO Js

Since τ < 1, we have 2/3τ~/3~1 > 1 and so

\ ω(sy*~βdtds ^ γ\ \ 2/3r-^1ft)(s)e2r"ί dtds

0 Js JO Js

Hence

"u{t) "2 + &2Ti+1" M(-t)uit) H2

k2

Thus for β sufficiently large, k2 a sufficiently small constant, and
C1 = 2CX we find

2 ^ τ - ^ 2 1 | u(t) fdt ^ cX° e^"β || L(ζu) \\2dt .
Jro-ε

Since e2 r~ ?τ-^2 ^ β^o-o-' O n [0, To - e] and

we have

Letting β —> + <χ> we find i6 = 0 on [0, To — ε). Since ε is arbitrary
we have u = 0 on [0, Γo).

We may repeat the process on an interval of length less than
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1 beginning at To and thus proceed in a step-by-step manner to
conclude that u = 0 on [0, T).

The method used to obtain Lemma 1 may be adapted to yield
results on the asymptotic behavior of solutions of (2.1) as t—> +oo.
For this purpose we assume that j i f i = 1, 2, 3, 4 in (I) and (II) now
depend on t.

The following inequality is a modification of Lemma 1.

LEMMA 2. Suppose that u(l) = 0. Then there are positive con-
stants k2, kB, k4 such that for sufficiently large β > 0 and all T > 1,
the following inequality holds:

(2.7) -278(ί) - 7,(φ2tβ\\u(t)\\2dt-(l-Ak,T~ηe2Tβ(M(T)u(T)f u{T))

^[Te2tβ\\Lu(t)\\2dt .

Proof We proceed as in the proof of Lemma 1, but choose φ
and a differently. The integrals Iu —,I5 are defined as before,
and we suppose that a = a(t) is such that 0 < a < 1/2. Then if
(2.3) is integrated between 1 and T, we have

I2 = 2 Γ α ( l - α) ||ACι;

I4 ^ - [1 -

where

= - ί ( — | α ' | + —Tad ~ α) + 2τ4(l - a))

= 7i(l - α)e8, ώ4 = 7X(1 - α ) — + 2τ2(l - a)

and εlf ε2, ε3 are arbitrary positive numbers. Thus we find
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( 2 8 ) + JjiM^||2[α - δ - * - 4JΛ +

- [1 - α(Γ)](Jlf(ΓMΓ), v(T)) .

We make the selections

φ= -tβ

9 a = 4k2t~
β

with &2 a constant, 0 < &2 ̂  1/8, so that 0 < a £ 1/2 for t ^ 1. We
choose δ = dx = eίβ = α/4, ε, - (l/4)(α/|α'|), ε2 - (l/4)(α/7.(l - α)),ε8=
(l/4)(α/7χ(l - α)). Then (2.8) becomes

Γ e 2 t β ii ̂  ii2 Γ ̂ 2 -

+ 74) -

-[1- a(T)]e2Tβ(M(T)u(T), u(T)) .

We now select k2 so small and β so large that

β2 - β - 16k2β
2 - 8k2β

2t'β'2 > A;3/3
2 for all t ^ 1

and some positive constant k3; then inequality (2.7) is immediate.
We shall show that solutions of differential inequalities similar

to (2.4) cannot decay too rapidly as t -» + °o without being identi-
cally zero. We consider the inequality

(2.9) || (Lu)(t) ||2 ^ 70(ί) II n(t) ||2 + yδ(t) || Jf(ίM«) || || u(t) \\ .

We assume that u is a solution of (2.9) for all t > 0 which for all
β > 0 satisfies

Iime2 ί | 9 | |w(ί)| |2 = 0 .
ί-»oo

<2 1 0 )

Furthermore, we shall suppose that

), 7B(ί) are
(2.11) 7o(*), 72(t), 74(*) are 0(Γ) asί-^oo for some ^ ^ 0

7<, i = 0,1, , 5, are bounded on compact subsets of (0, oo).

The asymptotic behavior of u is described in the following result.
Since no conditions on u(0+) are required, we relax conditions (i)
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and (ii) by requiring only that ueC\φ, ©O); H).

THEOREM 2. Suppose that u is a solution of (2.9) for all t > 0,
that u 6 CX(0, oo); H), and that (I) and (II) hold. Let yifί = 0,l, , 5,
satisfy (2.11). I/ , m addition, u satisfies (2.10), then u = 0.

Proof We will show that % = 0 o n [ί0, oo) for each t0 > 0. It
suffices to establish this fact for t0 — 2, since the general case
involves only a change of scale which leaves the form of our hy-
potheses unchanged.

Let ζ(ί) be a C°° function such that ζ - 0 for 0 ^ t ^ 1, ζ = 1
for ί ^ 2, and 0 g ζ ^ 1 for 1 ^ ί ^ 2. Define v(t) = ζ(t)u(t). Then
from Lemma 2 we have for any Γ > 2,

+ k2[
Tt-?e2tβ\\Mu\\2

"2 - W ( 7 ? + 7 ϊ ) - 2 τ 2 - 7 / ϊ

- (1 - 4k2T~β)e2Tβ(M(T)u(T), u(T)) -

Since 7Ϊ, i = 1, , 4, are locally bounded, the integrals on the left
from 1 to 2 may be dropped if β is sufficiently large, thus strength-
ening the inequality. Now using (2.9) we obtain

k2[
Tt-βe2tβ\\Mu\\>

(212) + \p*βψ UKΊ1 + 7l) 2 7 a 7i]e iiu I
- (1 - 4k2T-?)e2Tβ(M(T)u(T), u(T))

^ \2e*β\\Lv\\* + ( V [ 7 o | | t t | | « + 7δ\\Mu\\\\u\\] .

