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POWERS OF IDEALS
IN LOCALLY UNMIXED NOETHERIAN RINGS

L. J. RATLIFF, JR.

It is known that the following statements are equivalent for a
semi-local ring R: (1) R is analytically unramified; (2) There exists an
open ideal I in R and an integer n > 0 such that (In+i)a C V for all
i > 1, where (In+ι)a is the integral closure of Γ+ι. Moreover, if R is
analytically unramified and / is any ideal in R, then (2) holds for / and,
(3) There exists an integer m > 1 such that, with B = (Im)a, (Bi)a = Bι

for all i>\. The main result in this paper shows that an analogous
theorem holds with reduced unmixed local ring and I[l] replacing analyti-
cally unramified semi-local ring and (/')α, respectively, where / [ / ] is the
intersection of certain primary ideals related to /'. An application and a
generalization are included.

1. Introduction. The theorem on analytically unramified semi-local
rings in the abstract can be found in [15, Theorem 2], where it is actually
shown that (1) and (2) are each equivalent to (3) holding for some open
ideal B {— (Im)a). And the equivalence of (1) and (2) is also given in [14,
Lemma 1 and Theorem 1.4]. I have always thought this theorem was
rather beautiful, and it is also quite useful. For example, D. Rees devel-
oped it and then used it in [14] to characterize analytically unramified
local rings as local rings R all of whose finitely generated overrings have
finite integral closures. (An overling of R is a ring containing R and
contained in the total quotient ring of R.) This result verified a (modified)
conjecture of O. Zariski, [16].

There has recently been some renewed interest in large powers of
ideals and their integral closures, and in some of the new results in this
area the above theorem and the closely related Valuation Theorem of
Rees, [12], have proved quite useful. (For example, see [10] and [11].) One
of the main results in this paper, (13), shows that a similar and closely
related theorem holds for ideals in reduced unmixed local rings. The ideals
I[i] in the theorem are not as easily described as are the ideals (Γ)a9 but
they are well defined ideals, and the theorem implies that if / is any ideal
in such a ring R and /<'"> = Π {I'Rp Π R; P is a prime divisor of (/')«}>
then there exists an integer n > 0 such that J<π+I'> c /' for all / > 1. (See
(17).) For ideals / of the principal class in reduced Cohen-Macaulay rings
these theorems were previously known, since then Γ — 7[/] = /<'> (see
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(18.2)), but the fact that these results hold for all ideals in such rings

appears to be new.

Actually, it is shown in §2 that the theorems hold somewhat more

generally than for ideals in reduced locally unmixed Noetherian rings.

(See (4), (5), (7), and the comment after (11).)

The results in §2 are used in (20) to prove a result analogous to Rees'

overling characterization of analytically unramified local rings.

In §3 another result related to (2) above shows that for each regular

ideal / in a Noetherian ring there exists a sequence of ideals I& consisting

of the intersection of certain primary ideals related to I* such that

/{'} = / ' for all large /. (/is said to be regular in case / contains a regular

element.)

2. Powers of ideals. In order to prove the results concerning I[i\

several definitions and preliminary remarks are needed. We begin by

giving the definitions; a few comments on them are given in (2).

(1) DEFINITIONS. Throughout, R is a Noetherian ring (commutative

with identity) and / is an ideal in R.

(1.1) The integral closure Ia of I in R is the set of elements x in R that

satisfy an equation of the form Xn + ixX
n~x + +in - 0, where j \ E V.

(1.2) A*(I) = Ass(R/Γ) for all large /, and i*(7) = Ass(R/(Γ)a)

for all large i.

(1.3) The Rees ring $ί(R91) of R with respect to I is the graded

subring R[u, tl] of R[u, /], where / is an indeterminate and u — \/t.

(1.4) ?Γ(f#gi) is the ring <3l[l/w] Π & ( 5 ) ( = R[u, t] Π $t(S))9 where

<3l = <&(/?,/) and (S) is the set of regular elements in S = & —

U {p\ p is a height one prime divisor of u%).

(1.5) 7 [ / ] = uicS n /?, where 3~ = ?Γ(tt9l) with % = <&(!?, / ) .

(1.6) A filtration on R is a sequence of ideals {/,},><) of R such that

Io = R, Ii D / f + 1 , and Iilj C / ί + J for all i andy. The filtration is an e.p.f.

