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BMO FROM DYADIC BMO

JOHN B. GARNETT AND PETER W. JONES

We give new proofs of four decomposition theorems for
functions of bounded mean oscillation by first obtaining each
theorem in the easier dyadic case and then averaging the
results of the dyadic decomposition over translations in R,.

1. Introduction. Let ¢ be a locally integrable real function
on R™, let Q@ be a bounded cube in R™, with sides parallel to the
axes, and let |@| be the Lebesgue measure of Q. Then

o b

P pda
NTTY

is the average of @ over Q. We say @ has bounded mean oscillation,

@ € BMO, if

el = sup@g P — @olda < oo .

A dyadic cube is a cube of the special form

Q= {ij‘” <o < (kj -+ 1)2*"; 155 'm}
where n and k;, 1 < j < m, are integers, and @ has bounded dyadic
mean oscillation, @ € BMO,, if

d

lolla = s SID O 18[93 Poldr < oo .

Then clearly BMO c BMO, with ||¢|; < ||®]|, but BMO and BMO, are
not the same space; the function log|w;(%X ;5 is in BMO, but not in
BMO. In analysis BMO is more important than BMO,; because BMO
is translation invariant, but BMO, is not. On the other hand, BMO,
is very much the easier space to work with because dyadic cubes
are nested (if two open daydic cubes intersect then one of them is
contained in the other). For example, for BMO the original proofs
[1], [6], [8], [11] of the four theorems stated below were rather
technical, while for BMO, the analogous results are comparatively
trivial. In this paper we derive the four theorems from their dyadic
counterparts.
Here is the idea. Let T,p(x) = @(x — a). Then

P(x) = 1 im T.p(x + a)da .

(2N)"‘ Sl jlsw
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Each of the theorems amounts to showing ¢ € BMO has the form
@ = F, + F, where F, and F, are BMO functions satisfying certain
additional growth conditions. By the BMO, result we have

T.p = Fi© + Fi

where F{®, F'\¥ ¢ BMO, satisfy the extra growth conditions on dyadic
cubes. To prove each theorem we show the averages

S F@*(x + a)da
lajlsn

are in BMO and have the correect growth. The method yields this
general result.

THEOREM. Suppose that a — @' is a measurable mapping from
R™ to BMO, such that all @*(x) have support a fixed dyadic cube,
such that |||, £1 and such that

Scp“’”(m)dw =0.
Then

Py(x) = Nqﬂ‘")(x + a)da

(ZN) -7l<

By duality, this theorem implies Davis’s result connecting H*
and H},q. on the unit circle. The proof of theorem is implicit in
the arguments below. In §4 we show

@N:g+“z=ifﬂ

where g L> and where f,(x) satisfies the Lipschitz condition (3.3)
and the thinness condition (4.2). From these |@y|| =< C follows
easily. This general result is not explicitly used in the proofs of
Theorem 1 to 4.

Let #(Q) denote the sidelength of the cube Q. A Carleson
measure is a signed measure on the upper half space R}™ = R™ X
(0, =) such that for some constant N(o),

lo 1@ x (0, 2(@)]) = N(9)|Q]

for all cubes @ c R™. Here || is the total variation of 0. Let K(x)
be a positive function for which

1.1) K@) = 0(Q + [z)™)
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and
EK(x)dx 1.
Write K,(z) = y~"K(z/y), y > 0.

THEOREM 1 (Carleson [1]). If ¢ € BMO has compact support, then
there is g € L™ and there is a Carleson measure ¢ such that

1.2) P) = 9@) + | . Kl — D0, 0),
where

lgll-= Clel
and

N@) = Clloll,

where the constant C depends only on K(x).

Theorem 1 implies Fefferman’s Theorem [5] that H*(R™) has dual
space BMO. Under the additional hypotheses

IPE(@)| =01 + |2)™),

the converse of Theorem 1 is true (and not difficult). It then follows
that H'(R™) = {f e L': f¥ € L'} where ff is the maximal function
SUP|;_,1<, | f*K¥(t)|. See [5].