With θ any positive constant we substitute the inequality

into (2.12) getting

2^- 2 - ^ ( 7 2 + 7?) - 272 - 7« - - ^ - ^ - χ - 7o]

j> ί | |Lt; | | ί +(l-4Ai,3Γ-')β I Γ ' ( i ί(ΓMΓ),
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The hypotheses (2.11) imply that there is a constant c > 0 such

that

|7i(ί)| ^ ct'1 for t ^ 2, i = 1, 3, 5

|7<(t)| ^ cίn for t ^ 2, i = 0, 2, 4 .

Hence first choosing θ sufficiently small and then choosing β suf-
ficiently large, we find

e2β+1\TJ\Mu\\2t-β[k2 - —θc\

), u(T))

+ βT*-1e?τβ\\u(T)\\2.

Discarding the first integral on the left, we find that for β suf-
ficiently large,

), u(T)) + βT^e2Tβ \\u(T) ||2] .

Because of (2.10), we have βT^e^ ||w(Γ)||2 -^0 as Γ->oo since
βTβ-ίetτβ^e2Tβ+ι i o ΐ a l l sufficiently large Γ. Also, since 0<4&2Γ- ί<
1, we find from (2.10) that

ϊϊm(l - 4k2T-?yT\M(T)u(T), u(T)) S 0 .
T-*co

Thus letting T—>oo in (2.13), and increasing β9 if necessary, we
conclude that u ΞΞ 0 on [2, <χ>).

REMARKS. ( i ) Hypothesis (2.11) is quite restrictive, but the
differential inequality (2.9) is so general that an assumption of a
rate of decay slower than (2.11) yields counterexamples. It also
should be observed that no hypothesis is required on the asymptotic
behavior of N, the antisymmetric part of A.

(ii) The conditions of symmetry and antisymmetry on M and
N, respectively, are actually stronger than is needed and are mainly
for computational convenience in the proofs of Lemmas 1 and 2. In
both Theorems 1 and 2 we could drop the requirement that M be
symmetric, provided that in (II) we replace the term (d/dt)(M(t)u(t),
u(t)) by (d/dt)Re(M(t)u(t),u(t)). For Theorem 2 the second part of
(2.10) would also be replaced by the condition

ϊϊm e2tβ Re (Λf(t)w(ί), u(t)) ^ 0 .
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The antisymmetry of N was used in the proofs of Lemmas 1 and 2
only to eliminate the integral

(2.14) -2[<p'Re(Nv,v)dt

by use of the antisymmetry condition

Re (N(t)w, w) = 0 ,

for all te(0, T) and weDt. (See equation (2.3).) We could weaken
this antisymmetry requirement and still obtain acceptable bounds
on (2.14) by replacing it with an estimate of the form

in the case of Theorem 1, and by

Re(N(t)w, w)^

in the case of Theorem 2. In Theorem 2 we would also require
7β(ί) = 0(ί"x) as t -* + oo. Under these weaker requirements on M
and N the proofs of Theorems 1 and 2 and their lemmas would
follow as before with only minor and obvious changes.

3* Second order linear operators* As in § 2, H denotes a
complex Hubert space and A = A(t) a linear operator on H which,
in general, is unbounded. We suppose the operator A is decom-
posable into

A(t) = M(t) + N(t)

where M is symmetric, N is antisymmetric, and Dt, the domain of
M(t) and N(t), is a linear manifold in H.

The function u: [0, T) —»H is assumed to satisfy the following
regularity conditions, the derivatives of u being taken in the strong
sense:

(iii) u 6 Cι([0, T); H) n C2((0, T); H)
(iv) \\u"(t)\\ ̂  Kx on (0, Γ); K, a constant
(v) u(t)eDt, ίe(0, T).
In addition, the operators M and N in acting on u are assumed

to satisfy the regularity conditions:
(vi) Mu and Nu e C((0, Γ); H)
(vii) ||AΓ(ί)M(ί)||, ||iV(i)w(t)|| ^ if2 on (0, Γ), K2 a constant.
Let 7ί, ou vif i = 1,2, 3, be nonnegative continuous functions on

(0, T). We define for all t e (0, T) the functions

= 7<(ί) II tt(t) II2 + ^(ί) II u'(t) ||2 + v/ί) |(Af(«Mί), u(t)) I , i = 1, 2, 3 .
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In addition to the continuous differentiability on (0, T) of the functions
Re (N(t)u(t), u\t)) and (M(t)u(t), u(t)), we assume the following three
basic restrictions on the operators M and N, which are required to
hold for functions u satisfying (iii)-(vii):

(A) (d/dt) Re (N(t)u(t), u'(t)) - Re (N(t)u(t), u"(t)) ^ -F^t)
(B) (d/dt)(M(t)u(t), u(t)) - 2 Re (M(t)u(t\ u\t)) ^ -FJf)
(C) Re (M(t)u(t), N(t)u(t)) ^ -Fb(t).