(essentially powers filtration) in case there exists an integer k > 0 such

that In = Σf /„_,/, for all n > 1, where /f = 7? if i < 0.

(2) REMARK. (2.1) It is well known that Ia is an ideal in R such that

I QlaQ Rad I.

(2.2) It is known, [1], that the sets Ass(R/Γ) are equal for all large /,

and a similar statement holds for the sets Ass(i?/(/Oα), by [11], so A*(I)

and A*(I) are well defined (finite) sets of prime ideals in R.

(2.3) <3l = $ί(R91) is a graded Noetherian ring, u is a regular element

in a , and w'& Π / = /'" for all / > 1.
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(2.4) It is readily seen that ?f = ?F(κ3l) is the set of elements which

are expressible in the form fju1 for all large /, where / is in every height

one primary component of w'3t, so ^Γis a graded subring of R[t, u]9 since

κ'3lis a homogeneous ideal. Also, by [7, Lemma 5.15(4)], M'?Γ= wz3l(ίS) Π

9", so w'̂ Γis a finite intersection of height one primary ideals.

(2.5) Note that Γ = ui(3ί ΠRCu^Π R = I[ι\ and it follows from

this and the fact that w'?Γ= w'3l(iS) Π 5"(see (2.4)) that I[i] is the intersec-

tion of some primary ideals related to /'. However, even if / is primary for

the maximal ideal M in a local domain R, it may not be true that / [ / ] = I\

since /' = Π{# / y Π R; qtj is a primary component of wz3l} may be

properly contained in I[ι] — Π { ^ y Π i ϊ ; qtj is a height one primary

component of w'3l}. (Using (13) below, a specific example of this can be

constructed using [5, Example 2, pp. 203-205].)

(2.6) It is shown in [9, (2.4.3)] that a filtration {/•} is an e.p.f. if and

only if there exists an integer n > 1 such that In+ι = InIι for all i>n.

Also, if {/,} is an e.p.f., then there exists an integer m>\ such that

Imi = (Imγ for i > 1, by [9, (2.4.4)]. (In regard to [9, (2.4.4)], it is not true

that Imi = (ImY for all large m and for all / > 1.)

With the comment at the end of (2.6) in mind, it is still true that
j[mi] = j[m]i f o r a l l l a r g e m a n d f o r a l l f > j f o r t h e jgjtration {/[/]} in

reduced locally unmixed Noetherian rings, as is shown in (7) (together

with (11)).

The definitions recalled in (1) have previously proved to be very

useful concepts, so many results are known about them, beyond those

mentioned in (2). Several of these will be needed below, so (3) contains a

brief list of these additional results. (The references for (3.3) and (3.4) only

prove the case for R an integral domain, but that assumption was not

essential for the proofs.)

(3) REMARK. Let / be an ideal in a Noetherian ring i?, let 31 =

3t(Λ, / ) , and let *Γ = ?Γ( w3l). Then the following statements hold:

(3.1) [7, Lemma 5.16]. If R is a locally unmixed integral domain, then

SΊs a finite <3{ralgebra.

(3.2) [7, Corollary 4.9 and its proof]. If R is local with maximal ideal

M, if / is generated by a system of parameters in i?, and if R is a subspace

of <3l(Λ/ w ) a , where 31 = 3l(i?, / ) , then i? is unmixed.

(3.3) [7, Lemma 5.15(5)]. ?Γ= 31 if and only if w3t has no imbedded

prime divisors.

(3.4) [7, Lemma 5.15(9)]. If S is a multiplicatively closed set in 31,
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We now begin to derive a few properties of the ideals I[ι]. The first of

these gives several useful characterizations of when there exists an integer

n > 0 such that J l Λ + i l C V for all i > 1. In the proof of (4), we use the

notation [H]i = {rG R; rtι G H) for a homogeneous ideal H in <St. With

this notation, it is clear that if / is another homogeneous ideal in <3l, then

H C / if and only if [H]i C [/], for all i ( - oo < i < oo).

(4) PROPOSITION. Let I be an ideal in a Noetherian ring R, let

$l=4l(R,I), and let ?Γ=?Γ(w^l). Then the following statements are

equivalent:

(4.1) There exists an integer n > 0 such that I[nJri] C Γ for all i > 1.

