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ON THE TRANSFORMATION OF FOURIER
COEFFICIENTS OF CERTAIN CLASSES
OF FUNCTIONS

KENNETH F. ANDERSEN

Suppose f(x)€ L}0,=) and let a={a,}(b=1{b,}) denote the
Fourier cosine (sine) coefficients of f extended to (—=x, ) as
an even (odd) function, that is

aozz—ng(x)dx , @, = —2—S :f(w) cos vadz ,
T 0 T 0

y:l, 2’ .o
by=—’2—_—-guf(w) sin vadx .

0

The sequence transformations 7 and 7/ are defined by
(Ta)=ay, (To)=- % a, (T'0.= X (@/i), »=1,2,-.
Y j= =y

The purpose of this note is to characterize those rear-
rangement invariant function spaces L°(0, ) which are left
invariant by the operators T'and 7T’ acting on Fourier coeffi-
cients of functions in these spaces. Our results include and
improve some results of Hardy, Bellman and Alshynbaeva.

G. H. Hardy [5] proved that if fe L”(0, ) for some p,1 < p <
oo, then Ta = {(Ta),} is the sequence of Fourier cosine coefficients
of a function also in L?(0, 7); R. Bellman [2] proved the analo-
gous theorem for 7' except that now 1 < p < . Recently E.
Alshynbaeva [1] gave necessary and sufficient conditions on an Orlicz
space L, in order that L,, may replace the L space in the results
of Hardy and Bellman, thus answering a question of P. L. Ul’yanov.
The analogues for the sequences {b,} were also studied.

We denote by f* the nonnegative, nonincreasing funection on
(0, #) which is equi-measurable with f, that is, for all A > 0

Hee©, n): [ f)| >N = [{ze (0, n): f*@) > A} .

We suppose throughout that ¢ is a function norm defined on the
measurable functions on (0, ) which is rearrangement invariant in
the sense that o(f) = o(f*). The associate of ¢, denoted ¢, is then
also rearrangement invariant and is given by

1) o'(f) = sup {] S:f(x)g(w)dx ‘; alg) < 1}

Il

sup {Sof *(@)g*(w)da: o(g) = 1} .
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The upper and lower Boyd indices «, 3 of the Banach space L°(0, =)=
{f:0(f) < oo} are defined in [4] and satisfy 0 <g8=<=a=<1. For
the Lorentz spaces L7%0,7) and in particular for the Lebesgue
spaces L0, ), the indices «, 8 are both equal to p~*. Indices for
the Orlicz spaces are computed in [3]. It is well known that
L0, 7) € L°(0, ) < L'(0, ) for every o and it is not difficult to
see that L*(0, 7) & L°(0, #) < L0, &) whenever p*' < B3, a < g

We shall state and prove our theorems only for the case of
cosine coefficients «@; for the case of sine coefficients b the state-
ments of the theorems are the same with b replacing o and sine,
replacing cosine throughout while the proofs are similar.

Concerning the sequence {a,} and the transformations T and T’
we have the following theorems.

THEOREM 1. The following statements are equivalent.

(a) For every feL°(0, ) with Fourier cosine coefficients a =
{a,}, Ta s the sequence of Fourier cosine coefficients of a function
m L0, w).

(b) The lower index B of L°(0, ) satisfies B > 0.

THEOREM 2. The following statements are equivalent.

(a) For every feL°(0, ) with Fourier cosine coefficients a =
{a.}, T'a is the sequence of Fourier cosine coefficients of a function
wn L°(0, ).

(b) The upper index « of L°(0, ) satisfies o < 1.

Since &« = 3 = p* for the space L?, Theorems 1 and 2 yield the
results of Hardy and Bellman cited above. It is well known, and
in any event follows easily from the formulae for «, 8 in [3], that
for the Orlicz space L,,, the lower index A3 satisfies 8 > 0 if and
only if @ satisfies the 4, condition, i.e., @(2t) < MO(t), t = t,; the
upper index a satisfies @ <1 if and only if the Young’s function
¥ complementary to @ satisfies the 4, condition. Hence Theorems
1 and 2 yield Alshynbaeva’s Theorems 1 and 2 with a sharpening
of the necessity part of his Theorem 2 in that we do not have to
assume |tlogt| < ¢@(t), t = ¢, > 0.

We shall require the following lemma relating to the operators
P and P’ defined for 0 <z < @ by

(PA@) = eot (@/2)| 0L, (P')@) = | F(©) ot (¢/23dt
LEMMA 1. The following are equivalent.
(a) PfelL’(0, w) for every fe L°(0, 7).
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(b) There is a constant ¢ such that o(Pf) < co(f), for all fe
L0, 7).

(¢) The upper index a of L°(0, ) satisfies a < 1.

(d) The lower index 3" of L°'(0, ) satisfies 5’ > 0.

(e) There is a constant ¢ such that o'(P'f) = co’(f), for all
fe L0, 7).

(f) P'felL’(0, x) for every feL”(0, ).