Conditions (A) and (B) are useful for integration by parts, while
condition (C) is a restriction on the relation between M and N. For
example, if M and N commute, then the left side of (C) vanishes
and the condition is satisfied automatically.

For the second order differential operator

Lu = — - An = u" - Mu- Nu
dt2

the following weighted L2-inequality is basic for the subsequent
theorems.

LEMMA 3. Let t0, To be positive numbers with t0 + To < 1, Γo<

T. Suppose u satisfies (iii)-(vii) and that (A), (B), and (C) hold.

Assume

u(0) = u'(0) = u(T0) = u'(T0) - 0 .

Define τ — t + t0. Then for β sufficiently large the following in-
equality holds:

+ 2Γ0 e^-\vx + βτ-fi-1^ + vz]\{M{t)u{t), u(t))\dt .
Jo

Proof. We set <p(t) = -τ~β = ~-(t + £0)~Λ and define v
Then

e-2^||L^||2 = II v" + 2^V + (^')2^ + φ"v - Mv - Nv\\2

It follows that

^ 2 Re Γ° (v" + (φ')2v - Mv, 2φ'v' + φ"v - Nv)dt .
Jo
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With all integrations from 0 to To, we have

\e~^\\Lu\\*dt ^ 4 Re ( φ'(v", v') + 2Re \φ"(v", v)

+ 4 Re\(φ'y(v, v') + 2\(φ'fφ" || v ||2 - 2 Re \(v", Nv)
(3.2) J J J

- 4 Re\φ'(Mv, v') - 2\φ"(Mv, i») + 2Ee \{Mv, Nv)

= I, + J2 + + I 8 .

Using integration by parts in Iu /2, and Iz, we find

J, = 2 ί?>V, « 0 ' = -2J9>"ll«'llt

/2 = 2 Re J^"[(i;', v)' - {v\ v')] = - 2 Re ^ " V , Φ) -

i 3 = 2

Thus we obtain

I, + I2 + I, + It = -4^φ" || v'

Since ψ" < 0, we see that

- φ'u\\2

Hence

To estimate /5 we employ (A) and get

J6 = - 2 Re \e-^(u" - 2φ'u' + (φ'fu - φ"u, Nn)

= - 2 Re \e~*v{u", Nn) + 4Re [e'^φ'iu', Nu)
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^ _2Ϊ e-^ — [ R e («', Nu)] - 2 \e-^F1{t) + A Re ( < Γ 2 V « Nu)
i at J J

We apply (B) to /„ and take into account that ψ' > 0 to obtain

Jβ = - 4 Re [e-2φφ'{Mu, u' - φ'u)

^ -2ίe-2vΓ-$-(Mu, u) + F,(t)~\ + άe-^iφ'fiMu, u)

= 2\e-^φ"(Mu, u) - 2 \e-^φ'F2{t) .

Combining 76 and I7, we have

I. + Λ ^ -2.\e-"fφ'F2{t) .

Finally, we apply (C) to I8 and find

2, ^ -

Thus,

| - 27s]
(3.3) J L ό Δ

\\W||2[-<P" - 2 ^ - 2^V2 - 2σ3]

Substitution of φ = —τ"^ into (3.3) and the selection of /3 sufficiently
large yields (3.1).

Lemma 3 provides results on the uniqueness of the Cauchy
problem for second order equations and inequalities in which Lu is
the principal part. The next theorem does not impose bounds on
the symmetric form (Mu, u).

THEOREM 3. Suppose u satisfies (iii)-(vii) and that M and N
satisfy conditions (A), (B), (C). Suppose also that yi9 Oi are bounded
and that vi — 0, i = 1, 2, 3. Let u satisfy the differential inequality

(3.4) || (Lu)(t) ||2 ^ C0[α>(ί) + ^ω(s)ds ], t e (0, Γ) ,
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where Co is a positive constant and

If u(0) = u'(0) = 0, then u = 0 on [0, T).

Proof. For β sufficiently large, inequality (3.1) takes the form

-4 li»II2 + /3V-*-21| u' f]dt

e2τ~β\\Lu\\2dt
o

provided u also satisfies u(T0) = w'(T0) = 0. We introduce the func-
tion ζ(t) as in the proof of Theorem 1 and follow exactly the same
procedure used there to conclude that u == 0.

The next result allows us to weaken the hypotheses considerably
by requiring only that the functions vtf i = 1, 2, 3, are bounded.
However, we must then impose a one-sided bound on (Mu, u). Speci-
fically, we employ one of the conditions

On (0, T), u satisfies

(Mlt)u(t), u(t)) ^ 74(ί)||^(ί)||2 + σ4(t)\\u'(t)\\* .

(D2) On (0, T), u satisfies

(M(t)u(t), n{t)) ^ -74(ί)|N(ί)||8 - <74(*)|N'(ί)||2,

where τ4, o± are nonnegative continous functions on (0, T).

THEOREM 4. Suppose u satisfies (iii)-(vii) and that M. and N
satisfy conditions (A), (B), (C), with yif σiy vif i — 1, 2, 3, bounded on
(0, T). Also suppose that either (DJ or (D2) holds with τ4, o± bounded
functions. Assume that u satisfies the differential inequality

(3.5) || (Lu)(t) ||2 S C^μ(t) + j/(*)<**], * 6 (0, T) ,

where Cx is a positive constant and

μ(t) Ξ || u(jt) ||2 + || u'(t) ||2 + I (M(t)u(t), u{t)) \ .