By the theorem of John and Nirenberg [7], # € BMO if and only
if there is A > 0 such that

1 _
1.3 —_— Ale=¢qld oo .
(1.3) sgp Q] SQe x <

In fact, (1.8) holds with A = ¢||@||™?, ¢ depending only on the dimen-
sion. Set

A(p) = sup{A: (1.3) holds} .

THEOREM 2 ([6]). There are constants c,(m) and c,(m) such that
if @ € BMO then

cy(m) _ &(m)
A?) Sm tle—gll = Ap)

The left inequality is immediate since A(p — g) = c¢ll® — g™,
ge L. We prove the other inequality.



354 JOHN B. GARNETT AND PETER W. JONES

Let w(z) > 0 be a locally integrable function on R™, and let 1 <
p< . Wesay wed, if

=l ) )<

The Riesz transforms and the Hardy-Littlewood maximal funections
are bounded on L*(wdx) if and only if wed, [2]. As p—1 the
limiting form of A, is
1
Lw(Q)) ’

llwlls, = sup <1Ql S wdx)(“;

and we say we A, if ||w], < oo.

THEOREM 3 ([8]). If 1 < p < oo, then we A, if and only if
1.4) w = wy(w,)"?

where w,, w, € A,.

Holder’s inequality shows that (1.4) is sufficient. Obtaining the
factorization (1.4) for we A, is more difficult.

Theorem 2 is a simple consequence of Theorem 3. Indeed, let
@ € BMO and take A(@)/2 < A < A(p). Write w = e*?. Then for any

Q,

(l%ﬂ SQdeX;—(lﬂ S idx> = (Wll SQeAuo-soq)dxXI_lSQe—Aw_%)dw)

é <_1_ S eAW"?’Qldx>2

-

so that we A,. By Theorem 3,
Ap =logw = F, — F,
where e™, ef2€¢ A;. From A, it follows easily that
efi < M(e"i) < ce™i

almost everywhere, where M(f) denotes the Hardy-Littlewood maximal
function of f. Coifman and Rochberg [3] have shown |[log M(f)|/zm0 <
C(m) whenever f € L},.. Consequently

F; = log M(e"5) + log(e™| M(e™))
=P; +9;
where g;€ L~ and ||| = C(m). Hence
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_ 9= 0 Y s p
P 1 T2 g+

with ge L~ and ||| < 2C(m)/A.
The above reasoning also explains why Theorem 3 is a theorem
about BMO. See [8] for further application of Theorem 3.

THEOREM 4 (Uchiyama [11]). Let » > 0 and let E,, E,, ---, Ey be
measurable subsets of R™ such that

(1.5) Min lQ %IEH < 9-2m

1IN

for every cube Q. Then there exists functions f,(x), f>(x), « -, fx(®)
such that almost everywhere

(1.6) F@) =0, zch,.
1.7 0<f@=1.
1.8) S ) =1

and such that
1.9) £l < Cm, N)A, 1<i<N.

The converse (with ||f;]| £ C'(m, N)/») of this theorem is not
difficult. Theorem 4 for N = 2 is roughly equivalent to Theorem 2.
For N > 2 it has interesting applications to function theory. See
[8] and [11].

In §2 we prove the dyadic versions of Theorem 1 and Theorem
3. Although the arguments are well known (see [13] and [8]),
they are included for completeness and because some of their by-
products will be needed later. Theorem 3 is proved in §3 and
Theorem 1 is proved in §4. In §5 we discuss Theorem 4 and its
dyadic analogue.

We would like to acknowledge our indebtedness to Davis [4], who
showed on the circle that T,f € Hij.ai. for almost every a if fe HY,
and to Varopoulos [12], who proved Theorem 2 by adapting the
argument of the dyadic case to Brownian motion.

2. Two dyadic theorems.

THEOREM 2.1. Let @ € BMO, and let Q, be a fixzed dyadic cube.
Then there exists a sequence {Q,} of dyadic cubes Q. CQ,, and a se-
quence {a,} of real numbers such that
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(2.1) > e 1@ = Cllell. Q] ,
QR
for all dyadic cubes @, and there exists ge L~,
loll- =2[oll,
such that
2.2) P(x) — Py, = 9() + >} a,Xg, (%)

almost everywhere on Q,. The constant C depends only on the
dimension.