(4.2) {I[i]} is an e.p.f. in Rand*5 C <$/, the integral closure of%.

(4.3) <5is a finite ^module.

(4.4) M n + 1 ί ί l * C u^forsomen > 0.

(4.5) There exists an integer n > 0 such that un+i(Ξ5 C uiβkfor all i > 1.

Proof. (4.2) ~ (4.3), by [9, Theorem 2.7].

It is shown in [7, Lemma 5.15(10)] that (4.3) «* (4.4) when R is an

integral domain, and that assumption was not essential for the proof.

(4.3) => (4.5), by the first statement in (2.4), and (4.5) implies that
/[»+/] = un+i<$ HRCui(3lnR = Γ for all i > 1, so (4.5) =» (4.1).

Finally, assume that (4.1) holds and let w(/) = w'^Γn ^l, so u(i) is the

intersection of the height one primary components of w/(3l, by the last

statement in (2.4), hence w(ί) is a homogeneous ideal. Now it is readily

checked that [t/ft],. = / / + I and [w(Λ+1>] = /'" Π /t«+ 1 + /l for all / (with the

convention that /'' = R = I[i] for i < 0). Therefore (4.1) implies that

[tt<n+D]. = p π /[»+i+« ] = /[n+i+Ί c Γ + 1 = [ii^l]. for all i, so w"+1?ΓΠ

a = w(w+1) c u%, and so (4.1) =» (4.4). D

It should be noted that (4.3) => (4.1) shows that if / is an ideal in any

Noetherian ring R such that ?Γ = ?Γ(iι5l) is a finite & = 3l(i?, /)-algebra,

then there exists an integer n > 0 such that I[n+i] C 7ι for all i > 1. It is

shown in (11) that this holds for all ideals / when R is a reduced locally

unmixed Noetherian ring.

Also concerning (4), if ^Γis a finite ^module, then {/[/]} is an e.p.f.,

by (4.3) => (4.2), so there exists an integer n > 1 such that 7 [ Λ + z ] = I^I[n]

for all / > /ι, by (2.6). (5) shows that we also have J [ n + l ] = ΓI[n\ when ?Γ

is a finite ^module. The proof of (5) is essentially the same as that given

in the cited reference, where it is shown that the analogous result for

(/w + l ' ) β holds, so it will be omitted.
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(5) COROLLARY (C/. [15, Corollary, /?. 37]). Let R, J, 91, and %be as in

(4) and assume that ?Γ is a finite ^-algebra. Then for all large integers n and

for all i > 1 it holds that 7 [ π + ί ] = IΊ[n].

(6) REMARK. It follows quite readily from (5) and (4.3) «* (4.1)

together with their proofs that if there exists n >: 0 such that 7 [ w + z ] c / '

for all i > 1, then I[m^] = jUψ^ = PiM for all m > n and for all

The next result is an analogue of (3) in the abstract.

(7) PROPOSITION. Let I be an ideal in a locally unmixed Noetherian ring
R and assume that there exists an integer n>\ such that / [ / I + / 1 c Γ for all
i > 1. Fix m>n and let 91 = <&(/?, I[m^) and ?Γ= * Γ ( I I & ) . Then ?Γ= 91
and (IW)W = (/[«])'• = /[»»] / ^ r α// / > i.