Proof of Lemma 1. Let (P f)(x) = (Yf(t)dt)/x. There are
0
positive constants ¢, ¢, ¢, such that for all f = 0

(PN = PH@ = o (BA@) + | f0dt) = el(PP@) + co(7)
and since fe L°(0, =) if and only if | f|e L°(0, 7) it follows that (a)
is equivalent to the corresponding statement with P replaced by
P,; similarly P, may replace P in (b). Analogously, (P/f)(x) =

gh(f(t)/t)dt may replace P’ in statements (e) and (f). Thus, it
suffices to prove the lemma with P replaced by P, and P’ replaced
by P/ throughout. For this, the chain of implications (a) = (b) =
(¢) = (d) = (e) follows in turn from Lorentz [7, p. 486], Boyd [4, p.
1253], Boyd [4, Lemma 5] and Boyd [4, p. 1253]; (e) clearly implies
(f), while if (f) holds and fe L°(0,7), g L”(0, 7) with f=0, ¢ =0
then Fubini’s theorem shows that

[[s@ B = | FOED®O = o(a(Plg) < -

so P,feL’ (see Lorentz [7, p. 484]) and (a) holds. This proves the
lemma.

LeMMA 2. If a = {a,} is the sequence of Fourier cosine coeffici-
ents of fe L0, ) then ¢ ={c)}, ¢, =0, ¢, =a, /v, vy=1,2 --- is the
sequence of Fourier cosine coefficients of a function F e L°(0, 7).

Proof of Lemma 2. Let K(t) = —log|2sin (¢/2)], |t|<m. Ac-
cording to [8, p. 180], ¢ is the sequence of Fourier cosine coeflicients
of

) |

S

Fa) = =\ fe+ 0K@®dt, 0 <o <z

4

Now for any ¢, |t < we set f.(x) = f(x + ) and observe that since
f is even on (—m, @), for all », > 0
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e e (0, m): | F@)] > M| =—;—er<—z, 2| £(@)] > M|

fl

RO~ po|

Ho e (—m, m): [fi(@)]| > N}

= — e (0, 7): [filx)| > N}

so that f,(x) considered as a function on 0<z <7 satisfies (f,)*(x) <
f*(x/2) and it then follows from (1) that o(f,) < 20(f). Hence, if
ge L0, n) with ¢ =0

[[IF@lg@az = " 1K@t 1 7@ + 0 g@de
= [ 1k®Io(r0 0t < 20110 @) 1K@t

so that upon taking the supremum over ge L°(0, #) with ‘g(ac) =0,
o'(g) £1 it follows that 0(F)S2a(f)g |K(t)|dt < co. Thus Fe

L°(0, #) and the lemma is proved.
Since L°(0, =) contains all the constant functions, we may assume
without loss of generality that a,=0 in the proofs of Theorem 1 and 2.

Proof of Theorem 1. As Hardy [5] has shown, Ta is the
sequence of Fourier cosine coefficients of g¢g(x) = (P'f(x) + F(x))/2,
where F is given by Lemma 2. Thus, if (a) holds, Lemma 2 shows
that we must have P’feL°(0,n) whenever fe L°(0,z) and then
Lemma 1 shows that B3 > 0 so (b) holds. Conversely, if (b) holds,
Lemma 1 shows that P'fe L°(0, r) while Lemma 2 shows that Fe
L°(0, 7) so that g € L°(0, r) and (a) holds. This proves the theorem.

Proof of Theorem 2. Suppose first that (a) holds and fe L°(0, 7).
Let 6 be such thatg FHa)ydr = § | flx)|de, 0 < 6 < m, and set
0

fHx) if 0<ax<d

9@ = {—f*(x) if d<a<.

Clearly g€ L°(0, ), g(x) is nonnegative, nonincreasing on (0, 4), and
g(x)dac = 0. Let af = {af} denote the Fourier cosine coefficients of

g(w) Since g € L’(0, 7) and (a) holds, it follows that (T"a%*,=3\7, (af)/j
converges, and according to Loo [6, p. 273]

(T'@?), = lim g (1—cos Na)(Pg)(@)dz .

But then since (Pg)(x) is integrable on (4, #) the Riemann Lebesgue
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lemma guarantees the existence of

lim S (1—cos Na)(Pg)(@)da: .

N—ooo
Now, (Pg)(x) nonincreasing on (0, 6) shows

N3
['—] 2kz/N

limS (1 —cos Nz)(Pg)(@)ds = lim z (Pg )( 2"”)ﬂ§ " (1—cos No)da

N—oo 2(k—17/N

Il

Il

:\iw Al A

sin (6/2)
n (2 |

It follows that |g(¢)|log®(1/t) is integrable on (0, z) and hence [6, p.
273] T'a* is the sequence of Fourier cosine coefficients of H(x) =
((Pg)(x) + G(x))/2 where G is the function associated by Lemma 2
to the sequence a*. Since Ge L°(0, ) for any o, and He L°(0, n)
by hypothesis, it follows that Pge L°(0, 7). Now, since |(Pf)(x)| <
(Plg)(x) it follows that Pfe L°(0, ) whenever fe L°(0,z) so then
Lemma 1 shows a < 1. Thus (a) implies (b).

Conversely, suppose (b) holds. There is a number p» > 1 such
that @ < p~* so L°(0, #) c L*?(0, r) and hence if fe L°(0, 7) Holder’s
inequality shows g:l f@®)|log* (1/t)dt < . According to Loo [6, p.
273-274] T'a is then the sequence of Fourier cosine coefficients of
h(x) = (Pf(x) + F(x))/2 where F is the function of Lemma 2. Now
Lemma 1 shows that Pfe L°(0, ) and hence h e L°(0, w) so (a) holds.
The theorem is proved.

Il

S g@)1 g}
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