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PROJECTIVE COLORINGS

A. W. HALES AND E. G. STRAUS

All colorings of the points of (Desarguesian) projective
planes in three colors so that no straight line contains points
of all three colors are characterized in terms of the valua-
tions of the field of coordinates. Generalizations to higher
dimensions and applications to the Fundamental Theorem of
Projective Geometry and the division of polygons into dis-
joint triangles of equal areas are given. We restrict our
discussion to the Pappian (commutative coordinate field) case.
For the general division ring case see [3].

1* Introduction* M. Bognar (Budapest University) recently
posed the following question: can the points of the real projective
plane be colored in three colors (nontrivially) so that no line contains
all three colors? Here nontrivial means that no color is confined
to one line. For the affine plane this question had been answered
in the affirmative in [6]. In this paper we give a complete char-
acterization of these colorings and extend our results in various
directions (other fields, higher dimensions, and curves of higher
degree). The results involve a nontrivial blending of combinatorics
and valuation theory. In § 5, we give a generalization of the
fundamental theorem of projective geometry suggested by our
results. In § 6 we extend results of [6] to the division of polygons
into disjoint triangles of equal areas.

After this paper was written we learned of the work of D. S.
Carter and A. Vogt [3]. We wish to acknowledge their priority,
especially in the discovery of Theorems 1 and 5 of this paper. In
view of our somewhat different approach we give the comparatively
short proofs of these two theorems.

2* Colorings of projective planes* Let P2(F) denote the
projective plane over the field F. (For convenience we assume F
to be commutative, although it does not appear necessary for our
results. It is not clear, however, whether our results extend to
the non-Desarguesian case.) We wish to color the points of P2(F)
in three colors, say red, white, and blue, so that no line contains
points of all three colors. To avoid trivialities we assume, of course,
that each color is used at least once. One type of coloring can be
obtained by coloring a point p red, say, and coloring each line
through p (with p deleted) either solid white or solid blue, randomly.
Another type, essentially the dual of the above, is obtained by
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coloring the points on a line I either white or blue, randomly, and
coloring all points not on I red. We shall call colorings of either
of the above types trivial. Notice the following easily verified
facts:

(a) the trivial colorings are precisely the ones in which some
color is confined to a line.

(b) a coloring in which some line contains only one point of a
given color must be trivial.

(c) a three-coloring of the points of P2(F) leads to a dual three-
coloring of the lines of P2(F) by the pairs of colors RW, RB, or
WB of the points of the line. This coloring has the property that
the lines of a pencil involve exactly two of those colors. Note
that for the corresponding coloring of the affine plane not every
line may be two-colored. Thus the dual coloring of the lines of
the affine plane exists for the trivial coloring of the first kind in
which no two colors are restricted to a single line, but not for the
trivial coloring of the second kind.

(d) the two types of trivial colorings have in common colorings
in which one point p is red, say, all points on a line I through p
are white (except p), and all points not on I are blue. We call
such a coloring a flag coloring.

We show that there is an intimate, and rather surprising, con-
nection between colorings of P2(F) and valuations on F (see also
[3, Theorem 3.7]).

THEOREM 1. The protective plane P2(F) has a nontrivial 3-
coloring with no 3-colored lines if and only if the field F has a
nontrivial non-Archimedean valuation.

Before proceeding to the proof we mention several consequences.

COROLLARY. P2(F) has no nontrivial coloring if and only if
F is an algebraic extension of a finite field.

For a discussion of valuations see e.g., [5, XII, 4].

Hence P2(B) has a nontrivial coloring whereas, for instance,
finite projective planes do not. Our proof of Theorem 1 will in
fact show that nontrivial colorings of P2(F) are induced from
trivial colorings of P2(F) where F is the residue class field of F
with respect to some valuation. This, together with the noncon-
structive nature of valuations on R yields the following.

COROLLARY. All measurable colorings of P2(R) are trivial, and
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the existence of nontrivial colorings cannot be proved without the
Axiom of Choice.

No nontrivial valuation ring of R can be measurable, since JB
has no proper subgroup of positive measure. For the relation to
the Axiom of Choice see e.g., [2].