To understand why Theorem 2.1 is the dyadic formulation of
Theorem 1, replace R7** by its discrete subset 2 = {p, = (c@), 7(Q)),
Q dyadic} where ¢(Q) € R™ is the center of @ and #(Q) is the sidelength
of Q. The correspondence between p, and K, (z) = X(x)/,q; resembles
the correspondence between (¢, y) € RT™ and K, (x — t). Let o be the
measure on & having mass a,|Q| at p,,. Then (2.1) says that

lo|(@ x (0, 2(@)] = QkZ:.Q!aki |Q:]
= ClellQl

and o can be viewed as a dyadic Carleson measure. Since

[Ke@iowy) = S ate ),
(2.2) is now the dyadic version of (1.2).

Proof. We suppose @, = 0. Fix ) = 2||®||; and set
G, = {Q, C Q:: @, dyadic, |®g,| >\, and @, maximal}.
Because Q€ @G, is maximal, we have
(2.3) |Pol =X+ 2" 2lla = 2" 2lla

Indeed, if QF is that dyadic cube with QF D@, and |Q}| = 2™|Q.|,
then
|Po, — Poxl = 1 S JP— Porldr < 2™ ||p ||,
| Q] ek
and |Pox| =M as @, is maximal. The @, in G, are pairwise disjoint,
because they are maximal, so that

@4 31Q g%g}

Gy

1 L2110
|, pda| = 3| lplaw < 121l <12
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Write a, = @, Q. €G,. Then we have

P(x) = g,(w) + GZ a X, () + @.(2) ,

where g, = Xz, B, = Q\U {Q;: Q. € G}, satisfies [g;| =\ by Lebesgue’s
theorem on differentiating the integral, where |a,| < 2" @[, by
(2.3), and where

= % (P(x) — Pg) g, (%) -

Now because ¢ € BMO,, 9. Xq, = (P — Pq,)%q, has the same behavior
on @, that ¢ has an @, and we can repeat the construction with
each @Z,,, and continue by induction. At stage » we have a family
G,_, of disjoint dyadic cubes and @,_, = >, _, (P(®) — Pg;)Xo,(x). For
each Q;€G,_, we set

G.(@Q)) ={Q, CQ;: @, dyadic, [@g, — @y;| >\, @, maximal}
and G, = U{G,@Q,): Q,€G,_,}. Then

Pos(®) = g,(x) + GZ X, () + P (x) ,

where g, = ¢, Xz, B, = Ue,_, @:\Ue, @, satisfies [g,| =< \ and where
@ = Po, — Pojyy @ CQ; €G,_,, satisfies

(2.5) la;] = 2" 2|l
by the proof of (2.3). Moreover, the proof of (2.4) now gives
(2.6) Z |l = 1Q;l1/2

kaGn

for all Q;eG,_,. Consequently @,(x) — 0 almost everywhere, because
@, has support Us, @ and this set has measure < 27"|Q,|. Summing,
we obtain

P@) = 3, 0.0) + 3 T alo,@) -

Since |g,] < » and the g, have pairwise disjoint supports, g = > g,
satisfies ||g|l- <N = 2||@||l; and we have the representation (2.2).

To prove (2.1) fix a dyadic cube and set G,(Q) = {Q,€ UG,: Q; C
@, Q; maximal}. The Q; in G,(Q) are disjoint and

Z‘a‘kllel— Z > el Q] -

£6@ ¢<Q;

Hence by (2.5), (2.6) and induction,
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Sa| |Q] 2" [ella 3 3 |Q
QL@ QjeG1(@) QrSQj;
QreUG,

< 2ol 3 210
< 2ellQl.

Theorem 2.1 is proved.

Notice that when applied to the translates T,p, ® € BMO, the
costruction above produces functions ¢g®(x) and coefficients a{® which
vary measurably in a.

Now let w =0 and set » =logw. Then weAd, 1< p< o, if
and only if

sgp <]%| SQe"‘?de)(ﬁ Se“W‘S"Q’/“"“al:)c)p-1 < oo,

By Jensen’s inequality each factor is at least 1, and hence w e 4, if
and only if

(2.7) sup—l—g e*vedy < oo
¢ Q] Je
and
(28) supLS e~(¢~goQ)/(p-1)dw < oo .
¢ Q] Je

For the dyadic form of Theorem 3, the suprema in (2.7) and (2.8)
are taken over dyadic subcubes of @, only.