If w(0) = ̂ '(O) = 0, tλen u = 0 on [0, T).

Proof. We write

, u) | = 17« Hull1 + σ.Wu'f - (Mu, u) - y,\\uf - σ,|
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If (D,) holds, then

\(Mu, u)\ ^ 2τ41|w||2 + 2<74||u'||2 - (Mu, u) .

In a similar way, if (D2) holds, we have

\(Mu, u)\ £ 274 |μ|Γ + 2σ4H^||2 + (Mu, u) .

If either (DJ or (D2) holds and with φ = — τ~β, the above
inequalities yield

(3.6)
, u) I dt

Γ° e~2φφ\Mu, u)dt
Jo

We have the identity

<
f\n, || u ||2 + σ, \\ u' f]dt .

\Mu, u) = \e-^φ' Re(~Lu + u" - iVu, u)

2 ^ f Re (L^, w) + ίβ~2V Re (uff, u) = Jx + J2 .

For Jx we use the elementary estimate

+ -«•(?>? i w r

to get

For J2 we integrate by parts twice and obtain

J2 -

Thus we find

I \e-^φ\Mny u) ^ ί β~2^ || Lu ||2

(3.7)

We now substitute (3.7) into the right side of (3.6) and compute
the derivatives of φ to find for sufficiently large βf
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, u)\ ^ ίe2^"| |Ltt| |2

(3.8) + j^-'fβ/S Γ- '- + 2βτ-?-ιy4] || u ||2

We multiply (3.8) by βm and add the result to (3.1) getting

Jo

Jo

(3.9) - 2βτ~f-1σ1 - /38/2(l + 2σi)τ^~1] || «' ||2

-1 - 2(Vχ + v.) - 2/Sv2τ-^1]|(Mtt, it) I

Since the fixed functions yif σi9 vt are bounded, we may choose β
so large in (3.9) that the following simplified version is valid:

— θ 4 Γ V Γ ~ ^ ~ Ί I ^ I Γ + — β2\T° e?τ~βτ-β-2\\u'\\2

2 Jo 2 J

, u)\ ^ 2/31/2Γ° e2

To complete the proof, we introduce the function ζ(t) and follow
the same procedure as in the proof of Theorem 1. We omit the
details.

We now obtain a result for the asymptotic behavior of solutions
of second order differential inequalities which is analogous to that
obtained in Section 2 for first order inequalities. We require the
following regularity conditions:

(viii) ueC\(0, «>); H)
(ix) u(t) e A for all t e (0, °o)
( x ) Mu and NueC((0, oo); H).

We further require conditions (A) and (C) with T = + oo, but Condi-
tion (B) is replaced by the following conditions, which hold for
functions u satisfying (viii)-(x):

(BO (Λfu, u) is continuously differentiate for ie(0, oo)
(B2) (dldt){M(t)u{t\ u{t)) - 2 Re (Λί(ί)w(ί), u'{t)) £

|u\t) ||2 + v2{t)I{M(t)u{t\ u(t))|.

LEMMA 4. Suppose that u satisfies (viii)-(x), that (A) and (C)
hold with T— +°°, α̂ icί ίfeαί Λί satisfies (BO α̂ tcί (B2). 1/ %(1) =
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tt'(l) = 0, then for β sufficiently large and for all T > 1, the follow-
ing inequality holds:

- 2ys(t)]euβ\\u(t)\\2dt

2 ί ί \\u'(t)ψdt

2/StΓ'||w'(Γ)||t + 2Re(i*'(Γ),

N(T)u(T)) -
ί ) , u{t))\dt

Proof. We proceed as in the proof of Lemma 3 except that we
integrate from 1 to Γ and choose φ = —tβ. The integrand is the
same as in (3.2) but we observe that φ{k) < 0 for all positive inte-
gers &. When evaluating the integrals Iu •••, Is in (3.2), the evalua-
tions at the upper limit must be taken into account since u does
not necessarily vanish for t = T. Thus we find

I2 = 2Reφ"(T)(v\T), v(T)) - <p"

+

J 3 =

We use the same estimates on the integrals ii + + Z, as in
Lemma 3. However, to simplify the non-integrated terms, we use
the inequalities

2φ'\\v'\\2 = 2ψ'e-^\\u' - φ'uf

^Vβ-niitt'ir + WlNΠ
and

2φ" Re (vf, v) = 2φ"e-*r Re « u) - 2φ'φ"e~^ || u ||2

^ e-*v[φ"\\u'\\* + φ"\\u\\2 - 2φ'φ"\\u\\*] .

Hence

- 2ψ'(T)φ"{T)\

|u\T) ||2
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The estimate for the integral I5 in Lemma 3 becomes

(3.12) I5 ^ - 2e~2^T) Re (u\T), N(T)u(T)) - 2

As for /6, we apply (i?2) and take into account that φf < 0 to obtain

(3.13) /β + J7 ^ -29'(Γ)β-2^(y)(ikf(T

The term J8 is unchanged so that

(3.14) Jβ ^ -

The inequality (3.10) results from combining (3.11)-(3.14) for the
integrals Iί9 , J8 and taking β sufficiently large.