Proof. Let 9 l 0 = &(Λ, / ) , ?Γ0 - ?Γ(w9l0), and β t m - Λ[ww, / m / [ w ] ] ,

so 91 = 9 l m C %. Now the hypothesis and (6) imply that % =

R[u,tI[ι\...9t
mI[m]]9 and % is integrally dependent on 9 l m , since

(,//[/])« = t

im{I[iψ c /'«/['•«] = ( r / M y (since {/[/]} is an e.p.f. (by

(4.1) =>(4.2)) and since I[im] = (I[m]Y (by (6))). Therefore let p' be a

(height one) prime divisor of u% and let z' be a minimal prime ideal in ?Γ0

contained in /?'. Then z — zr Γ\ <Sίm is a minimal prime ideal contained in

p—pr^\ 91 m and Λ/(z' Π i?) satisfies the altitude formula, since R is

locally unmixed, so it follows from this and integral dependence that

height p/z = height p'/z' = 1. Now, if w is another minimal prime ideal

contained in /?, then using the altitude formula for p/z and p/w over

(p Π R)/(z Π R) and (/? Π R)/(w Π i?), respectively, it follows that

height p = 1, since Λ^π^ satisfies the first chain condition for prime

ideals. Let (S) be the set of regular elements i n S ' : = 9 l w — U{/?;/?isa

height one prime divisor of w9lm}. Then since the prime divisors of u% lie

over the height one prime divisors of w9lw, it follows that %[l/um] Π

%(S) = %lVu] Π %(S) = & 0 [ l / « ] n *o(s') = ^ ( w ^ o ) = %, where (50
is the set of regular elements in 5" = 9 l 0 — U {q; q is a height one prime
divisor of w9l0}, so ?Γm = 9l m [ l/w w ] ΓΊ 9 l m ( 5 ) C ?Γ0. Therefore since 9 l w

= 91, it follows that (lM)W = ui($ Π R = i i " 1 ' ^ Π R C iιm i!ro Π 9 l w Π
iί = u ^ g^ π R = I[mi\ and the hypothesis implies that I[mi] = ( / [ m l ) ' c
(/[«])['•]. Therefore (/tw])[^ = /["""I = ( / ^ l y for all i > 1, and so ?Γ =
Λ[w, ί/[m], / 2 / [ 2 w ] , . . . ] = i?[w, // [m]] = a . •

It follows from (7) that w9l has no imbedded prime divisors, as is

shown in the following corollary.
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(8) COROLLARY. Let I be an ideal in a locally unmixed Noetherian ring
R and assume that there exists an integer n>\ such that I[n+i] c I1 for all
i > 1. Then for allm>n it holds that w<3l(i?, I[m]) has no imbedded prime
divisors.

Proof. <ϋ(w<&) = <3l, by (7), where <& = <&(#, I[m]\ and so the con-
clusion follows from (3.3). D

(8) implies that the ideals bR[Im/b] have no imbedded prime divisors,
as is shown in (9). (Actually, (9) holds for all non-nilpotent elements in
/m, but the notation becomes somewhat messy in proving this, so we
content ourselves with the case when b is regular.)

(9) COROLLARY. Let R, /, and m>nbe as in (8). Then for each regular
element b E Im such that bR[Im/b] is proper it holds that every prime
divisor of bR[Im/b] has height one.

Proof. Let A = R[Im/b] and & = &(Λ, Im). Then A[tb, l/tb] =
<&[\/tb] and bA[tb, \/tb] - uA[tb, l/tb]. Therefore, since tb is transcen-
dental over A, it follows from (8) that bA has no imbedded prime
divisors. D

As mentioned in (2.2), the sets Ass(i?//m) are equal for all large /,
and it is shown in [1] that they are not monotonically increasing. How-
ever, it is an open problem if P E A*(I) and P is a prime divisor of I'
imply that P is a prime divisor of V for all j >: i. (It is known that this
holds for (Γ)a in place of /', by [10].) (10) shows that for the ideals I[m]

the sets Ass(i?/(/ [w])0 are increasing. In (10) and henceforth we use I[m]i

to denote (I[m])\ and likewise Ilm][i] denotes (I[m])[i].

(10) COROLLARY. With R, /, and m>n as in (8), ifPE. Spec I? is a
prime divisor ofΊ[m]ι for some i >: 1, then P is a prime divisor of I[m]j for all

Proof. Let / = I[m\ so / ' : xR = P for some x E R, by hypothesis.
Let 61 = &(Λ, / ) . Then P& - (/'": xR)<& C /'"&: jc& C uiGk\ xβl, and
(ui(Sl: x<3l) Π R= JL. xR = P, by [17, p. 220]. Therefore there exists a
prime divisor p of w<3l such that w'^l: jĉ H Qp and p Γ\ R — P. Now
height^ = 1, by (8), so either height P = 0 or height P >: 1 and £/ ζZ /?, by
[10]. Now it may clearly be assumed that height P > 1, so there exists
b GJ such that tf> $p. Therefore, for all j > 1, u 1 ' 4"^: xfeJ6l= w ^ :
xbjtjGk C /?, so contracting to i? it follows that Ji+j: xbjR = P. D
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Recall that a ring R is said to be reduced if Rad R = (0). With this
terminology, we next show that if R is reduced and locally unmixed, then
the equivalent conditions in (4) hold for all ideals / in JR.

