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SUP-CHARACTERIZATION OF
STRATIFIABLE SPACES

C. R. BORGES AND G. GRUENHAGE

We prove that a 7)-space (X, 7) is stratifiable if and only if, for
each U € 7, one can find a continuous function f,,: X — I such that
fu'(0) = X — U and, for each A C 7, sup,cq fy is continuous. This
result is closely related to characterizations of metrizable and paracom-
pact spaces, by J. Nagata, and J. Guthrie and M. Henry.

1. Introduction. J. Nagata [4, Theorem 5] and J. Guthrie and M.
Henry [2, Theorem 2] have characterized metrizable spaces in terms of
collections of real-valued functions with continuous “sups” and “infs”.
Nagata’s theorem can be reformulated as follows:

THEOREM (Nagata). A4 T,-space X is metrizable if and only if there is a
family F of functions from X into [0, 1] such that

(a) for each 5’ C %, sup %’ and inf &’ are continuous;,

() {f'(e,1): € >0, f € F) is a base for X.

In the paper of Guthrie and Henry, it is shown that the Sorgenfrey
line admits a collection % of functions satisfying (b) such that “infs” from
% are continuous. One might, therefore, expect that nothing interesting
happens if just sups are required to be continuous. In this paper we show
instead that a characterization of stratifiable spaces is obtained. Our main
result is the following:

THEOREM 1. The following are equivalent for a T,-space ( X, 7):

(a) X is stratifiable;

(b) There exists a family % = {f,: U € 7} of functions from X into
[0, 1] such that

(i) for each QL C 7, supcq, fy is continuous;,

(ii) for each open set U, f;;'(0) = X — U.

(c) There exists a collection 5 = U, _ 5, such that

(i) for eachn € wand §’ C %, sup %’ is continuous;,

@) £ Y([e, 1]): e>0, f € F} is a base for X.

Observe that the property that one obtains by just requiring sups to
be continuous in Nagata’s theorem is formally weaker than (b) and
stronger than (c). However, by this theorem all these properties are
equivalent.
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2. Preliminaries. It turns out not to be difficult to prove that a
space satisfying (c) is stratifiable. Proving (a) = (b) is the hard part. It
involves building a very strong type of “stratification”, which is done in
Lemma 2.3, the proof of which is the purpose of this section.

If (X, 7) is a stratifiable space, then for each U € 7 and x € U, one
can assign an open neighborhood U, of x satisfying

UNV,#d=xeV o yel.

(cf. Lemma 4.2 of [1]). Let Ui = U, and U,» = (U,»-1),, forn = 2,3,....
A neighbornet R of a space X is a binary relation on X such that
R[x] = {y: x R y} is a neighborhood of x for each x € X. If @ is a
collection of subsets of X, let & = {4 € @| x € 4}. If Vis a cover of X,
let V(x) = N V.. For any point finite open cover Vof X and k = 2,3,...,
let N¥(“V) be the neighbornet defined by N*(V)[x] = (V(x))«. Let
N(V') be the neighbornet defined by N(V)[x] = V(x). By Corollary 4.7
of [3], there exists a point-finite open cover VY’ of X such that N(V") C
(N3(V))3? (recall that, for relations R C X X X, R" = R"" ! o R).

LemMA 1.1. (N3 (V)3 and N(V") satisfy the following:

(@) y € N(V)[x] = N(V)[y] C N(V")[x],

(b) each N(V")[x] C V(x),

(c) for each 0 €T and y €0, Os N NV)x]# @ =>x€00ry€
Y(x).

Proof. Part (a). y € N(V)[x] = V’(x) implies that N(V')[y] =
V(y) € V'(x) = N(V")[x].

Part (b). Note that each N(V")[x] C (N3(V))’[x]. So it suffices to
show that (N3(V))’[x] C V(x). Clearly N3(V)[x] = (V(x)),s C V(x).
Therefore y € N3(V)[x] =y € V(x) = V(») C V(x) = N}(V)[y] C
Y(y) € V(x). Consequently, (N3(V))?[x] C V(x). Similarly, z €
(N3}(V))2=V(z) CV(x) = (N}(V)[z] C V(z) C V(x). Consequently,
(N3(V))3[x] C V(x), as desired.