To establish restrictions on maximal rates of decay for solutions
of second order equations and inequalities, we introduce the follow-
ing conditions:

(EJ Iimβ2"[||t*(*)ll2 + \\u\t)\\2] = 0, for all β > 0

(E2) Πϊn e2tβ Re (N(t)u(t\ u\t)) ^ 0, for all β > 0

(E3) lim e2tβ(M(t)u(t), u(t)) ^ 0, for all β > 0.

We establish two results, the first of which requires no bound on
{Mu, u).

THEOREM 5. Suppose that u satisfies (viii)-(x), that (A) and (C)
hold with Γ = +oo, and that M satisfies (Bx) and (B2). Assume
that Vi = 0, i = 1, 2, 3, and that σif Ti satisfy

1 K , ^.(ί) O ( r ) as ί >oo
^(t), cτ8(ί), 7i(ί), 72(ί), 78(ί) = O(ίn) as t »oo for some n ^ 0 .

Let u be a solution for all t > 0 of the differential inequality

[l(L^)(ί)||2^C2(ί)[||^)||2+ \\u'(t)\n

where C2 is a nonnegative continuous function with

C2(t) = O(ίn) as t >oo #

// % satisfies (Ex), (E2), a^ώ (Es), ίfee^ u ΞΞ 0.

Proof Under the additional assumption %(1) = ^'(1) = 0, ine-
quality (3.10) results. We introduce the function ζ(ί) as in the
proof of Theorem 2 and proceed along similar lines. The details
are omitted.
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THEOREM 6. Suppose that u satisfies (viii)-(x), that (A) and
(C) hold with T = +00, that M satisfies (BJ and (B2), and that (DΣ)
or (D2) feoZds with T = + 00. Assume that

σ2, v2 are O^"1) as £ >oo ,

,̂ ẑ , 7j are O(ίn) as £ ><>o for some n ^ 0 awd i — 1, 3, j =
1, 2, 3, 4, ami £/ιa£ σ4 is bounded. Let u be a solution for all t > 0
of the differential inequality

\\(Lu)(t)\\2 £ C8(ί)[||tt(ί)||2 + | K t ) | | 2 + \{M{t)uit\ u(t))\

where C3 is a nonnegative continuous function with

C3(ί) = O(ίn) as ί >co .

1/ u satisfies (EJ, (E2), a^ώ (E3), then u = 0.

Proof We first suppose u(l) = u'(l) = 0 and establish an
extension of (3.10) under the hypothesis that either (A) or (D2)
holds. The technique is similar to that used in the proof of
Theorem 4. We set φ(t) = -tβ and define ψ(t) = tβ~\ Then if either
(D2) or (D2) holds, we have (as in (3.6))

T CT

e~2φψ I (Mn9 u)\dt<. \ e~2φψ(Mu, u)dt
1 J l

Also,

, u) = - ί e " 2 ^ Re (Lw, w) + ί e ~ 2 ^ Re (%", u) =

In J3 we use the estimate

In /4 we integrate by parts and find

Γ),u(Γ))-i-^Γ)| |tt(Γ)| |2 + 9 f(ΓW

We estimate the quantity

\f(T)(u\T),u(T))\ ^ | |^( ^
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and insert this inequality into the right side of the above expression
for J4. Hence we obtain

\Tenβtβ-2\(Mu, u ) \ d t £ [Te2tβ\\Lu\\
Jo Ji

( 8 Λ β ) + \\[6βΨ + 2^7 4 ] || u ||2

We multiply (3.16) by βV2 and add the result to (3.10) getting

-* - 2(7i + 7s) - 2/9ί>-172 - 6/37/2f^4 - 2 iS
8 / ίt^2τ4]| |tt | |2

^ f i - / 3 2 ^ - 2 - 2 ( ^ + ^ 3 ) - 2 / 3 ^ " ^
Ji L2 J

(3.17) + J V ' [ / W 8 - 2(vλ + vz) - 2βtβ~2v2]\ (My,, n)\

+ e2Tβ[2Re(N(T)u(T), u\T)) - 2βT?-1(M(T)u(T),

For β sufficiently large (3.17) implies the inequality

MTe2tββψ-2\\u'\\2

4 Ji

, u)\ ^+
2

+ e2Tβ[l0β*T*β\\u(T)\\2

+ 2 Re (N(T)u(T), u\T)) - 2βTβ~\M(T)u{T), u(T))] .
The remainder of the proof follows as in the proof of Theorem 2,
and we omit the details.

REMARKS. AS in § 2, we may relax the requirements of sym-
metry and anti-symmetry on M and N, respectively, and the results
of this section remain valid. We may drop the requirement that
M be symmetric if in all our conditions the symmetric form (Mu, u)
is replaced by the expression Re (Mu, u). This change would be
made, for example, in conditions (A)-(G), (DJ, (D2), (E8), and in the
definition of Ft(t). The condition of anti-symmetry on N may be
replaced by the weaker condition
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Re (N(t)u(t), u(t)) ^ -fit) || u{t) | | 2 ,

where 75 is required to be bounded for Theorems 3 and 4, and
<γ5(£) = O(tn) as t -» + oo for Theorems 5 and 6. Under these weaker
requirements on M and N the proofs of the results of this section
require only minor and obvious changes.

4* First order nonlinear operators* Let A = A(t) be an
operator, in general nonlinear and unbounded, on a complex Hubert
space H. Let Dt be the domain of A(t) in H. We consider differ-
ential inequalities involving the first order operator

(Lu)(t) = u\t) - A(t)u(t) .