THEOREM 2.2. Let @(x) be a real function on a dyadic cube @,
and let 1 < p < . Assume

(2.7d) sup LS ev~vedy < oo
ey |Q] Je
Q dyadic
and
(28d) sup _}—S e o9/ (P ] < oo .
e [@]Je
Q dyadic
Then

P—Pe=9+F -G,
where ge L=, || gl £ C,, where
(2.9) sSup {(ﬁ SQeFdx>He_FHL°°(Q)} <G,

QCQq
Q dyadic
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and where
(2.10) 2(1:1£ {(ﬁ SQea/u-ndx) || =6/ HL“W} <G,
Qdyadic

The constants C,, C,, C; depend only on m and the bounds in (2.7d)
and (2.8d).

Thus if w = e® satisfies the dyadic A, condition (i.e., if 2.7d)
and (2.8d), then w = w,(w,)"? where w, = ¢%*""/ and w, = %
satisfy A, on dyadic subcubes of Q,.

Proof. The construction is the same as in the proof of Theorem
2.1. By (2.7d) and (2.8d) and by Jensen’s inequality, @, € BMO,.
Fix )\ > 2|| @], to be determined later and set G, = {Q, C Q,: @, dyadic,
[P, — Po,| > N\, @, maximal} and by induction

G.= U {cQ;: Q, dyadic, [®, — Po;| > ), @, maximal} .

jeGn—l
For @,€G,, Q,CQ;eG,_,, set a,=(Py,—P,;)- The proof of (2.3) gives
(2.11) A< el <N+ 2" |plg .
As in the proof of Theorem 2.1, we have
P = Poy T g+ 2 Xl (@)

where ||g]l- < N\. Write

(2.12) F == Z a,,XQk )
ap>0
(2.13) G = — Z a/kXQk .
ap <0

Then @ = @4 + g + F — G.
To prove (2.9) and (2.10) we recall that there is ¢ > 0, depending
only on the bounds in (2.7d) and (2.8d), such that

2.14) _-Lg eI < oo
ecdy |Q] Je
Q dyadic
and
(2.15) sup —LS e~ 1Fele=p@)/(r=Dl g & oo
ece | Q| Je

Q dyadic

See [3] or [10].
We prove (2.9). Fix @;¢ UG, with a; > 0 and set
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Gf@Q; = {Q,e UG,: Q. £ Qy, a, > 0, Q, maximal},

and by induction G}, (@)= U{Gi(Q,): @.€G{(Q;)}. The ecritical
inequality for the proof of (2.9) is

(2.16) S | Qs | < (20)renutor

G,:(Qj)IQjI -

where C is the sumpremum in (2.14). By induction we need only
obtain (2.16) for » = 1. There are two case.

Casel. Q;€G,and Q,€G,,,. Then @, — @, > \, so by Jensen’s
inequality

elital < 1 S e+ ¢ —0gdq
[

— Q]

Since the @, are disjoint this gives

|Qk| < e-—(1+s)2 1 S e(1+e)((3—rij)dw
CaselIle - Caselle] 0
—S_ e—(H—E)l 1 S e(H—e)(Q—‘r’Qj)dx
1Q;] Je
_<_ Ce—(1+5)1 .

Case 2. Q;€G, and Q,€G,,,,»p=2. Thenif Q,¢G,,, 1=r=
p —1, and if @,c@Q,, it must be that a, < 0. Let D, ={Q,€G,.:
Q,cQ,, a, <0} and by induction D, = {Q,€G,.,:3Q,€ D, , Q,CQ,,
a, < 0}. Then as in the proof of Case 1, |UD,| < Ce " 9¥»71|Q.| <
1/2|Q;| if  is large enough. Induction then shows |UJD,| < 277|Q;]|.
For Q,eD,, r=1, let URQ,) ={Q.€G,1,: Q,CQ,, a, > 0}. By Case
1, IUU,)IEC|Qe ™% Consequently,

