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UNIFORM DISTRIBUTION IN SUBGROUPS OF THE
BRAUER GROUP OF AN

ALGEBRAIC NUMBER FIELD

GARY R. GREENFIELD

We construct subgroups of the Brauer group of an algebraic number
field whose member classes have Hasse invariants satisfying a rigid
arithmetic structure — that of (relative) uniform distribution. After ob-
taining existence and structure theorems for these subgroups, we focus
on the problem of describing algebraic properties satisfied by the central
simple algebras in these subgroups. Key results are that splitting fields
are determined up to isomorphism, and there exists a distinguished
subgroup of central automorphisms which can be extended.

1. Introduction. Let K be an algebraic number field, and let
denote the class of the finite dimensional central simple X-algebra A in
the Brauer group B(K) of K. The class [A] is determined arithmetically
by its Hasse invariants at the primes of K. Algebraic properties of A often
impose severe but interesting arithmetic properties on its invariants. As
evidence we cite the important work of M. Benard and M. Schacher [2]
concerning the invariants when [A] is in S(K) the Schur subgroup of K,
and the surprising result of G. Janusz [4] obtained in considering the
problem of when an automorphism of K extends to A.

In this paper we offer a construction which gives rise to subgroups of
B(K) whose member classes have invariants which possess a rigid arith-
metic structure — that of uniform distribution — then search for corre-
sponding algebraic properties. Our construction is modeled after one
given by R. Mollin [5] to study subgroups of B(K) which contain S(K).

In §2 we present our construction and establish a series of results
which culminate in an existence theorem. In §3, we consider questions
concerning the structure of our subgroups. In §4, we present our main
result, which shows that the classes we consider have splitting fields which
are determined up to isomorphism, and in fact we characterize such
classes. Our final section incorporates the aforementioned work of Janusz
to give a wholly different algebraic description to our classes.

For the general theory of central simple algebras we refer the reader
to [1]. If [A] E B(K), then A is a matrix ring over a unique division ring
D and the index of [A] written ind[^l] is /[Z>: K] . Moreover, if i
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has prime factorization Π pf*9 then [A] has a unique primary decomposi-
tion [A] = Π[ 4 J where ind[Ai]=pf'. We recall that when K is an
algebraic number field the index of [A] is equal to its exponent in B(K).

We denote the Hasse invariant of [A] at the prime S of K by inv2[Λ].
An extensive treatment of the classification of B(K) by invariants may be
found in [3] or [6]. We summarize a few key results. The Hasse invariant
inva[^4] is a fraction modulo one whose denominator when expressed in
lowest terms is the Srlocal index of [A] written l.i.2[^4]. We denote the
completion of K at the prime £ by K%. Unless otherwise indicated con-
gruences will be taken modulo one.

THEOREM 1.1. Let [A], [B] G B(K), L a finite extension of K, and <3l
an L-prime above the K-prime £ . Then

(ii) i
(iii) inw^A ®KL] =

T H E O R E M 1.2. Let S , , . . . , ^ be primes of K and rl9...9rs rational

numbers satisfying:

(i) 2 η = 0; and

(ii) r = 0 if S f is complex and r Ξ O or \ if S f is real.

Then there exists [A] G B(K) with inv2[^4] = η for all i — I9...9s and

= 0 otherwise.

2. Uniform distribution. Let G be a subgroup of Aut(K), the full
automorphism group of K, and let F be the fixed field of G. Thus K/F is
Galois with Galois group G. Fix a map c: G -> Z and say c: σ -> cσ.

DEFINITION 2.1. The class [̂ 4] E B(K) has uniformly distributed in-
variants relative to c if

for all primes & of K and all σ G G.
Let R(K/F, G, c) be the set of classes having uniformly distributed

invariants relative to c. When no confusion arises we will denote this
simply by R(K). It is immediate from the definition that [K] G R(K).
Moreover, R(K) is a subgroup of B(K) as the required closure properties
may be verified easily using Theorem 1.1. We wish to show R{K) respects
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primary decomposition. This allows a basic reduction in proofs. We begin
with an easy lemma:

LEMMA 2.2. For i = 1, 2 let ai9 bt G Z and mi G Z p o s . Suppose

(ml9 m2) = 1. 7%e/ι

aλ a2 bλ b2

m2 rnλ m2

 J mi mi

Proof. Assume

α, aΊ bλ

Then

mλ m:

and since (m1? m 2) = 1 we must have ai — bt — kimi for some ki G Z.
This gives implication in one direction. The converse is trivial.