We now proceed to the proof of Theorem 1.

Proof First, suppose that there is a nontrivial non-Archimedean
valuation x-+\x\ on F. Let ^ = {x\\x| <Ξ 1} be the associated
valuation ring, ^ = {x \ \ x | < 1} its maximal ideal, and F = &\^€
the residue class field. We color P2{F) as follows:

Choose a homogeneous coordinate system (x, y, z)eFs for P2(F).
Then color a point p = (x, y, z) as follows:

( 1 ) r e d i f \ x \ < \ z \ , \ y \ < \ z
( 2 ) w h i t e i f \ x \ ^ \ z \ , \ y \ < \ x \
( 3 ) b l u e i f \ y \ ^ \ z \ , \ y \ ^ \ x \ .
It is easy to see that this gives a nontrivial 3-coloring of P2(F).

To see that no line is 3-colored suppose that pt = (xif yίf zt), i = l,2, 3,
are points with pι red, p2 white, and p3 blue. Consider the deter-
minant

xγ

x2

%z

Vi Zi

Vz Zz

If Ply Ply Vz were collinear then this determinant would be zero.
However, from the colors of the pif it is clear that the term zxx2yz

strictly dominates the other terms in the determinant expansion
(with respect to the valuation), so the determinant cannot vanish1.

Notice that this coloring can be viewed as follows: choose a
representative (x9 y, z) of p with x, y, z e & but not all of x, y, z in
c^f. Then (x,y,z)eF* corresponds to a point of P2(F). The flag
coloring of P2(F) which colors the origin red, the rest of the cc-axis
white, and the rest of the plane blue, pulls back to the above-
described coloring of P2(F). Similarly we can pull back any trivial
coloring of P2(F) to get a nontrivial coloring of P2(F).

Now suppose that we are given a nontrivial coloring of P2(F).
We may choose coordinates so that the origin is red, the point at
infinity on the #-axis is white, and the point at infinity on the

is is blue. Let Rx = {x\(x, 0,1) is colored red} and Ry = {y\(Q, y, 1)
1 We recently became aware that this coloring was previously introduced in [6]

for the affine plane.
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is colored red}. Then if (x, y, 1) is red the horizontal line through
(x, y, 1) is red-white so (0, y, 1) is also red (since the y-axis is red-
blue). Hence yeRy. Similarly xeRx. Conversely, if xeRx and
y eRy it is easy to see that (x, y, 1) is red. Hence the red points
are precisely Rx x Ry.

Suppose now that the point (δ, 1, 0) [on the line at infinity is
blue. If this point had originally been chosen to lie at infinity on
the τ/-axis, the effect would have been that of a coordinate change
x i—• x — by, y i—» y, z\-^ z« Hence, if (x, y, 1) was originally red,
(x — by, y, 1) is red in the new coordinates, so {x — by, 0, 1) was
originally red. Hence x — by eRx. Conversely, if x — byeRx and
yeRy then xeRx. Hence Rx is closed under translation by the
subgroup (bRy) generated by bRy. Similarly, if (1, w, 0) is white,
Ry is closed under translation by (wRx}. In particular, we have
(bRyy S Rx and (wRx) S Ry.

Now let Bz = {61 (6, 1, 0) is blue} and Wz = {w\(l, w, 0) is white}.
Then from the above we have that the subring ((BZWZ)) generated
by BZWZ = {bw\b eBz, w e Wz) maps Rx into Rx and Ry into Ry under
multiplication. Let έ?z = {t\t((BzWz)) Q((BZWZ})}. Then έ?% is a sub-
ring of F. Furthermore έ?zΦF, since έ?% = F would imply {{BZWZ)) =
F. (If Bz or Wz is {0} then the coloring is trivial, by comment (b)
early in this section.) But this, in conjunction with ((BZWZ))RXQRX,
implies that either Rx = {0} or Rx = F, again forcing the coloring
to be trivial. We now show that έ?z is a valuation ring, giving
the desired valuation on F.

