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A COMMUTATIVITY THEOREM FOR RINGS
WITH DERIVATIONS

B. FELZENSZWALB AND A. GIAMBRUNO

Let R be a prime ring with no nonzero nil ideals and
suppose that d is a derivation of R such that d(z") =0, n =
n(x) =1, for all x€ R. It is shown that either d =0 or R
is an infinite commutative domain of characteristic p >0 and
p\n(x) if d(x) = 0.

Let R be an associative ring. Recall that an additive mapping
d of R into itself is a derivation if d(xy) = d(x)y + zd(y) for all
z, ¥y R.

In [2] it was shown that if R is a prime ring and d is a deriva-
tion of R such that d(az") = 0 for all x€ R, where n = 1 is a fixed
integer, then either d = 0 or R is an infinite commutative domain
of characteristic p # 0 where p\n. Moreover, the following question
was raised:

If R is a ring with no nonzero nil ideals and d is a derivation
of R such that d(z™) = 0, » = n(x) = 1, for all x € R, can we conclude
that R must be rather special or d = 0?7

If d is an inner derivation (i.e., if there exists an element
a € R such that d(x) = ax — wa) Herstein’s hypercenter theorem [3]
asserts that under the above conditions d must be zero. This is
not always the case for arbitrary derivations. Take for instance a
commutative domain A of characteristic p %= 0 and let d be the
usual derivation on the polynomial ring A[X]; then d(f?) =0 for
all fe A[X], but d =+ 0.

We shall prove the following

THEOREM. Let R be a prime ring with no monzero nil ideals
and let d be a derivation of R such that

diz®) =0, n=mnlx)=1, for all zeR.

Then either d =0 or R is an infinite commutative domain of
characteristic p # 0 and p\n(x) 7f d(z) # 0.

For primitive rings the above theorem was proved in [2];
however the proof we give here is independent.

Notice that the conclusion of the theorem is false if one removes
the assumption of primeness. In fact, let R = A[X] &P M, (A) where
A is a commutative domain of characteristic p = 0 and M,(A) is the
ring of 2 X 2 matrices over A. Let d be the derivation of R defined
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as follows: d is the usual derivation on the polynomial ring A[X]
and d =0 on M,(A). Then R has no nil ideals, d(?) = 0 for all
reR, but d # 0 and R is not commutative.

We begin with a slight generalization of a result of Posner [4,
Lemma 3].

LEMMA. Let R be a prime ring with a derivation d += 0 and
let U be a monzero ideal of R. If d(uw)u = ud(u), for all uwe U,
then R is commutative.

Proof. Let wu,veU; since duw)u = ud(u), d@)v = vd(w) and
dlu + v)(w + v) = (u + v)d(u + v) we get

(1) duw)v + d@)u = ud(w) + vd(uw) .
Thus, since % and uv lie in U, arguing as above we have that
d(uw)uv + duv)u = ud(uv) + uwvd(u) = ud(u)v + u(ud(®) + vd(u)) .

Hence, from (1) and the fact that d(u)u = ud(u) it follows that
duv)u = uw(d(w)v + d@)u). In other words, d(u)(vu — uv) =0 for
all u,ve U. From this we obtain

0 = d(u)(wvxu — uvx) = d(u)vieu — ux)

forallu,ve Uand x€ R. Since R is a prime ring we conclude that
U=Z(U)NK where Z(U) is the center of U and K = {u € U/d(u) = 0}.
If U= K then the primeness of R forces d = 0, a contradiction;
hence U = Z(U) is commutative and, so, R is commutative.

We now prove the theorem stated above

Proof of the Theorem. To prove the theorem it is enough to
show that if d # 0, then R is commutative. In fact, if this is the
case, then nx"'d(x) = d(@") = 0, n = n(x) = 1, for all x€ R. Since
d # 0 it follows that R is of characteristic p = 0 (and p\n(x) if
d(x) == 0); thus, d(x?) = px*~'d(x) = 0 for all xcR. If R is finite
then R is a field and all its elements are pth powers, forcing d = 0;
hence R is infinite.

We also note that given x, y € R, there exists k¥ =1 such that
d(x*) = d(y*) = 0. In fact it is enough to consider k = nm where
d(xz*) = 0 and d(y™) = 0.

Henceforth we assume d # 0. Our object is to show that R is
commutative.

Let J be the Jacobson radical of R. Suppose first that J == 0.
We shall prove that d(x)x = zd(x), for all xeJ, by Lemma 1 the
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result will follow.
Let xc¢J and ye R; let n = 1 be such that

d(1 +2)'y"1+ ) =dy)=0.
Then,

A1+ 2)A + )y + x) = dy" + y'r) = yd(x) .
On the other hand,

a1 + )1 + ) 'y"A + 2))
=d((1 + 2)7'y" 1 + ) + 21 + 2)7'y"(1 + x))
= d(x)A + ) 'y"(1 + x) .