(11) PROPOSITION. If R is a reduced locally unmixed Noetherian ring,

then for each ideal I in R there exists an integer n>0 such that / [ " + ί ] c / '

for alii > 1.

Proof. Let / be an ideal in R and let 61 = &(Λ, /) and ?Γ = ξΓ(
Let T be the total quotient ring of 61, so the prime divisors of zero in ?Γ
and in 61 are the ideals z' — zT n$ and z* = zT Π 61 with z prime
divisor of zero in R. Now R/z is locally unmixed, by [4, Proposition 3],
and 6l/z* ss 6l(i?/z, (/ + z)/z\ by [13, Lemma 1.1]. To simplify nota-
tion we identify these two rings. Then ?Γ(w(6l/z*)) is a finite 6l/z*-alge-
bra, by (3.1). Also, if P e Spec 61, then 6lP/z*6lp is unmixed, by [4,
Corollary, p. 61] (since R/z is locally unmixed), and height P/z* = height
P9 as in the proof of (7), so 6LP satisfies the first chain condition for prime
ideals. Therefore if p is a height one prime divisor of w(6l/z*), then there
exists a prime ideal P in 61 such that z* C P and P/z* = p, so necessarily
P is a height one prime divisor of ι/6l. Thus, since 6l ( S ) is semi-local of
altitude one, where (S) is as in (1.5), it follows that

%/z' = (R[t, u] n 6l ( S ) )/z' c (*/*)[ ' , u] n (i?/z*)(s+z*)/z*

Therefore, since Rad 61= (0), it follows that ?Γ(w6l) is contained in a
finite 6Wlgebra, hence ?Γ(w6l) is a finite 6kalgebra, and so the conclusion
follows from (4.3) => (4.1). D

I do not know to what extent (11) holds without the assumption that
Rad R = (0). In particular, I do now know if Π {R(p); p is a height one
prime ideal in R and (p) is the set of regular elements in R — /?} is a finite
i?-module for all unmixed local rings (/?, M). If this is always true, then
this also holds for 6 1 ^ in place of i?, where R is unmixed, / is an arbitrary
ideal in R, 61 = 6l(iϊ, /) , and 9H = (w, M, ί/)6l (since 6 1 ^ is unmixed
when R is by [7, Theorem 4.1(2)(a)]), and it can then be readily shown that
?Γ(w6l) is a finite 6ίrmodule. In any case, whenever R is locally unmixed
and ?Γ(w6l(Λ, /)) is a finite 6l(Λ, /)-module the conclusions of all the
results (4)-(20) hold for /, by (4).

Concerning (11), it should be noted that the conclusion is equivalent
to each of the other four statements in (4). More will be said concerning
this is (19) and the comments following (19).
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Most of the next two results are essentially corollaries to what has

already been shown.

(12) THEOREM. The following statements are equivalent for a reduced

Noetherian ring R:

(12.1) R is locally unmixed.

(12.2) For all ideals I in R there exists an integer n >: 0 such that
j[n+i] QΓ for alii > 1.

Moreover, if these statements hold, then for all ideals I in R and for all

integers m>n with n as in (12.2), B[i] = Bi for all i > 1, where B = I[m].

Proof. (12.1) => (12.2), by (11), and (12.2) implies the last statement in

the theorem by (7). To complete the proof it suffices to show that (12.2)

implies that RM is unmixed for all maximal ideals M in R. For this, fix

such an ideal M and let / be an ideal in R such that IM is generated by a

system of parameters. Let <3l = <Sl(R, / ) , ?Γ= ?Γ(w<3l), and S = R - M.

Then a s = <&(RM> IRM) and % = S(u®,s), by (3.4). Now (12.2) implies

that <ϋ is a finite ^algebra, by (4.1) => (4.3), so % is a finite <&5-algebra.

Also, (Λf, u)$ls is the only minimal prime divisor of u^iS9 by [7, Theorem

4.1(2)(b)] applied to (M, u)R[u\ so by the definition of ?Γ there exists a

height one prime ideal P in ^ that lies over (M, w)9l5 and then w9^ is

P-primary. Therefore it follows from (4.3) => (4.1) that /? M is a subspace of

( 9 S ) P = ^ ( Λ / ^ , hence /?M is unmixed, by (3.2). D

It should be noted that the proof of (12) showed that (12.2) => (12.1)

even when Rad R φ (0). As already noted, I do not know to what extent

the converse holds.