Suppose teF. If tBzQBz then t((BzWz)} £ ((BZWZ)}, so teέ?z.
Otherwise, tb 0 Bz for some b e Bz, so (tb, 1, 0) is white, so t~ιb~ι e Wz.
Hence t'1 e BZWZ, so V16 ^ 2 . This concludes the proof of Theorem 1.

If we define Wx = {w\(1, 0, w) is white} and By = {b\(0, 1, 6) is
blue} then in an exactly analogous way we get the nontrivial rings
{{RXWX} and {(RyBy)) and the corresponding valuation rings ^x and
έ?y of F.

In order to prove that &x — &%=.&z we analyze the ring ({BZWZ}
in more detail. We know that for each beBz, we Wz, b Φ 0 we
have 1101 <̂  |6""M If equality can occur then ζBzWz)), being an <?„-
module and containing a unit of έ?z, must be ^ . If equality does
not occur then ((BZWZ)) = Ttz, the maximal ideal of #,. In either
case Rx and Ry are closed under multiplication by Έlz and hence <?Λ

and ^y are 3Kz-modules, but this implies that έ?x = d?y = έ?z = &.
Assume first that one of the rings {{BZWZ)), (RXWX)), ζRyWy)) is

έ?\ say {{BZWZ} = &. Then there exist boeBz, woeWz so that
|6o^o! = 1 so, by a change of scale (x, y, 0) = (wox\ woy', 0) we get
Bz,, WM> Q <?.

Now Rx, Ry are ^-modules and hence are given by a "Dedekind
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cut" in the valuation group Γ corresponding to £?. That is, there
exist a, β in the completion of Γ so that

Rx == {x I x G F, I x I < a) or Rx = {x \ x e F, \ x | ^ a}

and

Ry = {y\yeF, \y\ < β} or Ry = {y\yeF, \y\ ^ β} .

If a, βeΓ pick u, v eF so that | % | = α, |v | — /3 and make a
change of scale x — ux', y = vy\ Then Rx> = Wl or & and JBy/ = 3K
or < \̂ Correspondingly Wx> = ^ or 2W and By, — & or 3W. Hence
((i2^TF^)) = {(^^ ' ) ) = SK. Thus i?^, i2^, TΓβ,, .B^ are unions of residue
classes (mod 2B).

Now TFZ, and £ z , are (1 + 3K)-closed. That is, Wz, + mWz> - Wz,y

Bz> + 9KJ?Z. = Bz,. Since, by our choice of scale we have l e Wz> and
b0wo e Bzr it follows that Bz> and Wz> are unions of residue classes
(mod m).

Thus our coloring is a pull-back of a coloring of P2(F). It is
easy to see that the coloring of P%(F) is trivial of the first type
described when Rx> — Ry> — fΰt and of the second type when Rx> —
Ry, - ^ .

In case ((BZWZ)) = ({RXWX} = ((^B,)) - SK all the color classes are
given by Dedekind cuts and in case these cuts are in Γ we can
change scales to make all the sets Rxy Ry, Wx, Wz, By, Bz either Tt
or g? so that the coloring is again a pull-back of a trivial coloring
of P2(F).

We still need to consider the case in which the Dedekind cuts
are not in Γ. In the first case we extend F to a field E by adjoin-
ing transcendentals u or v or both and extending the valuation by
setting \u\ = a, \v\ = β. The valuation ring <? and its maximal
ideal SK are then extended to ^E and ίΰlE and the coloring of P2(F)
is extended to that of P2(E) by making the sets Rx, Ry, Wx, By

equal to ΈflE or έ?E. The extension of Bz and Wz may not be unique,
but we can set

BZ)E = BZ + BzTtE .

This coloring is a pull-back of a trivial coloring of P2(β) = P2(F)
and it induces a coloring on the subspace isomorphic to P2(F).

The extension, if necessary, in case {{BZWZ}} = {(RXWX)) = {{RyBy}) =
Wl is entirely analogous.

To sum up:

THEOREM 2. Every Z-coloring of P2(F) defines a unique non-
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Archimedean valuation v on F and the coloring of P2(F) is a
pull-back of a trivial coloring (corresponding to the trivial valua-
tion) on P2(F) where F is the residue class field determined by v.
This pull-back may be obtained via an embedding of P2(F) in P2(E)
where E is a (finitely generated) extension field of F.