| Qs |
Casze:ZIle r

é Ce—(1+s)1§“___1;_ Z IQ{I

r=1 IQJI Q{eDT

< Ce— 1ok Z o-r ,

r=1

8

Il

L s juv@)

llel Q <D,

Il

because the cubes @, ¢ D, are disjoint for each . Summing the twe
cases gives (2.16) for n = 1.
Now fix a dyadic cube @ CQ, and set

szzakXQk, FzzzakXQk-
Q=@ Q=@

ap>0 ap>0

On Q, F = F, + F,, F, is constant, and F, = 0. Hence
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(L Sqepdx>“e—wl+rz)“LOO(Q) — (__1_ S eF1+F2dx>He—(F1+F2“LOO(Q)

Q| Q] Je
< =\ é"da,
— Q| SQ
and it suffices to establish
1
(2.17 —\ eda < C, .
) <l

If {Q,} denotes the set of maximal cubes Q; @ having a; > 0,
then 31|Q;| = |Q| and

%_ng(erl —Ddz <3 lQal( 1 SQ

21 \Ta)] g"’ldx) = sup (——1— que“dac> .

J J IQJI
Now by (2.11),
£eQ:F@>m+ D0 +2plldc U Q,
G, (@)
so that by (2.16),
1
1Q;]
If A > e, G, ||®]|,) the series sums and we obtain (2.17) and therefore
(2.9).
The proof of (2.11) is the same except that (2.15) is used in
place of (2.14).

S eFldx é 2 e(n+1)(l+2mnwiId)(zc)ne—'n(l+e)1 .
Q5 #=0

3. The proof of Theorem 3. Let w =e¢’c A4, and let Sy be
the cube {|z;| < 2", 1 <1 < m}.

LEMMA 3.1. There exist gy(x), Fy(x) and Gy(x), x €Sy, such that
lgvll> = C, and

1 r -7
3.1 gg?IJ)v(I_QT gqe Ndx)”e Vo = Gy,
1 G y/p—1 —Gy/p—1 <
(3.2) sup <_IQ| SQe /o dm)”e 0oy < G

and such that
P(@) — Ps,, = gy(®) + Fy(@) — Gy(x) , x€Sy.
The constants C,, G, C, do not depend on N.

We first show how Lemma 3.1 easily implies Theorem 3. We
suppose @5, = 0. By Lemma 3.1,

P =Ry + (Fy — (Fy)s,) — Gy — (GN)SO)
:RN_[_FNN—CN, xeSN’
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where Ry = @5, + gy + (Fy)s, — (Gy)s, satisfies [[Ry|l. < 2C, since
’@sN + (Fy)s, — (GN)SO‘ = l@so - (gN)Sol =C. For N> M, 8.1) and
(3.2) give

15— P, lar s C

|Gy — (Gy)s, Mdz < C,

Sy

p—
—

| Syl

and hence as (FN>S0 (GN)SO =0, ’(FN)SMI = Cy, !(GN)SMI < Cy. Con-
sequently {(Fy: N = M} and {Gy: N= M} are bounded in L*S,).
Choose N; — « so that FN — F, GN — G weakly in L*S,) for all M
and so that Ry; — g weak-star in L°° Then

p=g+F—G

with ||g|l- < C,. For any cube @ there is a sequence of finite convex
combinations

F® = th,'nFNj,n y w0, thm =1,
g

converging to F' almost everywhere on S, c®. Then by Fatou’s
Lemma and Holder’s inequality

1 S rq > < S Fy: )tf’” ~FN i (I, s
— 2 )| e || 100 < lim irngy e Vim||twi < C,,
(g7 o)l e limo < lim 11 (5 L[l |5 < G,
and hence w, = e*" € A,. Using (3.2) we see w, = ¢“?'c A, in the
same way.

Proof of Lemma 3.1. We assume @5, = 0. For aeSy we use
Theorem 2.2 on T,p(x) = p(x — a) with @, = Sy,, (which we pretend
is a dyadic cube) to obtain

Ta@ — g(a) + F(a) — G(a)

where F, and G, satisfy (2.9) and (2.10) respectively and where
llgll- < C, (since ¢ € BMO and @y, = 0, sup,cs, (TuP)s,,, 18 bounded)
Almost everywhere on Sy,

P@) = o | T_(T.p)@da

1
| Syl

(a) 1 a
S T (g ><x>da+m§ T_(F“))da

SS T_(G)@)da = g(z) + F(&) — G) .

