THE JACOBSON DESCENT THEOREM

DAVID J. WINTER

A direct proof of the Jacobson Descent Theorem is given and used to prove the Jacobson-Bourbaki Correspondence Theorem.

The purpose of this paper is to give a proof of the Jacobson Descent Theorem, Theorem 1, which is direct in that it does not assume that $A = \text{Hom}_{K^4} K$. This is then used to prove the Jacobson-Bourbaki Correspondence Theorem, Theorem 2. The approach simplifies earlier proofs.

A variation of a theme of Hochschild appearing in Jacobson [2] and Winter [3] recurs here in the concentrated form of the dual bases x_i , R_j which thread their way through both proofs. Thus, this paper underlines the importance of this natural duality.

Throughout the paper, K denotes a field, End K denotes the ring of endomorphisms of K as additive group, A denotes a subring of End K containing the K-span KI of the identity I of End K and V denotes a vector space over K of finite or infinite dimension V: K. Regard A as left K-vector space in the obvious way.

DEFINITION 1. An A-product on V is a mapping $A \times V \to V$, denoted $(T, v) \to T(v)$, such that V is an A-module and

$$(xT)(v) = x(T(v)) \quad (x \in K, T \in A, v \in V).$$

Clearly T(v) ($T \in A$, $v \in K$) is an A-product for K.

Suppose henceforth that T(v) ($T \in A$, $v \in V$) is an A-product for V, and $V^A = \{v \in V \mid T(xv) = T(x)v \text{ for } T \in A, x \in K\}$. In particular, we have then defined K^A .

DEFINITION 2. For k a subfield of K, a k-form of V is a k-subspace V' of V whose k-bases are K-bases of V. \Box

THEOREM 1 (Jacobson [1]). Let A: $K < \infty$, then V^A is a K^A -form of V.

Proof. $\hat{K} = \{\hat{x} \mid x \in K\}$ separates A and therefore contains a basis $\hat{x}_1, \ldots, \hat{x}_n$ for the K-dual space $\operatorname{Hom}_K(A, K)$ of A where $\hat{x} \in \operatorname{Hom}_K(A, K)$ is defined for $x \in K$ by $\hat{x}(T) = T(x)$ $(T \in A)$. Letting R_1, \ldots, R_n be a dual basis for A, so that $R_i(x_j) = \delta_{ij}$ $(1 \le i, j \le n)$, we have $T(xR_i)(x_j) = T(x\delta_{ij}) = T(x)\delta_{ij} = (T(x)R_i)(x_j)$ $(1 \le i, j \le n)$ so that $T(xR_i) = T(x)R_i$ $(1 \le i \le n)$ for all T, since the x_j separate A.

Letting $v \in V$, we therefore have $T(xR_i(v)) = (T(xR_i))(v) = T(x)R_i(v)$ for all $T \in A$, $x \in V$, so that $R_i(V) \subset V^A$ and, in particular, $R_i(K) \subset K^A$ $(1 \le i \le n)$.

It follows that the K-span KV^A of V^A is V. For we have $I = \sum_{i=1}^{n} y_i R_i$ for suitable $y_i \in K$, so that $v = \sum_{i=1}^{n} y_i R_i v \in KV^A$ for all $v \in V$. Finally, let v_i ($i \in I$) be a K^A -basis for V^A . Suppose that $\sum_{v \in I} y_v v_i =$

Finally, let v_i $(i \in I)$ be a K^A -basis for V^A . Suppose that $\sum_{i \in I} y_i v_i = 0$ with the y_i in K. Then $0 = \sum_{i \in I} R_j(y_i) v_i$ with the $R_j(y_i) \in K^A$, so $R_j(y_i) = 0$ $(1 \le i, j \le n)$ and $y_i = 0$ $(1 \le i \le n)$.

THEOREM 2 (Jacobson [2]). Let A: $K < \infty$. Then $A = \text{Hom}_{K^A} K$.

Proof. A as left A-module satisfies (xS)T = x(ST) $(x \in K, S, T \in A)$, so that A^A is a K^A form of A and A^A contains a basis R_1, \ldots, R_n for A over K. Choosing $x_i \in K$ so that $I = x_1R_1 + \cdots + x_nR_n$, we have $x = \sum_{i=1}^n x_iR_i(x), R_i(x) \in K^A$, for $x \in K$, so that $K: K^A \leq A: K \leq \operatorname{Hom}_{K^A} K: K \leq K: K^A$ and $A = \operatorname{Hom}_{K^A} K$. \Box

It is clear, in retrospect, that the above x_1, \ldots, x_n form a basis for K over $K^A = k$ and that A^A is the dual space $\operatorname{Hom}_k(K, k) = K^*$ of K over k. The equations $x_j = \sum_{i=1}^n x_i R_i(x_j)$ show that $R_i(x_j) = \delta_{ij}$, that is, R_1, \ldots, R_n is a dual basis for K^* . Finally, $I = x_1 R_1 + \cdots + x_n R_n$ shows that $T = \sum_1^n x_j R_j T$ and $T(x_i) = \sum_1^n x_j R_j T(x_i) = \sum_1^n (R_j \hat{x}_i(T)) x_j$. Thus, the $X_{ij} = R_j \hat{x}_i$ (composite) $(1 \le i, j \le n)$ are the coordinate functions on the $T \in A$ relative to the basis x_i . They form a basis for the k-dual space A^* of $A = \operatorname{Hom}_k K$. Since we may identify $\hat{K} = \{\hat{x} \mid x \in K\}$ with K, it follows that the k-dual space A^* of $A = \operatorname{Hom}_k K$ are nondegenerate bilinear k-pairing \langle , \rangle on $A \times A$ such that $\langle x_i R_j, T \rangle = R_j T(x_i)$. This pairing is also characterized by the condition $\langle xR, yS \rangle = R(y)S(x)$ ($x, y \in K, R, S \in K^*$). Since $(x_i R_j)(x_r R_s) = x_i (R_j x_r R_s) = x_i R_j(x_r) R_s = x_i \delta_{jr} R_s$, the $E_{ij} = x_i R_j$ form a system of matrix units for A. We have $\langle E_{ij}, E_{rs} \rangle = \langle x_i R_j, x_r R_s \rangle = R_j(x_r) R_s(x_i) = \delta_{jr} \delta_{is} = \operatorname{Trace}(E_{ij} E_{rs})$. It follows that $\langle S, T \rangle = \operatorname{Trace} ST(S, T \in A)$.

References

Received May 8, 1981. This research was supported in part by the National Science Foundation.

UNIVERSITY OF MICHIGAN ANN ARBOR, MI 48109

^[1] Nathan Jacobson, Forms of algebras, Yeshiva Sci. Confs., 7 (1966), 41-71.

^[2] _____, Lectures in Abstract Algebra, Vol. III Van Nostrand, Princeton (1964).

^[3] David J. Winter, Structures of Fields, Graduate Texts in Mathematics No. 16, Springer-Verlag (1974).