REMARK. In every 4-coloring of P2(F) there must occur 3-colored
lines, regardless of the nature of F. To see this, let p, q, r, s be
red, white, blue and yellow respectively. Since the lines pq and rs
intersect at least one of them is three-colored.

On the other hand there are 2*°-colorings of P2(R) in which no
line has more than three colors. For example color the points of
a strictly convex curve with distinct colors other than red and all
other points red.

3* Higher dimensions* We now consider colorings of projec-
tive w-space Pn(F) in n + 1 colors so that no hyperplane contains
all n + 1 colors. As before we consider colorings to be trivial if
any color is confined to a hyperplane. One such trivial coloring can
be obtained by generalizing our previous flag colorings in an obvious
way: color a point red, the rest of a line through that point white,
the rest of a plane through that line blue, etc. Then we have the
following extension of our previous result.

THEOREM 3. The protective space Pn(F) has a nontrivial n + 1 -
coloring with no n + 1-colored hyperplane if and only if the field
F has a nontrivial valuation.

Proof Suppose x—>\x\ is a valuation with associated ^
and F as before. We obtain a nontrivial coloring of Pn(F) by
pulling back a generalized flag coloring of Pn(F). More specifically,
we color (xu x2, , xn+1) red if \xt \ < \xn+1\ for i < n + 1, white if
\Xι\^ \xn+ί\ and \Xi\ < \x±\ for 2 <^ i <̂  n, blue if |a?2| ^ |α?Λ+11, \x2\*z
\Xj_\y and \xt\ < \x2\ for 3 ^ i ^ n, etc. Then a determinant argu-
ment as in § 2 shows that no hyperplane is n + 1-colored.

Now suppose that a nontrivial coloring exists. Choose n points
involving n colors and pass a hyperplane through them. This gives
an ^-coloring of Pn~i(F). Furthermore no hyperplane of this
Pn-i(F) contains all n colors, indeed, no A-plane can be (&+2)-colored
(k = 1, , n — 1), since then it could be enlarged to a hyperplane
of Pn(F) containing n + 1 colors. Hence, by induction on n, either
this coloring of Pn-X(F) is trivial or F has a nontrivial valuation.
It only remains to show that, if the ^-coloring of Pn-X(F) is trivial,
then the n + 1-coloring of Pn(F) can't be nontrivial. (This is
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really an extension of comment (b) of § 2.) Suppose, for instance,
that the color red is confined to an n — 2 dimensional subspace of
Pn-i(F). Pick a red point p on this n — 2 dimensional subspace and
a line I through p in Pn^(F) but not in the n — 2 dimensional
subspace. Then this line I is solid white, say, except for p. Choose
now n — 1 points involving all colors except red and white. Then
any hyperplane through these points and a red point must cut I in
p but not contain I (or it would involve all n + 1 colors), so these
n — 1 points and 2) determine a hyperplane containing all red points.
This contradicts the nontriviality of the original coloring.

This completes the proof of Theorem 3. A more detailed analysis,
which we omit, shows that any nontrivial coloring is "essentially"
a pull back of a trivial coloring of Pn(F), as in the planar case.

4* Linear systems of curves* Suppose one wishes to color the
protective plane P2(F) in six colors so that no conic contains more
than five colors. As before we insist that no color is confined to a
conic to avoid trivialities. Our previous results enable us to do
this, and in fact to do something much more general.

Consider n + 1 algebraic curves in P2(F) which are the loci of
n + 1 homogeneous algebraic equations

M%,y,z) = 0; i - 0 , 1, 2, ...,n

where f e F[x, y, z] are polynomials of the same degree and linearly
independent over F. These curves define an ^-dimensional linear
system of curves, the loci of

Co/o + Ci/i + + Cnfn = 0 ,

where (c0, c19 , cn) e Pn{F).

