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A COMMUTATIVITY THEOREM FOR RINGS
WITH DERIVATIONS

B. FELZENSZWALB AND A. GIAMBRUNO

Let R be a prime ring with no nonzero nil ideals and
suppose that d is a derivation of R such that d(xn) = 0, n =
n(x) ^ 1, for all xeR. It is shown that either d = 0 or R
is an infinite commutative domain of characteristic p ^ 0 and
p\n(x) if d(x) * 0.

Let R be an associative ring. Recall that an additive mapping
d of R into itself is a derivation if <Z(#2/) = d(x)y + #d(2/) for all
x,yeR.

In [2] it was shown that if R is a prime ring and d is a deriva-
tion of R such that d(xn) = 0 for all a; 6 ϋ?, where n 2 1 is a fixed
integer, then either c£ = 0 or R is an infinite commutative domain
of characteristic p Φ 0 where p\n. Moreover, the following question
was raised:

If R is a ring with no nonzero nil ideals and d is a derivation
of R such that d(xn) = 0, w = w(a?) ^ 1, for all xeR, can we conclude
that R must be rather special or d = 0?

If d is an inner derivation (i.e., if there exists an element
a£R such that d(x) = ax —- scα) Herstein's hypercenter theorem [3]
asserts that under the above conditions d must be zero. This is
not always the case for arbitrary derivations. Take for instance a
commutative domain A of characteristic p Φ 0 and let d be the
usual derivation on the polynomial ring -4[X]; then d(fp) = 0 for
all feA[X], but d Φ 0.

We shall prove the following

THEOREM. Let R be a prime ring with no nonzero nil ideals
and let d be a derivation of R such that

d{xn) = 0 , n- n(x) ^ 1 , for all xeR .

Then either d = 0 or R is an infinite commutative domain of
characteristic p Φ 0 and p\n{x) if d(x) Φ 0.

For primitive rings the above theorem was proved in [2];
however the proof we give here is independent.

Notice that the conclusion of the theorem is false if one removes
the assumption of primeness. In fact, let R = A[X] © M2(A) where
A is a commutative domain of characteristic p Φ 0 and M2(A) is the
ring of 2 x 2 matrices over A. Let d be the derivation of R defined
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as follows: d is the usual derivation on the polynomial ring A[X]
and d = 0 on MZ(A). Then R has no nil ideals, d(rp) = 0 for all
reR, but d Φ 0 and i? is not commutative.

We begin with a slight generalization of a result of Posner [4,
Lemma 3].

LEMMA. Let R be a prime ring with a derivation d Φ 0 and
let U be a nonzero ideal of R. If d(u)u = ud(u), for all ue U,
then R is commutative.

Proof. Let u,veU; since d(u)u — ud(u), d{v)v = vd(v) and
d(u + v){u 4- v) — (u + v)d(w + v) we get

( 1 ) d(u)v + d(v)w = ud{v) + vd(u) .

Thus, since u and tw lie in U, arguing as above we have that

d(u)uv + d(uv)u •= ud(uv) + uvd(u) = ud{u)v + u(ud(v) + vd(u)) .

Hence, from (1) and the fact that d(u)t6 = %tf(w) it follows that
d{uv)u = ^(d(^)i + cuCv)̂ ). In other words, c^Xmt — uv) = 0 for
all u, veU. From this we obtain

0 = d(u)(vxu — two;) = d(u)v(xu —

for all u, veU and a? 6 R. Since i2 is a prime ring we conclude that
U=Z(U)ΓιK where Z(ί7) is the center of U and K={ue U/d(u) = 0}.
IfU=K then the primeness of iϋ forces ώ = 0, a contradiction;
hence ί7= Z(17) is commutative and, so, R is commutative.

We now prove the theorem stated above

Proof of the Theorem. To prove the theorem it is enough to
show that if d Φ 0, then R is commutative. In fact, if this is the
case, then nxn~1d{x) = d(xn) = 0, n = n(x) ^ 1, for all xeR. Since
d Φ 0 it follows that J2 is of characteristic p Φ 0 (and p\n(a?) if
d(a?) Φ 0); thus, d(^p) = pxv'λd{x) = 0 for all a? e j?. If Λ is finite
then R is a field and all its elements are pth powers, forcing d — 0;
hence i2 is infinite.