Therefore,
d@)(1 + )7y (1 + 2) = y"d() .

Multiplying this last equality from the right by (1 + z)™!, we get
dx)A + 2) 'y = ydx)A + x)™ .

Thus d(z)(1 + z)™' commutes with some power of every element in
R and so d(x)(1 + x)™* is in the hypercenter of R. By [3], since R
has no nil ideals, the hypercenter of R coincides with the center of
R. Hence d(x)(1 + 2)™* is central and so, on commuting it with z,
we obtain d(x)x = xd(x). This establishes the theorem when J == 0.

Thus we may assume, henceforth, that R is a semisimple ring.

We claim that R has no zero-divisors. In fact, let a =<0 in R
and let N\={yeR/ya=0}. If yex and x<c R, there exists n =1
such that

d((ax + axy)") = d((ax)”) = 0 .
Since ya = (axy)* = 0 it follows that

(ax)"d(y) = d((ax)"y) = 0 .

This says that d(y) annihilates on the right a suitable power of
every element in the right ideal aR. By [1], since R is semisimple,
we have aRd(y) = 0. Hence, since R is prime and a # 0, we conclude
that d(y) = 0. In other words, d vanishes on A, a left ideal of R.
By the primeness of R, it is easy to check that this forces d = 0,
unless » = 0. Thus, R has no zero-divisors.

We go on with the final steps of the proof by showing that if
R is a domain then R is commutative. As before it is enough to
show that d(x)x = xd(x) for all x € R.

Let 2+ 0 in R and let A = Ciz(x™) be the centralizer of z™ in
R, where n = 1 is such that d(x") = 0. If ac A, then
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0 = d(az™ — 2"a) = d(a)x” — x"d(a) ;

that is, A is invariant under d and we may consider d as a deriva-
tion on A.

Now, A is a domain whose center, Z(A4), is nonzero for 0 == a" €
Z(A). By localizing A at Z(A)\{0} we obtain a domain @ D A whose
center is a field containing 2*; in particular, x is invertible in Q.
As it is well known, d extends uniquely to a derivation on @ (which
we shall also denote by d) as follows:

d(az™) = d(a)z™* + ad(2)z7?, a€A, z e Z(A)\{0} .

Moreover, by our basic hypothesis on d, we have that d(¢q™) = 0,
m = m(q) = 1, for all ge Q.
Let ¢qe @ and let m = 1 be such that

d(q™) = d(z™'q"x) = 0 .
Then,
d(@)e™'q"x = d(z(z'q"x)) = d(¢"x) = q"d(2) .
Multiplying this equality from the right by 2™, we obtain
dx)x™'q™ = q™d(x)x™* .

In other words, d(x)x~* lies in the hypercenter of @. As before, by
[3], it follows that d(x)x™* lies in the center of @ and so, we con-
clude that d(x)x = ad(x). This completes the proof of the theorem.

We finish with the following

COROLLARY. Let R be a prime ring with no nonzero nil ideals.
If d is a derivation of R such that d(u") = 0, n = n(u) = 1, for all
u € U, where U is a nmonzero ideal of R, then either d =0 or R 1is
an infinite commutative domain of characteristic p + 0 and p\n(w)
if d(u) #= 0.

Proof. Suppose d # 0. Let
o(U) = {ue Uld'(u)e U, for all = 1}.

Then, 6(U) is an ideal of R invariant under d. Moreover, by hy-
pothesis, some power of every element in U lies in 6(U). Since R
has no nonzero nil ideals, we must have 6(U) # 0.

Now, as an ideal of R, 6(U) is also a prime ring with no non-
zero nil ideals. By the above theorem, the conclusion holds in 6(U).
Since R is prime, the result follows.



A COMMUTATIVITY THEOREM FOR RINGS WITH DERIVATIONS 45

REFERENCES

1. B. Felzenszwalb, On a result of Levitzki, Canad. Math. Bull., 21 (2) (1978), 241-242.
2. , Derivations in prime rings, Proc. Amer. Math. Soc., 84 (1982), 16-20.

3. I. N. Herstein, On the hypercenter of a ring, J. Algebra, 36 (1975), 151-157.

4. E. C. Posner, Derivations im prime rings, Proc. Amer. Math. Soc., 8 (1957),
1093-1100.

Received July 1, 1981. This work was supported by the National Research Council
of Brazil (CNPq).

UNIVERSIDADE FEDERAL DO R10 DE JANEIRO
P. 0. Box 68530

21910-R10 DE JANEIRO, RJ BRrAZIL

AND

UNIVERSITA DI PALERMO

VIA ARCHIRAFI 34

90123 PALERMO, ITALY