THEOREM 4. Let C be an n-dimensional linear system of
algebraic curves in P2(F), such that no point in P2(F) lies on all
curves in C. If F admits a nontrivial valuation then there is a
coloring of P2(F) in n + 1 colors so that no curve in C contains all
n + 1 colors and no color is confined to a curve in C.

Proof. By duality points of P2(F) can be regarded as (one
dimensional subspaces of) linear functions on C. In other words
there is a map φ of P2(F) into the ^-dimensional protective space
P(C*) determined by the dual space C* == HomF (C, F) of C. But
we can color P(C*) in n + 1 colors using a valuation as in Theorem
3. This will give an (n + l)-coloring of P(C*) which we restrict to
Φ(P2(F)), giving a coloring of P2(F). Since curves in C correspond
to hyperplanes in P(C*)f no curve in C will contain all n + 1 colors.
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All that remains is to show that the coloring can be chosen non-
trivial on φ{P2{F)). In fact, we must first arrange that all n + 1
colors appear on φ(P2(F)), and then nontriviality will follow. To
do this choose points p0, plf p2, , pn in P2(F) whose images under
φ do not lie in a hyper plane of JP(C*); this can be done since no
curve in C contains all of P2(F)—remember F cannot be finite! Then
coordinatize P(C*) with respect to the n + 1 points ψ(pt) and use
as the coloring of P(C*) a pull back of a generalized flag coloring
with respect to these coordinates. This guarantees that pOf plf , pn

are all colored differently, so the proof is complete.
Theorem 4 can clearly be generalized to linear systems of hyper-

surfaces in higher dimensions. In view of Theorems 1 and 3, it is
also tempting to conjecture that the converse of Theorem 4 holds,
i.e., that the existence of a nontrivial coloring with respect to a
linear system implies the existence of a nontrivial valuation on F.
If a coloring of P2{F) is given we can assign to each curve in C
one of the colors not on it, obtaining a "dual" coloring of P(C).
We cannot apply Theorem 3 to this coloring of P(C) to get a valua-
tion unless we know that all hyperplanes of P(C) omit at least one
color, and our hypotheses only guarantee this for hyperplanes of
P{C) corresponding to points of P(C*) that lie in φ(P2(F)). Without
an 'ad hoc' hypothesis to cover the other points we do not see how
to proceed.

5* The fundamental theorem of projective geometry* Color-
ings of P2{F) in three colors can be considered as mappings from
P2{F) to the 3-point projective plane

\ /

Λ/ \/ \
which preserve collinearity. (One can consider this as the projective
plane over the "one-element field", since n2 + n + 1 = 3 when n=ΐ).
Furthermore the colorings we use in Theorem 1 are obtained via
mappings from P2{F) to P2(F) which preserve collinearity. These
observations suggest the validity of an extension of the Fundamental
Theorem of Projective Geometry (FTPG)2. There are many versions

2 In fact it is a question of this kind which appears to have motivated Bognar's
original question (private written communication).
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of the FTPG in the literature. The one we refer to is essentially
that of Artin's [1]. We state it here for protective planes over
fields only, and in non-coordinate-free notation:

(FTPG): Let ψ be a 1 - 1 mapping from P2(F,) onto P2(F2)
which preserves collinearity. Then there is an isomorphism μ from
JF\ onto F2 and α 3 x 3 invertible matrix M over F2 so that φ is
induced by the mapping from F* to F£ given by (x, y, z) M> (xμ, yμ, zμ)M.
Furthermore φ determines μ uniquely, and determines M up to
multiplication by a scalar matrix.

The extension of this theorem we give allows φ to be neither
1 — 1 nor onto. In a sense we classify all morphisms in the appro-
priate category whereas the FTPG classifies only isomorphisms.

THEOREM 5. Let φ be a mapping from P2{F^) to P2(F2) which
preserves collinearity, and whose image contains four points, no
three collinear. Then there is a place μ from Fλ into F2 and inver-
tible 3 x 3 matrices Mlf M2 over Fu F2 respectively, so that φ is
induced by the map from F* to F£ given by v — (x, y, z)\-*(vM1)

μM2.

(Here (x, y, z)μ means the vector obtained by scaling (x, y, z) to
have integral coordinates, not all in the maximal ideal, and then
applying μ to each coordinate.)

