THE JACOBSON DESCENT THEOREM

David J. Winter

Abstract

A direct proof of the Jacobson Descent Theorem is given and used to prove the Jacobson-Bourbaki Correspondence Theorem.

The purpose of this paper is to give a proof of the Jacobson Descent Theorem, Theorem 1, which is direct in that it does not assume that $A=\operatorname{Hom}_{K^{\wedge}} K$. This is then used to prove the Jacobson-Bourbaki Correspondence Theorem, Theorem 2. The approach simplifies earlier proofs.

A variation of a theme of Hochschild appearing in Jacobson [2] and Winter [3] recurs here in the concentrated form of the dual bases x_{i}, R_{j} which thread their way through both proofs. Thus, this paper underlines the importance of this natural duality.

Throughout the paper, K denotes a field, End K denotes the ring of endomorphisms of K as additive group, A denotes a subring of End K containing the K-span $K I$ of the identity I of End K and V denotes a vector space over K of finite or infinite dimension $V: K$. Regard A as left K-vector space in the obvious way.

Definition 1. An A-product on V is a mapping $A \times V \rightarrow V$, denoted $(T, v) \rightarrow T(v)$, such that V is an A-module and

$$
(x T)(v)=x(T(v)) \quad(x \in K, T \in A, v \in V)
$$

Clearly $T(v)(T \in A, v \in K)$ is an A-product for K.
Suppose henceforth that $T(v)(T \in A, v \in V)$ is an A-product for V, and $V^{A}=\{v \in V \mid T(x v)=T(x) v$ for $T \in A, x \in K\}$. In particular, we have then defined K^{A}.

Definition 2. For k a subfield of K, a k-form of V is a k-subspace V^{\prime} of V whose k-bases are K-bases of V.

Theorem 1 (Jacobson [1]). Let A: $K<\infty$, then V^{A} is a K^{A}-form of V.
Proof. $\hat{K}=\{\hat{x} \mid x \in K\}$ separates A and therefore contains a basis $\hat{x}_{1}, \ldots, \hat{x}_{n}$ for the K-dual space $\operatorname{Hom}_{K}(A, K)$ of A where $\hat{x} \in \operatorname{Hom}_{K}(A, K)$ is defined for $x \in K$ by $\hat{x}(T)=T(x)(T \in A)$. Letting R_{1}, \ldots, R_{n} be a dual basis for A, so that $R_{i}\left(x_{j}\right)=\delta_{i j}(1 \leq i, j \leq n)$, we have $T\left(x R_{i}\right)\left(x_{j}\right)=T\left(x \delta_{i j}\right)=T(x) \delta_{i j}=\left(T(x) R_{i}\right)\left(x_{j}\right) \quad(1 \leq i, j \leq n) \quad$ so that $T\left(x R_{i}\right)=T(x) R_{i}(1 \leq i \leq n)$ for all T, since the x_{j} separate A.

Letting $v \in V$, we therefore have $T\left(x R_{i}(v)\right)=\left(T\left(x R_{i}\right)\right)(v)=$ $T(x) R_{l}(v)$ for all $T \in A, x \in V$, so that $R_{i}(V) \subset V^{A}$ and, in particular, $R_{i}(K) \subset K^{A}(1 \leq i \leq n)$.

It follows that the K-span $K V^{A}$ of V^{A} is V. For we have $I=$ $\sum_{1}^{n} y_{i} R_{t}$ for suitable $y_{i} \in K$, so that $v=\sum_{1}^{n} y_{i} R_{i} v \in K V^{A}$ for all $v \in V$.

Finally, let $v_{i}(i \in I)$ be a K^{A}-basis for V^{A}. Suppose that $\Sigma_{i \in I} y_{t} v_{i}=$ 0 with the y_{l} in K. Then $0=\Sigma_{i \in I} R,\left(y_{i}\right) v_{i}$ with the $R_{j}\left(y_{i}\right) \in K^{A}$, so $R_{j}\left(y_{t}\right)=0(1 \leq i, j \leq n)$ and $y_{i}=0(1 \leq i \leq n)$.