We assume that solutions u satisfy the following regularity condi-
tions on [0, T) (where T may be +°o):

ueC([0,T); H) n C m Γ); H)

u(t)eDt, «6(0, Γ ) .

For our first result the only requirement we impose on the operator
A is one of semi-boundedness. We assume either

(Px) Re (A(ίMί), u(ί)) ^ τ(ί) || w(ί) ||2, ί e (0, Γ) or
(P2) Re (A(t)u(t), u{t)) ^ - 7 (*) II w(t) II2, « e (0, Γ),

where 7 is nonnegative and continuous on (0, Γ). For certain first
order inequalities we show that under hypothesis (Pi) solutions of
the Cauchy problem which vanish initially must vanish for all time,
while under hypothesis (P2) solutions cannot decay too rapidly, a
result which implies that a solution which does not vanish initially
can never vanish at any finite time.

THEOREM 7. Let u satisfy conditions (4.1), and suppose that
u satisfies the differential inequality

(4.2) I] Lu(t) ||2 ^ Kt{t)[\ Re (A(t)u(t), u{t)) \ + K2(t) II n{t) | |2], t e (0, T) .

Assume that Klf iζ>, and 7 are nonnegative and continuous, on
(0, T) and are in 2 (̂0, T); define

a(jt) = jT4τ(β) + ^Kάfi) + 2Kls)\ds, t ^ 0 .

(a) // condition (Px) holds, then

\\u{t)\\*^\\u{0)\\*eaW, *e[0, Γ ) .

(b) // condition (P2) holds, then
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I M * ) | | 2 ^ \\u(0)\\*e-*w, ί e [ 0 , Γ ) .

Proof. We have, for t e (0, T),

d ]\u(t)\\2 - 2Re(tt(ί), n\t))
dt

(4.3)
= 2 Re (%(ί), Lw(t)) + 2 Re (u(t), A(t)u(t))
^ δ(ί) || Lu(t) ||2 + δ(ί)-11| u(t) ||2 + 2 Re (%(«

where 8(t) is any positive quantity. From (4.2) and (Pt) we find

W* - Re(A^, u) - τ | | ^ | | 2 |

(2τ£Ί + Ϊ A ) II u ||2 - K, Re (Aw,

At points where JKi(ί) > 0 we select δ(t) = 2K1(t)~1 and obtain

(4.4) -A- || v(ί) ||2 ^ [4τ(ί) + ̂ ί i ( ί ) + 2K2(t)]\\u(t)\\2 = «'

At points where ϋΓ ί̂) = 0 we see from (4.2) that (Lu)(t) = 0, and
(4.4) follows from the first part of (4.3) and (PO. Hence (4.4) holds
for all t 6 (0, T), and integration yields

Thus (a) is established. Part (b) is proved similarly, but with the
inequalities reversed.

REMARK. Theorem 7 is an extension of known growth and
decay results, the feature here being the inclusion of the term
|Re(A(ί)tt(t), u(t))\ in the right-hand side of the inequality (4.2).

If the nonlinear operator A satisfies a differentiability condition,
we may obtain similar results for more general first order inequali-
ties. We perturb A by another operator B = B(t), also possibly
nonlinear, with the domain Dt of B(t) the same as that of A(t).
The operator L becomes

(4.5) (Lu)(t) = u\t) - A(t)u(t) - B(t)u(t) .

We require conditions (4.1) and either (Px) or (P2), and we assume

(4.6) 7(ί) ^ To = constant, 70 ^ 0 for all t e (0, T) .

We assume the following differentiability condition on A:
(Q) The function Re (Au, u) is continuously differentiate on

(0, T), and
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-j- Re (A(t)u(t), u(t)) - 2 Re (A(t)u(t), u'(t))
a%

We further assume for t e (0, T) the condition
(R) Re(A(t)u(t), B{t)u{t)) ^ -72(t)\\u(t)\\> - v2{t)\\A{t)u{t)\\ \\u(t)\\

and either

(S,) Re (B(fiMt), u(t)) S T8(ί) II w(ί) II2 +
or

(S2) Re (B(«Mί), w(ί)) ^ -7 3 (ί) || u(t) ||2 - p8(ί) || A{t)n{t) || ||

THEOREM 8. Suppose that u and the operators A and B satisfy
(4.1), (Q), and (R), and that (4.6) holds. Let Lu be given by (4.5),
and suppose that u satisfies the differential inequality

(4.7) || Lu(t) ||2 ^ Ύι(t) || tt(ί) ||2 + v,(t) \\A{t)u{t) \\ || w(ί) ||, t e (0, Γ ) .

Assume that for i = 1, , 4 eαcfc 7€ α-̂ cZ v̂  is continuous on (0, Γ)

and JieLJfi, T), ^ 6 ^ ( 0 , T).

Σ , ί G (0, Γ) ,

/or some suitably large positive constant C09 and let C = j 0 + 1.
(a) Suppose (Px) and (Sx) feoiίZ. Define

p{t) = cH^OOII2 - Re(A(t)u(t), u(t)), t e (0, T) .