IRHRE

1
[8y]

Clearly ||g|l- < C,. By (2.12) there are a;” > 0 such that
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FOmy =S, 3 a1,

n=0 £(Qp)=2""Z(Sy)
[=-]
=3 1)

and by (2.13), G'“(x) has a similar representation. Write

£i@) = o= | (@ apioy@)da

1

[ Syl
so that F' = 37 fa.

LEMMA 3.2. If sup;|®;, — y;| < 27"/(Sy) then
(3‘3 'n(x> n(y r—Y,

) If, L)) = (SN)I |
with C, independent of n.

Proof. By (2.11), || £ C, and hence

| fa(®) — fau

lsﬁwmwmwwm+m—%w+mmm

The integrand is twice the characteristic function of {@¢eSy: 2z + «
and y + « fall in different @Q,, /(Q,) = 27*#(Sy)}, and this set has
probability not exceeding

&2 — Yl
=127"7(Sy)

Returning to the proof of Lemma 8.1, we fix Q@ S, with
27 (Sy) < Z2(@) £ 27¥/(Sy). Then

Fl@) = 3, fu@) + 3 £.(@) = Fi(@) + Fy(@)

1 1
=_——\| F% + a)da + —— F{®(x + a)da .
| Syl S [ Syl S
By Lemma 3.2,
sup Fy(z) — - 2 /(Q) < C.
Q SN) n=0

Hence as F, = 0,

(ﬁ SQ3F1+F2dx)|| e~ e S C<[_(12—| SQeF‘dw> .

But by Jensen’s inequality,
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by (2.17). The proof of (3.2) is the same.

4. The proof of Theorem 1. We suppose ¢ € BMO has support
Sp={lz]<1,1<7<m}and Sqﬁdx = 0. For each oS, we have,
by Theorem 2.1,

T.p) = P&z — a) = g (x) +QZQ @i X g, (%)
A}

where @, = {|x;| £ 2,1 < 7 < m}, where ||9g”||- < C| ||, and where

4.1) Zla“”l Q] = Cllell Q] .
Write
@) = 5 oo @) ,
so that T, o(x) = g (@) + Do fi(x). Then as before
?(0) = 17 |9 + @)+ Fron | fiote + ad

= g(®) + “Z:‘s Sa(®)

where [|g|l. < C||®]||. For any cube @ we have

1 1 (@
wn 3 @l s (s S 1a@lde)
= sup (1 2, ok 1 1Qu1) = Clell,

where @ is concentric with @ and #(Q) = 3/(Q). Thus for any
0>0,do =3 f.(x)do,, where do, is surface measure on R" X {y =
027"}, is a Carleson measure and N(o) < Co ™| e||, and

[E@ — 20z, 9) = 3 furKoms@)
= 2 ha(@) -

We will show that when 6 is small,

(4.3 IS¢ —ml =<l
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With an iteration, that will prove Theorem 1.
To prove (4.3) fix a cube @ and a point £, @. We have

1
l_Q—I SQI S (fu®) — b (@) — (fs — ha)o)|de

=2 5 L 10— k)@ = (= h)@)|da

—%241(9)1 Q |

t2 3 L £ - h@]de

= T<ur | Q)
+25 5 | 1@~ h@lde
=25 +2%+23,

where A = 2 is a constant to be determined.
To estimate >, recall that

(4.4) Ifa@) — fu)] = C2°|[p]] |& — y|

by the proof of Lemma 3.2. The convolution k, = K,,—»xf, has the
same continuity as f,, since stac =1, and we have

s 3 L crislls-aldesClel@ 3 2

1 27> 4£(Q) IQI 27 <(4€(@) L

= Clell/A.