Theorem 2 (Jacobson [2]). Let $A: K<\infty$. Then $A=\operatorname{Hom}_{K^{A}} K$.
Proof. A as left A-module satisfies $(x S) T=x(S T) \quad(x \in K$, $S, T \in A$), so that A^{A} is a K^{A} form of A and A^{A} contains a basis R_{1}, \ldots, R_{n} for A over K. Choosing $x_{i} \in K$ so that $I=x_{1} R_{1}+\cdots+x_{n} R_{n}$, we have $x=\sum_{i=1}^{n} x_{i} R_{i}(x), R_{i}(x) \in K^{A}$, for $x \in K$, so that $K: K^{A} \leq$ $A: K \leq \operatorname{Hom}_{K^{A}} K: K \leq K: K^{A}$ and $A=\operatorname{Hom}_{\mathrm{K}^{A}} K$.

It is clear, in retrospect, that the above x_{1}, \ldots, x_{n} form a basis for K over $K_{\text {def }}^{A}=k$ and that A^{A} is the dual space $\operatorname{Hom}_{k}(K, k)=K^{*}$ of K over k. The def equations $x_{j}=\sum_{i=1}^{n} x_{i} R_{i}\left(x_{j}\right)$ show that $R_{i}\left(x_{J}\right)=\delta_{i j}$, that is, R_{1}, \ldots, R_{n} is a dual basis for K^{*}. Finally, $I=x_{1} R_{1}+\cdots+x_{n} R_{n}$ shows that $T=\sum_{1}^{n} x_{j} R_{j} T$ and $T\left(x_{i}\right)=\sum_{1}^{n} x_{j} R_{j} T\left(x_{i}\right)=\sum_{1}^{n}\left(R_{j} \hat{x}_{i}(T)\right) x_{j}$. Thus, the $X_{i J}=R_{J} \hat{x}_{l}$ (composite) $(1 \leq i, j \leq n)$ are the coordinate functions on the $T \in A$ relative to the basis x_{i}. They form a basis for the k-dual space A^{*} of $A=\operatorname{Hom}_{k} K$. Since we may identify $\hat{K}=\{\hat{x} \mid x \in K\}$ with K, it follows that the k-dual space A^{*} of $A=\operatorname{Hom}_{k} K=K K^{*}$ can be identified with A whereby $X_{i j}$ corresponds to $X_{i} R_{j}$ - that is, we have a nondegenerate bilinear k-pairing \langle,$\rangle on A \times A$ such that $\left\langle x_{i} R_{j}, T\right\rangle=R_{j} T\left(x_{i}\right)$. This pairing is also characterized by the condition $\langle x R, y S\rangle=R(y) S(x)(x, y$ $\left.\in K, R, S \in K^{*}\right)$. Since $\left(x_{i} R_{j}\right)\left(x_{r} R_{s}\right)=x_{i}\left(R_{j} x_{r} R_{s}\right)=x_{i} R_{j}\left(x_{r}\right) R_{s}=$ $x_{i} \delta_{j r} R_{s}$, the $E_{i j}=x_{i} R_{j}$ form a system of matrix units for A. We have $\left\langle E_{i j}, E_{r s}\right\rangle=\left\langle x_{i} R_{j}, x_{r} R_{s}\right\rangle=R_{j}\left(x_{r}\right) R_{s}\left(x_{i}\right)=\delta_{j r} \delta_{i s}=\operatorname{Trace}\left(E_{i j} E_{r s}\right)$. It follows that $\langle S, T\rangle=\operatorname{Trace} S T(S, T \in A)$.

References

[1] Nathan Jacobson, Forms of algebras, Yeshiva Sci. Confs., 7 (1966), 41--71.
_ Lectures in Abstract Algebra, Vol. III Van Nostrand, Princeton (1964).
[3] David J. Winter, Structures of Fields, Graduate Texts in Mathematics No. 16, Springer-Verlag (1974).

Received May 8, 1981. This research was supported in part by the National Science Foundation.