THEOREM 2.3. Let \A\ G B(K) have primary decomposition [A] =
[Λ,] •••[Λ]. Then [A] GRi^ifandonlyiflA,] <Ξ R(K) for all i.

Proof. Using induction, it will be enough to show that if [̂ 4] = [l
with ind[2?J = mi and (mv m2) — 1, then [A] G R(K) implies each

J G R{K). Let a be a prime of K and σ G G. Say inv2[5] = α/m, and

We have aι/mι + a2/m2 = inv^f^!] + inva[l?2]

+ invaσ[52])

m2

From Lemma 2.2 we conclude ai/mi = cσbi/mi and the proof is com-
plete.

The main goal of this section is to prove an existence theorem for
classes in R(K). To do so we require technical information concerning
invariants and the values of the classifying map c.
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LEMMA 2.4. Let [A] G R(K) and assume the primes S,, S 2 of K lie
above a common F-prime 9. Then in\^[A] = 0 if and only ifrnw^A] = 0.

Proof. By symmetry it suffices to prove if inv2j[^4] = 0 then i ^
= 0. Since K/F is Galois, G acts transitively on the primes of K above <•?.
Thus we may choose σ G G such that σ(S2) = Sj. Then invaj^4] Ξ

Ί [ A ] i [ ^ ] = cσ 0 = 0 .

LEMMA 2.5. // [A] G i?(A^) /las index m, ίΛew (cσ, m) = 1 for all
σ EG.

Proof. Ifm=l there is nothing to prove. We assume m > 1 has
prime factorization m — Π />f' so we need only show (cσ, pp) — 1 for all /.
But [̂ 4] has primary decomposition [̂ 4] = Π[̂ 4J where ind[αj = pf* and
thanks to Theorem 2.3 we know each [Af] G R(K). Thus, replacing [̂ 4]
by each [At] in turn, we are reduced to proving the lemma when [̂ 4] has
prime power index pe > 1.

Let S be a prime of K with l.i.2[yl] = pe, so inva[^4] = a/pe where
(a, p) — 1. If σ G G, then by Lemma 2.4 inv2σ[̂ 4] £ 0 so we may write
inv2σ[̂ 4] = b/pf where 1 < / < e and (b, p) = 1. Now, α/pe = invs[yl] =
cσin\6lo[A]=cσb/pf which tells us e—f and cσ ^ 0 mod/?, whence
( c σ , / O = l .

The last line of the preceding proof suggests [̂ 4] G R(K) has com-
mon local indices, and we show now that this is indeed the case.

PROPOSITION 2.6. If [A] G R(K) and S1 ? S 2 are primes of K above the
F-prime 9 then U.

Proof. If [̂ 4] = [AT], all local indices are one, so we assume [̂ 4] has
index m > 1. As usual, we invoke primary decomposition to write [A] =
n[^4J. Since the indices of the [At] are relatively prime, l.i.2[^4] =
UiLL^Ai]. Thus U.2i[v4] = li.^A] if and only if Li aJΛJ = U . ^ t ^ J
for all i. But each [̂ 4J G R(K) so we assume without loss of generality
[̂ 4] G R(K) has prime power indexpe > 1.

There is no harm in assuming Li.a [v4] is maximal among primes of K
above P̂. Since l.i.2i[^4] = 1 if and only if inv2i[>4] = 0, Lemma 2.4 gives
the desired result in this case. Thus we assume l.i.ai[4J = pf where
1 < / < e and write inv2[^4] = a/pf where (a, p) = 1. Choose σ G G
such that σ(Sj) = S 2. Since l.i.^J^] divides /?e and is not one, we must
have l.i.aJ^4] = p8 where 1 < g < / and therefore inv^J^] = b/pg where
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(b, p) = 1. We have a/pf = my%[A] == cσ'iny^[A] = cσίny^2[A] Ξ
cσb/p8. But (cσ, pe) = 1 so/ = g and we are done.