(13) THEOREM. The following statements are equivalent for a reduced

local ring R:

(13.1) R is unmixed.

(13.2) There exists an ideal I generated by a system of parameters in R

and an integer n > 0 such that I[n+i] C Γ for all i>\.

Moreover, if these statements hold and I is any ideal in R, then the

conclusion o/(13.2) (with n depending on I) holds for I and for all integers

m>nit holds that B[i] = B* for all i > 1, where B = I[m].

Proof. (13.1) implies both (13.2) and the last statement, by (12), and

the last part of the proof of (12) showed that (13.2) => (13.1). D
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On comparing (13.2) to (2) in the abstract it would seem that (13.2)
should be stated "There exists an open ideal I in R and an integer n > 0
such that I[n+i] C Γ for all i > 1." Also, as noted in the introduction, R is
analytically unramified if and only if there exists an open ideal / in R such
that (/')«, — Γ for all i > 1, but (13) only shows that half of the analogous
statement for unmixed and I[i] holds. (14) shows that the other half does
not hold, and it is clear from this that the "open ideal" version of (13.2)
also does not hold.

(14) EXAMPLE. There exists a local domain R which is not unmixed such
that R has an open ideal I such that I[ι] — Γ for all / > 1. Namely, let
(R, M) be as in [5, Example 2, pp. 203-205] in the case m = 0. Then R is
an analytically unramified local domain of altitude r + 1 >: 2 and there
exists a height one maximal ideal in R\ the integral closure of i?, so R is
not unmixed, by [5, (34.7)]. However, since R is analytically unramified,
there exist open ideals / such that (/')<, = Γ for all i > 1. Fix such an
ideal / and let ζft = 6t(Λ, /) . Then essentially as in the proof that
(4.1) => (4.4) it follows that w#l = (u$t)a9 so w6l has no imbedded prime
divisors, by [8, Corollary 2.11]. Therefore *Γ(κ&) = <&, by (3.3), and so
/ [ i l = /'" for all i > 1, by (1.5) and (2.3).

(15) shows that (11) can be applied to more general rings than
reduced locally unmixed ones.

(15) COROLLARY. Let R be a reduced Noetherian ring and let I be an
ideal in R such that RP is unmixed for all P E A*{I). Then there exists an
integer n > 0 such that 7 [ n + / ] C V for all large i.

Proof. Let S = R - U { P ; P G A*(I)}. Then Rs is a reduced locally
unmixed Noetherian ring, so there exists an integer n >: 0 such that
(Is)

ln+i] c (ISY for all i > 1, by (11). Also, by considering RC$Q%
and the ideal un+%, where ?Γ= ?Γ(uβl(Λ, /)), it readily follows that
7 [ w + ί ] c (Is)

[n+i] Π i?. Finally, Γ = (ISY Π R for all large /, by the
definition of A*(I), so the conclusion readily follows. D

(16) REMARK. (16.1) If I and R are as in (15) and for all i > 1 and for
all prime divisors P of /'' it holds that RP is unmixed, then it follows as in
(15) (since there are only finitely many P involved) that there exists an
integer n > 0 such that J [ r t + i ] C Γ for all i > 1.
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(16.2) A proof similar to that of (15) shows that if / is an ideal in a

Noetherian ring R such that RP is analytically unramified for all P E

yl*(7), then there exists an integer n > 0 such that {In+i)a C V for all

large /. And the result analogous to (16.1) also holds.

The next corollary and its related remark consider another ideal

related to Γ.

(17) COROLLARY. Let I be an ideal in a reduced locally unmixed

Noetherian ring R and let I(i)= Π{ΓRP Π R; P e i * ( / ) } . Then there

exists an integer n>0 such that /<w+/> c /'" for all i > 1.