Part (c). O, N N(V)[x]# @ = 0, N (N (V))’[x] # @. Thus
there exists p, w "e X such that 0, N C\f(p) #* @, with p € (V(w)),s,
w € (V(x)),s; hence, y € (‘V(p)) 2 0r p = 0,.. It y € (V(p)),> then
yEV(p) CV(w) CV(x). If p € 0 2 then O, N (V(w)),» # @ ; hence,
y € V(w),. C V(w) CV(x) or w e 0,. But w € O, implies that O, N
(V(x)),» # @ which implies that y € (‘V(x)) 2 C CV(x) or x €0. ThlS
completes the proof.
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LEMMA 1.2. To each x € (X, 7) one can assign a sequence {h,(x)} of
open neighborhoods of x such that
() ho(x) D hy(x) D ...,
(i) ¥ € h,(x) = h,(y) C hy(x),
(iii) y € U € 1 = there exists n such thaty & (U {h,(x)|x & U})™,
(iv) For n>0 and yeUer, UsNh(x)#F=x€Uoryec
hn—l(x)-

Proof. From Lemma 4.2 and Theorem 4.17 of [3], we can find a
sequence V, C YV, C YV, C --- of point finite open covers of X which
satisfy the following condition:

(x) For each y € U € r, there exists n such that

y& (U {V(x)|xeU}) .

Let U, = ¥, and W, = (W,_, U V) for n =1,2,.... (Recall that
N(UW,) C (N3 (U,_, UV )3>) For each x € X and n=0,1,2,..., let
h,(x) = N(U,)[x] = W,(x). Let us check that the A,(x) satisfy condi-
tions (i)—(iv) above.

(i) h,(x) = N(UW,)[x] C (U, , UT)(x) CU,_(x) = h,_(x),
where the first containment follows from Lemma 1.1(b).

(i) y € h,(x) = h,(y) = Wy) C W, (x) = h,(x).

(iii) From (i) we get that ,(x) C (W,_, U V )(x) C YV (x). Since the
Y (x) satisfy (*) then so do the A ,(x).

(V) Up N h(x) # B & Us 0 N(W,_, UY,))[x]# 8 =x € Uor
Yy E(W,_, UV )x)CW,_,(x)= h,_(x). This completes the proof.

Let Q, denote the set of rational numbers in ]0, 1].

LEMMA 1.3. To each U € 7 and r € Q,, one can assign a closed U, C X
such that

(Ds<r=UcCU’,

@ U= U(U|r € Q,,

(3) for each r € Q, {U,| U € 1} is closure-preserving.

Proof. Let {0 =ry, r,...} be an enumeration of the rationals in
[0,1]. Let U, = U. Suppose U, has been defined for k <n. Define
U, as follows: Choose k(n)<n such that r., <r, and rg, =
max{r,| j<n and r,<r,}. Let U, = X — U{h,(x)|x &€ U } and let
us verify that the U, satisfy all requirements.

(3) From Lemma 2.2(ii) we get that, for each n, {h,(x)| x € X} is an
interior-preserving open cover of X. Therefore {U _ A4, (x)| A4 C X} is
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also interior-preserving or, equivalently, {X — U, ., A,(x)| A4 C X} is
closure-preserving. This shows that, for each r, {U,| U € 7} is closure-pre-
serving.

(2) Let y € U € 7. From Lemma 1.2(iii), there exists n such that
y & U{h,(x)|x & U})” . From Lemma 1.2(i),

yo(U {m(x)|x&U))

for j = n. Find r,, with m = n such that r,, < r, for each 0 < k < m (if no
such r,, exists, then r,, = min{r,,...,r,} # 0, for m = n, a contradiction).
Theny e U =X — U{h,(x)|x & U}.

(1) Suppose r,, <r, and let us show that U, C Urg. We consider two
cases.

Case 1. m < n. Then

U,=X— U {nx)|xe Ul } cx— U {h(x)|x & U},

Tk(m)
because r, <71y, Soy € U’ % implies that A, (y) N U, = @ which im-
plies that y & U,. Hence U, c Up.

Case 2. m > n. By induction, let us assume that U CcUy, O for r, < r
and k +j <m + n. Letr, = min{r;| r, > r,, and j < m}. Thenr <r, _r
and it suffices to show that U, cu: 70, Suppose not. Then there exists
y €U — Ul Let k%(m) =m and k/(m) = k(k’~'(m)) for j = 1,2,.
We will prove thatye U, — U’ ® implies the following:

. (**) Fo1:) each j =0, k/(m) >t and y € h;,,,(x,) for some x; €
Tis+1(m) o Tii(m)”

(Proof by induction.) Since y € U, and ry(,,,) < r,, we get thaty € U,f( "

(note that k(m) +t<m + n; so U, C ZANNE Lettlng X, =y we get that
(**) is valid for j = 0.