Proof. By a change of coordinates in P2(F2) we may assume
that the four points, no three collinear, in the image of φ are
(0, 0, 1), (1, 0, 0), (0, 1, 0), and (1,1, 1). (In affine coordinates the
origin (0, 0), the points at ©o on the x and y axes, and (1, 1)). This
change of coordinates gives the matrix M2. Notice that one of the
standard methods for introducing coordinates in a projective plane
[4] applied to φiP^F,)) now shows that {ί | (ί, t, 1) 6 ΦiP^F^)} is a
subfield F2 of F2 and φ(P2(F1)) consists precisely of points whose
coordinates lie in F2', i.e., a copy of P2(F2).

Now, by a change of coordinates in P2{F^}, we may assume that
φ maps (0, 0, 1) to (0, 0, 1), (1, 0, 0) to (1, 0, 0), (0, 1, 0) to (0, 1, 0),
and (1, 1,1) to (1,1, 1). This change of coordinates gives the matrix
Mx. It only remains to be shown that, with respect to the new
coordinates, φ is induced by (x, y, z) H> (X, y, z)μ for some place μ.

Let έ? = {t\φ(t, t, 1) Φ (1, 1, 0)}, i.e., the coordinates of points on
the line y = x in P2{F^) that are not mapped by φ to a point at
infinity. Define μ: F, -> F2 by μ(t) = oo if t $ έ?, and μ(t) = tf if
te& and φ(t, t, 1) = (£', V, 1). We claim that μ is a place and that
μ induces φ.
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The argument here is essentially the one used in introducing
coordinates in a plane, namely that addition and multiplication are
determined by geometric configurations. First, observe that by
considering horizontal and vertical lines and their intersections we
obtain that the image of a "finite" point (x0, y0) under φ is finite if
and only if x0 and y0 lie in &. Furthermore the point (1,1, 0) is
mapped to (1,1, 0) by φ. If tlf t2 lie in & then the line y = x + tx

determined by (0, tlf 1) and (1, 1, 0) is mapped into a line not at oo
by φ, so the intersection of this line with y = t2 is mapped to a
finite point. In other mords (ί2 — tl9 t2y 1) is mapped to a finite point,
so # is closed under subtraction. Furthermore the configuration
used in this argument is preserved under φ, so we must have
(ί2 - txγ = tξ - if also.

The line y = txx determined by (0, 0, 1) and (1, tlf 1) is mapped
under φ into the line determined by (0, 0, 1) and (1, tf, 1). Hence,
the intersection of this line with x == t2 is mapped to a finite point,
i.e., (t2, tjt2,1) is mapped to a finite point. Hence £? is closed under
multiplication, and as before we also obtain (t&Y = tζtζ.

We now have μ: & -* F2 being a ring homomorphism with
kernel ^ T = {t\φ(t, t, 1) = (0, 0, 1)} and image the subfield F2 of F2

alluded to earlier. Suppose that teFlf t Φ 0. Then the points
(0, 0,1), (1, t, 1), and (t~\ 1,1) are collinear, lying on y = tx. Then
their images must be collinear, so t and t"1 cannot both lie outside
& (or their images would be (0, 0,1), (0,1, 0), (1, 0, 0)). Hence &
is a valuation ring, and μ is the associated place. Furthermore it
is now clear that μ determines the mapping φ, so the proof is
complete.

The extension of Theorem 5 to higher dimensions is completely
straightforward. We omit the details.

A coordinate-free restatement of Theorem 5 would look some-
thing like this: Let V1 and V2 be 3-dimensional vector spaces over
Fx and F2, and let φ: P(V^) —> P(V2) preserve collinearity and contain
4 points, no 3 collinear, in its image. Then there is a valuation of
F19 a free rank 3 ^-submodule W of Vlf an embedding μ: d7\^ —>
F29 and an F2-isomorphism from ( W { ^ W) ®^/^ F% onto V2 which
induces φ. It is unfortunate that W need be specified, but this
appears unavoidable.