We also note that given x, y eR, there exists k ^ 1 such that
eZ(#fc) = d(yk) = 0. In fact it is enough to consider k = nm where
d(xn) = 0 and d(?/m) = 0.

Henceforth we assume d Φ 0. Our object is to show that R is
commutative.

Let / be the Jacobson radical of R. Suppose first that J Φ 0.
We shall prove that d(x)x — xd{x), for all x e / , by Lemma 1 the
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result will follow.
Let xeJ and y e R ; let n ^ 1 be such that

x)~ιy\l + »)) = d(yn) = 0 .

Then,

d((l + a?)(l + αO"V(l + x)) = d(yn + ynx) = yn

On the other hand,

flί)"y(l + a?))

Therefore,

Multiplying this last equality from the right by (1 + %)~ι, we get

xT'y" - ynd(x)(l + x)~x .

Thus d(a;)(l + x)~ι commutes with some power of every element in
R and so d(x)(l + x)'1 is in the hypercenter of R. By [3], since R
has no nil ideals, the hypercenter of R coincides with the center of
R. Hence d(x)(l + x)~ι is central and so, on commuting it with x,
we obtain d{x)x = xd(x). This establishes the theorem when / Φ 0.

Thus we may assume, henceforth, that R is a semisimple ring.
We claim that R has no zero-divisors. In fact, let a Φ 0 in R

and let λ = {yeRfya = 0}. If yex and xeR, there exists w >̂ 1
such that

d((ax + axy)n) = d((αcc)π) = 0 .

Since yα = (αa;?/)2 = 0 it follows that

(ax)nd(y) = d((ax)ny) = 0 .

This says that d(y) annihilates on the right a suitable power of
every element in the right ideal aR. By [1], since R is semisimple,
we have aRd(y) — 0. Hence, since R is prime and a Φ 0, we conclude
that d(y) — 0. In other words, d vanishes on λ, a left ideal of R.
By the primeness of R, it is easy to check that this forces d — 0,
unless λ = 0. Thus, R has no zero-divisors.

We go on with the final steps of the proof by showing that if
R is a domain then R is commutative. As before it is enough to
show that d(x)x = xd{x) for all x e R.

Let x Φ 0 in R and let A = CR(xn) be the centralizer of xn in
R, where n ^ 1 is such that d(xra) = 0. If α e A, then
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0 = d(axn - xna) = d{a)xn - xnd(a)

that is, A is invariant under d and we may consider d as a deriva-
tion on A.

Now, A is a domain whose center, Z(A), is nonzero for 0 Φ xn e
Z(A). By localizing A at Z(A)\{0} we obtain a domain Q z> A whose
center is a field containing xn; in particular, x is invertible in Q.
As it is well known, d extends uniquely to a derivation on Q (which
we shall also denote by d) as follows:

d(az"1) = d(a)z~1 + ad(z)z~2, α e i , * e Z(A)\{0} .

Moreover, by our basic hypothesis on d, we have that d(qm) = 0,
m = m{q) ^ 1, for all qeQ.

Let # e Q and let m ^ 1 be such that

(q) = dίαΓ^aO = 0 .

Then,

d(x)χ-ιqmx = d{x{χ-χqmx)) = d(qwx) = qmd(x) .

Multiplying this equality from the right by or1, we obtain

d(x)x~ιqm = qmd(x)χ-χ .

In other words, ^(α;)^"1 lies in the hypercenter of Q. As before, by
[3], it follows that d(x)x~1 lies in the center of Q and so, we con-
clude that d(x)x = a?ίZ(fic). This completes the proof of the theorem.

We finish with the following

COROLLARY. Let R be a prime ring with no nonzero nil ideals.
If d is a derivation of R such that d(un) = 0, n = n(u) ^ 1, for all
ueU, where U is a nonzero ideal of R, then either d — 0 or R is
an infinite commutative domain of characteristic p Φ 0 and p\n(u)
if d{u) Φ 0.

Proof. Suppose d Φ 0. Let

d(U) = {u e U/d%u) e U, for all i ^ 1} .

Then, 3(17) is an ideal of R invariant under d. Moreover, by hy-
pothesis, some power of every element in U lies in d(U). Since R
has no nonzero nil ideals, we must have δ(U) Φ 0.

Now, as an ideal of R, δ(U) is also a prime ring with no non-
zero nil ideals. By the above theorem, the conclusion holds in δ(U).
Since R is prime, the result follows.
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