Proof. It is known, [10], that A*(I) = {p Π R; p is a prime divisor of

(u<&)a}9 where & = &(Λ, / ) . Now (κ&) β = w<&' Π a , where <&' is the

integral closure of <3l, and all prime divisors of utfί' have height one, by [8,

Proposition 2.13]. Therefore it follows as in the proof of (7) that all prime

divisors of {u<$l)a have height one. Therefore A*(I) = [p Π R\ p is a

height one prime divisor of w<3l}, so it follows immediately from the

definitions that / ' C I^Q I[i] for all i > 1. Now there exists an integer

n > 0 such that I[n+i] C Γ for all / > 1, by (11), so 7<n+I> C I[n+i] C 71'. D

(18) REMARK. Let R be a reduced Noetherian domain.

(18.1) If R is locally unmixed and 7 is an ideal in i?, then 7'' C 7[/1 C

(70 β foraU/> 1.

(18.2) If R is Cohen-Macaulay and 7 is an ideal of the principal class

(that is, 7 can be generated by h = height 7 elements), then 7' = I<^= I[i]

C (7'")β for all i > 1, where 7<'"> is as in (17).

/. (18.1) Fix an ideal 7in R and let & = &(Λ, 7) and ?Γ = ?Γ(ii

Then 9~is a finite ^-algebra, by (11) and (4.1) =>(4.3), so ?Γc <3l\ the

integral closure of <3l. Therefore 71" = u 1 ^ ΠRQui(5nR = I[i] C w'^'

Π ί = (7<V
(18.2) Fix an ideal 7 of the principal class in R and let a = <Sl(R, 7)

and ?Γ= ?Γ(ιιa). Then a is a Cohen-Macaulay ring, by [6, Theorem 3.1],

and u is an ^sequence, so all prime divisors of 14*31 have height one, by

[18, Theorem 2, p. 397]. Therefore ?Γ= &, by (3.3), and so Γ = 7[/], and

7 [ / ] c (7'")β, by (18.1). Finally, Γ C 7<z> c I[i\ by the proof of (17). D

This section will be closed with the following remark and related

theorem.
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(19) REMARK. It follows immediately from (12) and (4.1) =» (4.3) that
a reduced Noetherian ring R is locally unmixed if and only if, for all ideals I
in R, $(u<3l) is a finite %-module, where <3l = &( Λ, /) .

As mentioned in the introduction, Rees used the equivalence of (1)
and (2) in the abstract to characterize analytically unramified local rings
in terms of finitely generated overlings in [14]. The results in this paper,
especially (12) and (13), can be used to obtain the following characteriza-
tion of an unmixed local domain which is analogous to Rees' theorem and
is also closely related to (19). (The characterization in (20) can be
extended to reduced locally unmixed Noetherian rings. However, my only
proof for this more general case involves a number of ideas which have
not been previously considered in this paper, so we restrict attention to
the case of a local domain with an infinite residue field.) In (20), %(bA) is
defined the same way that ?Γ(w6l) was, namely, ^(bA) = A[\/b] Π AS9

where S = A — U {p; p is a height one prime divisor of bA}9 and results
similar to (2.4) hold for ?Γ(&4), by [7, Lemma 5.15]. Also for (20), recall
that an element b in an ideal / in a Noetherian domain R is a superficial
element for / in case / n + 1 : bR = Γ for all large n. (See [18, (3), p. 285 and
(5), p. 273].)

(20) THEOREM. Let (i?, M) be a local domain such that R/M is infinite.
Then R is locally unmixed if and only if ^(bA) is a finite A-module for all
finitely generated overrings A of R and for all nonzero elements b in A.

Proof. Assume first that R is unmixed and fix A and b as in the
theorem. Then A is locally unmixed, by [4, Corollary, p. 61] and Rad A =
(0), so «Γ = %(u<&) is a finite ^algebra, by (19), where & = <&(A9 bA).
Thus by (4.3) => (4.1) there exists n such that (bA)[n+i] C b*A for all i > 1,
so let B = A[(bA)[ι]/b,... 9(bA)[n]/bn]. Then <S[l/tb] = B[tb9 l/tb] is a
finite <3l[l/tb] — A[tb, l/*Z>]-module, so it follows that B is a finite
A -module and also that every prime divisor of bB has height one, since
this holds for MΓ[1/A] - u$[l/tb]9 by (2.4). Therefore $(bA) C %(bB)
= By by (2.4) and since height one prime ideals in B He over height one
prime ideals in A (since A satisfies the altitude formula), so ^i(bA) is a
finite A -module.