Finally, a word about the uniqueness of the ingredients in
Theorem 5. It is not difficult to show that φ uniquely determines
the place μ. However, Mx and M2 are not uniquely determined up
to multiplication by scalar matrices. We must also allow for replac-
ing Λfi and M2 by (MJd~ι) and (MμM2) where M is an invertible
(with respect to #) 3 x 3 matrix with entries in ^ \
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6* Divisibility of quadr i la tera l s i n t o disjoint triangles of

equal areas* Monsky [6] applied the coloring described in § 2 to
the affine plane A2(R). That is, the point (x, y) is

(1) red if \x\ < 1, \y\ < 1
(2) white if \x\ ^ 1, \y\ < \x\
(3) blue if \y\ ^ 1, \y\ ^ \x\.

The argument for the noncollinearity of three points of different
color in the proof of Theorem 1 then yields that the area, A, of a
triangle with vertices of different colors (3-colored triangle for
short) satisfies

yί l

v* i
y« l

Using the fact that the vertices (0, 0), (1, 0), (1, 1), (0, 1) of the
unit square are colored RWBB so that the square has, say, a single
RW edge, a simple combinatorial argument shows that every
triangulation of the unit square must contain a 3-colored triangle.
A 2-adic valuation of R shows that if the area of such a triangle
is the reciprocal of an integer, that integer must be even. In other
words the unit square cannot be divided into an odd number of
disjoint triangles (that is, triangles with disjoint interiors) of equal
areas.

We now can ask the question: which other quadrilaterals have
the property that they cannot be divided into an odd number of
disjoint triangles of equal areas? Since this property is an affine
invariant we may assume that three of the vertices are (0, 0), (1, 0),
(0,1) and let the fourth vertex be (x9y), x^y.

If there exists a 2-adic valuation of R for which max{|#|, \y\}^
1 then the vertex (x, y) is not colored red. Thus any triangulation
must involve a 3-colored triangle and if the area of the quadrilateral
satisfies

I (x + y)/21 < 2 <s I area of 3-colored triangle |

then the number of triangles must be even. All of these conditions
are satisfied if x, y are odd rational numbers. We have thus proved
the following:

THEOREM 6. The set of quadrilaterals which cannot be divided
into an odd number of disjoint triangles of equal areas is every-
where dense.

U s i n g a n y p-adic v a l u a t i o n , p > 2 , a n d (x,y) w i t h m a x {\x\, \y\}^
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1, I(B + y)/2\ < 1 ^ I area of 3-colored triangle |, which is satisfied by
radically integral rationale x, y with x + y = 0(mod p), we get a
more general result.

THEOREM 7. For any prime p there exists an everywhere dense
set of quadrilaterals which cannot be divided into k disjoint trian-
gles of equal areas unless k is divisible by p.

We now observe that the set of quadrilaterals which can be
divided into k disjoint triangles of equal areas is clearly a closed
set. To see this let the fourth vertex (xn, yn) approach (xQ, yQ). Then
for a subsequence the vertices of the dividing triangles (xn>if ynΛ)
converge to vertices (xQtif yOti) and for a subsequence of these the
corresponding triangulations converge. Since Theorem 7 shows that
this closed set is nowhere dense, we get a surprising corollary.

THEOREM 8. The set of quadrilaterals which can be divided
into a number of disjoint triangles of equal areas is of the first
category.

The restriction to quadrilaterals was only for the convenience
of exposition and Theorem 8 holds for w-gons with n 2> 4. It seems
that the vertices (xf y) for which the quadrilateral can be divided
into k triangles of equal areas lie on the union of a finite number
of algebraic curves and thus form a set of measure 0. Thus the
set in Theorem 8 would also have measure 0.

There are no analogous results for the division of polygons into
disjoint quadrilaterals of equal areas. In fact it is quite easy to
see that any polygon can be divided into a finite number of quadri-
laterals of equal areas.

Generalizations to the division of polyhedra into disjoint simplices
of equal volumes are possible, but in addition to the colorings dis-
cussed in § 3 we need generalizations of Monsky's combinatorial
lemma on triangulations. We therefore do not go into the details.
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