Then

|| uit) ||2 ^ p(t) ^ e^(ί) lim p(ε), t e (0, Γ) .
ε-»0+

Hence if

(4.8) M(0) = 0, Tim Re (A(t)u(t)9 u(t)) ^ 0 ,
t->0 +

then u = 0 on [0, Γ).
(b) Suppose (P2) α^d (S2) feoίcί. 1^ this case define

p(t) = c | |u(ί) | | 2 + Re(A(t)u(t), u{t)) .

Then

p(t) ^ e ^ ^ ί ϊ m ^ ε ) ^ e-β(t)\\u(0)\\2 .
ε->0+

/ί follows that if either u(0) Φ 0 or ϊϊmt_0+ Re (A(ί)u(ί), %(ί)) > 0,
then u(t) Φ 0 for all t in (0, T).

Proof. We first prove (a). Let c = τ 0 + 1. We define a func-
tion o on (0, T) by
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(4.9) p(f) = e || u(t) f - Re (A(t)u(t), u(t)) .

Then from (PO and (4.6) we have

p(t) ^ \\u(t)\\\ ίe(0, Γ).

Moreover, p is continuously differentiable on (0, T) and

(4.10) p' = 2c Re (u, u') f- Re (Au, u) .

Using (4.5), (Pi), (4.7), (SO, and Cauchy's inequality, we obtain

2c Re (u, u') = 2c Re [(u, Lu) + (u, Au) + (u, Bu)]

^ (c21| u |Γ + || Lu i|2 + 2c(c || u ||2) + 2c Re (u, Bu)

^ 3c21| u ||2 + (741| tt||2 + v41| Au || || u ||) + 2c(78|NH2 + v8||Aw|| |M|)

^ (3c2 + 74 + 2c73 + \v\ + 3c2v2)||w||2 + (\ + 4-)M«ll2

\ 4 / V 3 3 /

Similarly, using (Q), (4.5), (R), (4.7), and Cauchy's inequality, we
find

d Re (Au, u) ^ - 2 Re (Aw, w') + 7i | |«| |2 + ^ || Au || || w ||
dt

^ - 2 Re [(Au, Lu) + (Au, Au) + (Au, Bu)]
l lo , X I ] 4 1)2

2(72||«|

S ( ^ + 272 + 374 + ^v\ + Zv\ + ¥Lv\) || u ||2 - - |

We substitute these estimates into (4.10) and find that there exists
a constant c0 > 0 such that

p' ^ co[l + g (7, + v2)]|| w ||2, ί e (0, Γ) .

We define the function

β(t) = βbjjl + Σ (?«(«) + y^s)2)]^^, t e (0, T) .j Σ
Then

, 16 (0, Γ) ,
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and integration yields, for any ε > 0,

pit) ^ eβit)-β{t)p(e), 0 < ε < t .

Letting ε tend to 0, we obtain

\\u(t)\\2 ^ p(t) ^ eβW Kmp(e) .

From (4.8) it follows that lim p(e) — 0 as ε —> 0+, and hence u = 0
on [0, Γ).

In order to prove (b), instead of (4.9) we make the definition

p(t) = c\\u(jt)\\2 + Re(A(ίMί), w(ί)) .

Making similar estimates as in the proof of (a), but with the
inequalities reversed, we arrive at the inequality

ρ\t) ^ -β'it) pit)

which yields

pit) ^ e-ίβ{t)-β{tUp(e), 0 < ε < t .

Letting ε tend to 0 we find

p{t) ^ e~βW Tim /9(e) ^ β^ ( ί ) || w(0) ||2 .
ε->0+

Hence, if either u(0) ^ 0 or ϊϊmt^0+ Re (A(ί)w(ί), w(ί)) > 0, then p(ί)>
0 for t > 0, which implies u(t) Φ 0.

5* Second order nonlinear operators* In this section we
apply the methods of § 4 to nonlinear differential inequalities of the
second order. We will show under rather general conditions that
solutions with zero Cauchy data initially must vanish identically,
and solutions with nonzero initial Cauchy data cannot have vanish-
ing Cauchy data at a later time.

Again let A(t) and B(t) denote operators, both in general non-
linear and unbounded, on a complex Hubert space H. Let Dt be
the domain in H of A(t) and B(t), and let L be the second order
operator

(5.1) iLu)it) = u"(t) - A(t)u(t) - B(t)u(t) .

We assume the regularity conditions

( 5 2 ) ueC\[09T); H) n C2((0, Γ); H)

u(t)eDt9 t e ( 0 , Γ ) .

We impose on the operator A the condition
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(Γ) Re(A(t)u(t), u(t)) <Ξ τ| |tt(ί)| |2 + σ\\u\t)\\\ te(O, T) ,

where y, σ are positive constants, with

(5.3) 0 < σ < 1 .

Let 7i, σt, vu i = 1,2., 3, be positive and continuous functions on
(0, T). We require further that the function Re {Au, u) be conti-
nuously differentiable on (0, Γ), and that one of the two following
inequalities holds:

— Re (A(t)u(t), u(t)) - 2 Re (A(t)u(t), u'{t))
(U0 dt

S: - γ i ( ί) | | t t ( ί) | | 2 - ^(i)| |tt'(i)| |2 - y i «) | Re (A(ί)it(t), u(t))\

or

- ^ - Re (A(ί)tt(ί), tt(ί)) - 2 Re
(U2) ^

+ σx(ί) || u\t) |P + y i(ί) I Re (A(t)u(t), u{t)) \ .