Suppose (**) is valid for j < i and let us show its validity for i + 1.
Since

x, €U’ - U° and

Ti+1(m) Tki(m)

Ul _X_'( U {hk(m)(x)"xe ’k“(m)})_’

T (m)
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then (U, +u(,,,,) 3 O Apagy(X,41) # &, for some x,, & U, ,k +1m Therefore,
by Lemma 1.2(iv), x, € i (my— 1(th]) C A1y X;4 ) which implies that
Y € hpmy(x;) C hk,ﬂ(m)(x ) C hperrgmy(Xi41), because of Lemma 1.2(ii).

Also x,,, € U°,. : Suppose not. Since

i+ 2(my”
l]rk.ﬂ(,,,) =X- U { k' “(m)(x) I x & rk,+z(,,,)}

we get that hgei,(x,4) N U, = @.Soy&U,, (because y €
Ry . (m(Xi+1)) which contradicts y € U, C U, ., — (note that k't Y(m) +
t<m-+n).
Finally k't (m) >t Suppg)se k"+‘(m)l+<I 1. Then ry.o1,y = Fy(,y- Since
x;, €U ,kH( ., then x,_, & U, (agam k' (m) + k(t) <m + n). Since
X, € hyimy—(X,41) and y € hk(m)(x ), by Lemma 1.2 (ii; i), we get that
Y € Pirgny(%,) C Ppog(X;11) C Ry 1(X,41) C hy(x,1,) (because k'(m)
> t by induction hypothesis). Since 4,(x,,.,) N U, = & (because x,,, &
) and y € U, we get a contradiction. This completes the proof of

Since m > k(m) > k*(m) > - -, (**) yields a contradiction (a strictly
decreasing sequence of positive integers!). Consequently, U, C U,g, which
completes the proof.

3. Proof of main result. That (b) = (c) is clear. To get (c) = (a), we
prove that any space satisfying (c) has a o-cushioned pair-base. To this
end, let {(q,,r,): n € w} enumerate all pairs (g, ) of rationals in ]0, 1]
such that q<r Let A, ,, = {f'Ar. 1D, f'(4,,1D): f € 9,}, where
= U % satisfies (c). Then QU = U QL is easily seen to be a

mew m n,mew n,m

pair-base. To see that 9L, ,, is cushioned, first note that any subset of U,
has the form

((rdn.1D).r'(4g,.11):f€9,} whereF,, CJ,,.
Then

U (1) € (sup %) '(1r,01])
< (wp) [t € U S g1,

It remains to prove (a) = (b). By Lemma 2.3, for each U € 7, define
fui X = Iby

fo(x) = ifx € U,
v 1nf{r €D|x & U}, otherwise.
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Clearly f,'(0) = X — U. Also each f, is continuous (note that
fo'{6,1) = N{U,|s<t, s€ D} and f;'(¢,1)) = U{U,|s>1t, s € D}
= U{U|s>t, s € D}, for each r € D, and {],1]| 1 € D} U ([0, ¢[| ¢
€D} is a subbasis for I).

Now let A C 7 and let us show that sup,.q, f, is continuous: First,
note that, for each r € D,

-1
(swp fy) Ar.1D)= U £'.r10
Ue UeEAU
To complete the proof, we need to show that (sup,cq fy) '([7, 1)) is
closed. Suppose there exists

—1

pel(se ) €| - (s ) .

Then (supycq fy)(p) =06 <r.Then, foréd <s<t<r,s,t €D,

pe U (s> Uu=(Ud) (U '),
ve UeEA Uea vea
by Lemma 1.3(3). So there exists a neighborhood 0 of p such that
0 N (YUyeq fo'(2, 1)) = @, which implies that f,,(0) C [0, ¢[, for each
U € ; therefore, (supycq, fy)~'([7, 1]) N 0 = &, a contradiction.
From the proof of the “if” part of Theorem 1 and Proposition 2 of
[4], one easily gleans the following result.

THEOREM 2. A T\-space Y is paracompact if and only if, for each open
cover V of Y, there exists a family {f,: Y — I}, ., of continuous functions
such that

(1) sup, crf, is continuous, for each T' C A,

(iD) {5 (10, 1D}acp refines V.
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