For the converse, let / be a nonzero ideal in R and let b be a
superficial element for /. (Such elements exist, since R/M is infinite.) Let
91 = <&(/?, /), ̂ Γ= %(u<&)9 A = R[I/b]9 and B = <5(bA)9 so B is a finite
A -module and it readily follows that b'A Π R = /' for all large /, since b is
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superficial for /. Now C = B[tb, l/tb] is a finite <3l[l/tb] = A[tb, l/tb]-
module and bC = uC has no imbedded prime divisors, since bB has none.
Also, height one prime divisors of bC he over height one prime divisors of
bA[tb, l/tb] = u9.il/tbl so $(u<Sl[l/tb]) = %[l/tb] C C (3.4). Since b
is superficial for /, tb is not in any relevant prime divisor of M91, by [2,
Theorem 3], so tb is not in any (height one) prime divisor of i/?Γ.
Therefore, since B is a finite ^4-module, there exists n > 0 such that for all
l a r g e / i t h o l d s t h a t I [ n + i ] = M ^ Π Λ = u " + i ( S [ l / t b ] Π R C u n + l C Π
i? = £«+<c Π i? = Z>"+'£ Π Λ C ftU Π Λ = /', and it readily follows from
this and (12) that R is unmixed. D

3. A generalization. In this brief section it is shown that a result
analogous to {Γ+i)a C Γ and to I{n+i] C Γ holds for all regular ideals /
in all Noetherian rings.

(21) THEOREM. Let I be a regular ideal in a Noetherian ring R, let
<$, = <3ί(R9 / ) , and let % = <3l((S) Π Λ[ί, w], w/iere (S) is the set of regular
elements in S = <3l— U {P; P is a relevant prime divisor ofu<3l}. For i > 1
let I{i] = uiGil Π Λ. Then I{i] = /''/or έi// forge /.

/ Viewing % as a transformation ^L(uSl) of a graded ring 91, it
is readily seen that ^l{u^y) — %^, for all multiplicatively closed sets U
in R, and that <?L(w l̂[Ar]) = ^l[X]9 where A' is an indeterminate, so it
may be assumed that R is local with an infinite residue field. Therefore let
b be a superficial element for /. Then tb is not in any relevant prime
divisor of u91, by [2, Theorem 3], and since / is regular it may be assumed
that b is regular. Therefore / π + 1 : bR = Γ for all large n9 by [18, (3), p. 285
and (5), p. 273], so it readily follows that bnR[I/b] Π R = Γ for all large
n. Also, since tb is in a prime divisor P of u*3l if and only if P is irrelevant,
it follows that there exists a one-to-one correspondence between the prime
divisors of (u) in the rings & ( 5 ) , &[l/rf>](S), &[l/rf>], and % ( 5 ) . Let
4 = Λ[//£], so βl[l/Λ] = ^[Λ, 1/Λ] and u<&[l/tb] = b<&[l/tb].
Therefore it follows that / « = wz% Π R = u^iS) ΠR = ui(3ί[l/tb] Π
R = bi(&[l/tb] ΠR = bΆΠR = Γ for all large i. D

It follows as in (2.4) that % is a graded subring of R[t9u], so it
follows immediately from (21) that % is a finite ^algebra.

The following corollary of (21) is known, [3, Corollary 17], but the
proof of (21) gives a nice alternate proof of one containment. It should be
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noted that the conclusion of (21) does not immediately follow from (22),
since it is not clear that uiGH Π R = Π {IιRp\ p E A*(I)} for all large /
(since possibly some irrelevant prime divisor of ui(Sί lies over some

(22) COROLLARY. With R, J, and<3las in (21), A*(I) = {P Π R; P is a
relevant prime divisor of w<3l

Proof. It follows immediately from (21) that A*(I) C {P Π R\ P is a
relevant prime divisor of w<3l}. For the opposite inclusion, let P be a
relevant prime divisor of w^l, so 14*31: ctk<$ί= P for some homogeneous
element ctk in <3l. Since P is relevant there exists dt G <3l— P, so w^l:
ctkdntn$l=P for all /i > 0. Therefore w"+*+1<3i: α/M<3t=P, and con-
tracting to R it follows that /" + / : + 1 : α/"i? = p n i? for all n > 0, so
p n 2? e,4*(/). π
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