Hence 23, < ||o|l/6 if A is large.
To estimate >}, note that by (4.4) and the bound || f,||- < C| 2||
(because |a{ | < C||®]|), we have

1fa = farKas |- = ell@l

if 0 is small, independent of n. Therefore

23 =2lell X =Celpllog AL |pll/6
2 Z(Q)S27"=4/(9)
if elog A is small.
Finally, we have

P sup—l—- | fro — flox K, | dw
3

ol
by the definition of f,. After a translation it is enough to consideir
a=0. Let Q° =@Q and pave R™ with cubes Q' congruent to Q.
Then

Xo, () Xo,* K/ g (1)
< (0) Yl —— U _ e Qe d
SRR TR ’|Q|§ Q] AR
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By a change of scale,

1 Xo, (@) _ Lo, Kipi, (@) d
IQIL’“ Q.| Q] ‘”

does not depend on #(Q,). Thus for ¢ > 0 we can choose § so that

_1__ XQk(x) _ XQk*Kad(Qk)
Gl T8~ g e < enl
Moreover, if @, cQ", Q¥ = Q, then X, () =0 on @ and by (1.1),
11 X+ Kigop(®) _ Co/(Q)
| tSQ' @, 0= P el =Y = g, g
C7(Q)
= (dist(Q@Y, @)
since dist(Q,, @) = dist(Q?, Q). Therefore
o s laPl1@y
' QLcQ© {Ql
1 ©
O % @, @y el A
and by (4.1),
|Q(:i)|
23 =Cellel + Glellv @3 @H0T, Q)
dx

= el + Colll«@ |

sCe+allell=lell/6

RmM/Q(0) Ix — xol‘m‘H

if ¢ and 6 are small.

5. The proof of Theorem 4. We begin with the dyadic form
of the theorem, which is also due to Uchiyama.

THEOREM 5.1. Let N > 0, let Q, be a dyadic cube in R™, and let
E,E, -, Ey be measurable subsets of Q, such that

(5.1) Min 190 Bl 5ot

1<isN

for all dyadic @ ©Q,. Then there exist fi(x), fu(x), -+ -, fy(x) such that
almost everywhere on Q,,

(5.2 filw) =0,xe K, ,
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(5.3) 0= fl@)=1;

(5.4) S i) =15

and

(5.5) qugﬁ [, 1 = (delda = Citm, N

Proof. By (56.1), | N E;,| =0 and the bounded solutions f,(x) =
A — Xp,(2)/ 21 — Xz, (%)) satisfy (5.5) if A is not large. Thus we
assume )\ > N.

We shall inductively choose families G, of dyadic cubes Q,cC @,
and functions 4, 1 < ¢ < N such that

M= v+ 3 X, ()
leGn

(5.6) 0< ™ <,
5.7) S =,

(n — l_ lel
(5.8) (i), < Max(0, —N + = log; <—_|Qk - )
if @,¢@G,, and
(5.9) la;s]l < N*—1,Q,eG,,n=1.

For each dyadic cube @@, (56.1) ensures there exists an index
(@), 1 £ (@) = N, such that

1 | Q|
5.10 2\ £ = log, | — kL
10 = os(gn )
To start the induction take G, = {G.}, and ¥{"(x) = ;X (), Where

_{o, i £ (@)
o =N, i = i@y .

Then (5.6) and (5.7) are trivial and (5.8) follows from (5.10) and our
choice » > N. At n =0, (5.9) is not required.

Let G, be the set of maximal dyadic cubes satisfying Q,CQ,¢G,_,
and

oy, > L 1N
(5.11) (W0, > - log (5 )



368 JOHN B. GARNETT AND PETER W. JONES

for some 4, 1 <4 < N. Define

a _ _Min(N + 1, (qkiﬂ_l))Qk ’ ?: i ?:(Qk)
B E SR , i=1Q) -
J#URE)
Then by definition " = "™ + 3lg,cq, ®i.1Xq, clearly satisfies 4" = 0
and 3); ¥ =\. Thus (5.6) and (5.7) hold. Since |a;,| =< N + 1 for
1 # (@), and since |a;q, ] = (N — 1)(N + 1), (5.9) holds.
We now verify inequality (5.8). If 7+ = ¢(Q,), then by (5.6) and
(5.10),
" 1 | Qs
M), SN —~N+ =1 — kL),
(’\ll‘ )Qk +m0g2<|kaEl]>
Suppose Q,€ G, and 1 = i(Q,). If QF D@, is that dyadic cube with
[Qk| = 2" |@Qy|, then (y{")or = (y{"7"),, and

log( g tigy) = ™+ loeg )

Since @, is maximal, (5.11) fails for @7, and so we have

— _1-_ IQlc] (n—1)
(5.12) 1= mlogz(——————!Qk A Ei|> = (" e, -

If a,, = —(i" g, then (¥*), =0 and (5.9) is clear. If a,, =
—(N + 1), then (5.9) follows from (5.12). Thus the induction is
completed.