We can now state and prove our existence theorem. If m > 1 is an
integer we let πm: Z -* Zm be the canonical ring homomorphism, and
denote the group of units of Zm by Zm.

THEOREM 2.7. Fix m>\. There exists [A] E R(K) of index m if and
only if the map πm ° c: G -> Zm is a group homomorphism to a subgroup of

z"m

Proof. Assume there exists [A] E R{K) of index m. From Lemma 2.5
we see πm © c: G -> Z*m is well defined. We must show that if T, σ G G then
cτσ = crcσ mod m. For any prime 2 of A',

== cτ -

so cτσ = cτcσ modl.i.2[^4]. Theorem 1.1 now gives the congruence modulo
m.

To prove the converse, we assume mm © c gives a homomoφhism onto
a subgroup 7m of Z^. Let Hm be the kernel so G/Hm s 7w and say
[G: i/w] = r = | 7m | while | Hm | = Λ. Choose left coset representatives
σ1?... ,σr of Tί^ in G, so each σ E G is expressed uniquely as σ = σ,τ where
T E 7/m. Letting # m be the fixed field of Hm we have [K: Km] = Λ while
[ # m : F] = r. Select finite primes % . . . ^m of F which split completely in
K. Let $lij9j = 1,... ,r, be the primes of Km above ^P. Since σ,,... ,σr act
transitively on these primes we may assume σj($tn) = 6l/y. Let %jk,
k— 1,... ,Λ, be the primes of K above <3li7. Fory = 1,... ,r let c~ι be any
integer representative of the multiplicative inverse of cσ in Z'm. Using
Theorem 1.2 we construct [̂ 4] E B(K) with inv2 [A] = c~ι/m for all i9j9

k and invs[y4]=0 otherwise. This is allowed as Σ ί y Λinv2 [yl] =
m'hΣr

J=ιc~ι/m Ξ O . Clearly [̂ 4] has index m, and we wish to show
[Λ] E Λ(^). Fixy* between 1 and r and σ = σ,τ E G. If σ.HσjH = σ5/ί,
then cσcσ = cσ modm, hence ^ c " 1 ^ ^ 1 mod m. Also σ(S/ /k) =

— vj _

and the theorem is proved.
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For m > 1, call the map πm o c admissible if it is a group homomor-
phism to a subgroup of Z'm. Then a readily observable corollary is:

COROLLARY 2.8. Let m, n > 1 flπd suppose n\m. If πm° c is admissi-

ble, then so is πn © c.

Proof. Use Theorem 2.7 to provide [A] E R(K) of index m. Evidently
[A]m/n E R(K) has index n, so a second application of Theorem 2.7
shows mn o c is admissible.

3. Classifying maps. We examine now how the structure of
R(K/F, G, c) is affected by the choice of a classifying map c, and offer
some ideas concerning the construction of such maps. We begin with the
rationale for why our classes are called uniformly distributed.

Algebras with uniformly distributed invariants were introduced in [2]
as they helped characterize the classes in S(K), the Schur subgroup of
B(K), when K/Q is abelian [2, Theorem 1]. A generalization to the case
K/F Galois is found in [5], where UF(K) the uniform distribution group
of K relative to F is formulated and studied.

The principle of uniform distribution says that invariants of a class at
primes of K above a fixed F-prime should yield the same local indices and
occur equally often. That this holds for R(K) will be shown by slightly
modifying some results concerning UF(K) found in [5]. In fact many
statements true for UF(K) have suitable analogs for R(K). Let us fix
notation.

Let [A] E R(K) have index greater than one. Suppose S 1 ? . . . ,Sυ are
the K-pήmes above the F-prime 9 all having common local index m > 1.
Since m divides the index of [̂ 4], the map πm ° c is admissible. We let Im

be its image, Hm its kernel, and Km the fixed field of Hm. Finally, assume
inv2 [A] = r/m where 0 < r < m and (r, m) — 1. We have (compare [5,
Theorem 2.3 and Corollaries 2.5 and 2.6]):

THEOREM 3.1. (i) ̂ P is split completely in Km.