We also impose one of t h e conditions

Re (tt'(ί), B(ί)tt(ί)) ^ 72(ί) || M(ί) II2 + σ2(t) || M '

+ v,(ί) I Re (A(t)u(t), u(t)) I

or

Re (tι'(ί),

We note that (T) is a one-sided bound on Re (Au, u) which is satis-
fied if the more restrictive inequality

Re(Au, u) ^k(\\u\\2 + | | w | | | | ^ | l )

holds for some positive constant k. The conditions (UO and (U2),
as in all such hypotheses, allow integration by parts. In fact, if A
is symmetric and has a derivative A', then these conditions are
one-sided restrictions on the graph of A'.

THEOREM 9. Suppose that u satisfies conditions (5.2) and the
differential inequality

\\Lu{t)ψ ̂  78(ί)IN(ί)||2 + σz{t)\W(t)f + v8(ί)|Re(A(tMί), u(t))\ ,
(5.4)

ί e ( 0 , Γ ) .

Let 7i, oί9 ι*if i = 1,2, 3, be continuous positive functions in Lx(0, Γ).
Define



86 G. N. HILE AND M. H. PROTTER

pit) = c\\u(t)\\* + ||tt'(ί)||2 - Re(A(ίMί), nit)), ί 6(0, T) ,

+ Σ (Ύ*(S) + <r,(β) + yi(s))]ds, 16 (0, Γ ) ,

where c = j + 1, α»<ϊ c0 is α suitably large positive constant.
(a) 7/ (T), (Ux), αwd (VJ

- σ) || «'(*) ||2 ̂  ^(ί) <ϊ e*(i> Urn p(ε), t e (0, T) .
ε+0+

Hence if

(5.5) M(0) = %'(0) = 0, Πm Re (A(t)u(t), u(t)) ^ 0 ,

ίfeew % Ξ= 0 o» [0, Γ).
(b) If (T), (U2), and (V2) hold, then

p(t) ^ e-w Πmp(ε) ^ e-^[\\u(0) ||2 + (1 - σ) |K(0) | |2], 16(0, T) .
ε->0+

Jί follows that if either u(0) Φ 0, u'(0) Φ 0, or lim^0+ Re (A(t)u(t),
u(ί))<0, ί/ιeτt u(t) and u'(t) cannot vanish simultaneously for any
t in (0, T).

Proof We first prove (a). We let c = 7 + 1, and define a
function ^ on (0, T) by

(5.7) ,o(e) Ξ= c II w(ί) ||2 + II u\t) ||2 - Re (A(ί)w(ί), w(ί)) .

Prom (T) and (5.3) we obtain

(5.8) p{t)^\\u{t)\\2 + (X-o)\\u\t)\\'.

Moreover, ^ is continuously difFerentiable on (0, Γ), and

(5.9) p' = 2c Re (u, u') + 2 Re (%', u") — Re (Au, u) .
dt

Cauchy's inequality gives

(5.10) 2c Re (u, ur) ̂  c \\ u ||2 + c \\ u' ||2 .

Using (VΊ), (5.4), and Cauchy's inequality we obtain

2 Re (u\ u") = 2 Re [ « Lw) + « Au) + (ί̂ f,
+ 2Re(u',Au)

(5.11) + (2γ 2 |M| 2 + 2 σ 2 | | ^ | | 2 + 2v2 |Re(A^, u)\)

^ (2τ2 + 7a)\\u||2 + (2<72 + σ3 + 1)IIu' | |2

+ (2v2 + v3) I Re (Au, u) \ + 2 Re «
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Combining (5.9) — (5.11) and (Ut) gives

p' ^(e + Ύι + 2γ2 + 73)|M|2 + (1 + c + σt + 2σ2

+ (yx + 2v2 + y,)| Re (A«, u)\ .

We also have the estimate

\Re(Au,u)\ = \c\\u\\>+ \\u'\\*-Re(Au,u)-c\\u\\>- \\u'\

£p + c\\u\\*+\\u'\\*,

and also from (5.8),

(5.14) IMPsSiO, U t t ' H ^ α - σ ) - ^ .

Hence, upon combining (5.12)-(5.14) we find that there exists a
constant c0 > 0 such that

p' ^ co[l + Σ

We define

β(t) s

Then

(5.13) p\t) ^ β'(t)p(t), t e (0, Γ) ,

and integration yields, for 0 < e < t,

pit) ^ e^-^piε) .

Letting s tend to 0, we obtain

IK*)II2 + (1 - σ)\\u\t)ψ ^ p(t) ^ e^

Prom (5.5) it follows that Km p(e) = 0 as ε —> 0+, and hence w Ξ 0
on [0, Γ).

The proof of (b) is similar to that of (a), but the inequalities
are reversed. Instead of (5.13) we arrive at the inequality

ρ ' ( t ) ^ -β'(f)pQb), * 6 ( 0 , Γ ) ,

which yields

p(t) ^ e-u{t)-βWp(ε), 0 < ε < t

and hence

e~^(ί) Πϊn |θ(e) .
e->0+
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If either u(0) Φ 0, u'(0) Φ 0, or l i m ^ Re (A(t)u(t), u(t)) < 0, then
111̂ 0̂+ ρ(ε) > 0, and ρ(t) > 0 for t > 0. But p(t) > 0 implies u(t) and
n\t) cannot vanish simultaneously.
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