We thank J. Michael Wilson for this argument.

To obtain convergence and ultimately (5.5) we observe that if

Qj € Gn—lr then
(5.13) Z( )IQ,A = 27(Q;! .

leG“{
Q<@

Indeed, if the left side of (5.13) is nonzero, we have (y{"™"),; >0,
and then (5.11) and (5.8) yield

S Q] < 2m e 3 1Q, N B

Qpecl® Qrea?
QxR Qr<Qj
< zm(qb,,(;”_l))Qj’Qj N E,
= 27Q,] .

Since N2 ¥ < 1, (5.9), (56.13) and induction show 3 ||y — pi* V||, <
o, so that

() = lim ™ (x)
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exists almost everywhere. Moreover, if Q@ CQ, is a dyadic cube,
then by (5.9) and (5.13)

1
@ SQW% - (“/fi)qldx
2
(5.19) = @ SQkag‘JQ[ai,klek(x)dx

S 2N - D) 3 1@1/1Q] S 20 — 1) 35 (N2
Qk‘gUG”n o=t

= Cy(m, N) .

Write f; = 4/A. Then (5.5) follows from (5.14) and (5.6) and
(5.7) give (5.3) and (5.4).

To conclude the proof we establish (5.2). Almost every point
x € Q, lies in a unique dyadic cube Q,(2), |Q.] =2k =0,1,2, ---.
For almost such #, Q.(x) € UG, for only finitely &, because by (5.13),
S lU{Ry: Qe G,}| <. Hence for almost every x there exist k,< o
and n, < 8 such that for & >k, and » > n,

Qu(x) ¢ G,
and
P) = 7 (@)
So by the definition of G,,

— (=1 1 | Qi) |
Pri() = (f )Qk(w = m log, <|Qk(w) n Ezl>

k> k, n>mn, almost all z. On the other hand,

lo IQk(x)I 0 kb —— oo ,
5 (o om) ( :

almost everywhere on E,. Therefore f,(x) = ,(x) = 0 almost every-
where on FE,.

Proof of Theorem 4. The argument is much like the proof of
Theorem 3. Let S, be the cube {z:|z,|] <2%}. It is enough to
produce f; (), - -, fv,x(®) which satisfy (1.6), (1.7) and (1.8) for z¢
S, and also

(515) l.fi,M - (fz,M)QIdx é C(m, N)/)’ ’

al
sup —
chﬂ[Q] e
by then taking f,(x) an L~ weak-star limit of {f, ,(x)}5_..
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So fix S,. For aeS, we set ¥ ={x + a:xec E,N Sy} CSy,..
With @, = S,.;, (6.1) holds for E{®, ---, E{, and Theorem 5.1 gives
us %), -, ¥ (x) satisfying (5.2), (5 3), (5.4) and (5.5) on S,,,.
Define, as before,

fin(@) = g @+ ada, xeSy.

[Su|
Then (1.6), (1.7) and (1.8) hold on S,,. To prove (5.15) write

a) —_— 1 < a)
f2@) = ~ 20/(2,6)=2§,(5M+1)a£ kXQk(x)
= 2, (@)
and
Fu®) = 5 2= (2o + coda
= gfi n(x)
If Qc S, and 27%/(S,.,,) < 7(Q) < 27"'4(8,,1), then
1 1
51 Vol Fe@ = el d = 5l 1foo@ = (el
+2g,ﬁ§ @) dz = 5 + 25
By the proof of Lemma 3.2
fon(@) = funl)| =SR2 oy,

M (Sy1)
so that 3, < C(N)/n, and by (5.13) and (5.9),
2=sup 3 |afi] Q]

aeSy QpCQte

C(N* —1)
< = .
= = Q1

Hence (5.15) holds and Theorem 4 is proved.
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