(ii) inv a μt] = inv^A] if and only if% ΠKm = % Π Km.

(in) The invariants at primes of K above ty are of the form t/m where t

is in the coset rlm in Z'm. All such values occur, and they occur equally often.

Proof. Let S be a prime of K above φ, Z>2 the decomposition group at

S, and Z 2 the fixed field of Z>2.

(i) If σ E D s , then inva[^4] = cσinvaσ[^4] = cσinvs[^4] which forces

cσ = 1 mod m and thus σ E Hm. Therefore Km is a subfield of Z a , and so
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the J£w-prime <3l = 2, Π # m is a prime above P̂ with relative and ramifica-
tion degrees equal one. But Km is normal over F so all extensions of P̂ to
Km must satisfy this property, hence 9 is split completely in Km.

(ii) For σ E G, inv2[^4] = invsσ[^4] if and only if cσ = 1 (mod ra)
which is true if and only if σ E Hm. On the other hand, since 9 is split
completely in Km9 S Π Km = Sσ Π # m if and only if σ E # m .

(iii) That each invariant has value t/m of the prescribed form and all
such values occur follows easily from the definition of R(K) and the fact
that πm o c is onto Im. Using Km for F(εm) and Hm for if in the proof of
[5, Corollary 2.6] shows each value occurs [Hm : D%] times.

We should also notice at this point that under a suitable choice for
the map c we can almost recoup UF(K). Let Bn(K) be the subgroup of
B{K) consisting of classes [A] for which [A]n = [K].

PROPOSITION 3.2. Let ε = εn be the largest nth root of unity in K. Define

c: G -» Z by letting σ(ε) = εCσ wΛere 0 < cσ < n for all σ E G. Then

R{K/F, G, c) = UF(K) unless c is trivial in which case R{K/F, G, c) Π

Proof. Clearly K contains a primitive rath root of unity if and only if
m\n. Notice that εn/m serves as a primitive rath root of unity and,
moreover, σ(εn/m) — (εn/m)c\ Next, observe mm o c is admissible if and
only \im\n unless c is trivial in which case it is admissible for all ra. Now,
examining the definition of UF(K) [5, p. 245] we find we may use cσ for b
and conclude UF(K) = R(K/F, G, c) unless c is trivial in which case
bounding of exponents takes place in UF(K) but not R(K/F, G, c), so
our assumption on ε insures R(K/F, G, c) Π Bn(K) — UF(K).

We have not been able to determine completely the role the classify-
ing map c plays in determining the structure of R(K/F, G, c); however
with minimal information on the values of c we can give some idea of the
size of R(K/F, G, c). The following will be useful for the discussion.

LEMMA 3.3. Suppose πm° c is admissible. Fix [A] E R(K/F, G, c) of
index ra. Then πm° c is trivial if and only if [A] has identically distributed
invariants viz., for any prime 9 of F and any extensions Q^ ^ of 9 to K,

Proof. If πm ° c is trivial this is immediate from the definition. If [A]
has identically distributed invariants, we invoke primary decomposition,
to reduce to proving the converse under the assumption ra is a power of a
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prime. Then choosing a prime 2, of K with l.i.a[v4] = m, we have
cσinvβι[A] = inva[^4] for all σ G G so cσ = 1 mod m for all σ E G as
desired.

It is obvious from the definition of R(K/F, G, c) and Lemma 2.4 that
if zero is in Im(c), the image of c, then R(K/F, G, c) is trivial. Unfor-
tunately, even if we rule out this possibility, a map c can still induce a
trivial group. The following example highlights the obstruction.

EXAMPLE 3.4. Let K/F be Galois with [K: F] = 3. Say the Galois
group G of K/F is G = {σ,, σ2, σ3}, and define c: G ^> Z by c(σz) = i.
Then ττm ° c has zero divisors if 2 or 3 divides m, and is never a subgroup
of Z*m for m > 5 as 4 (£ Im(c). By the existence theorem R(K/F, G, c)
must be trivial.

Other peculiarities arise when Im(c) C {1,-1}. Our next proposition
handles this eventually.

PROPOSITION 3.5. Suppose Im(c) c {1, — 1}. If c is a homomorphism
then R(K/F, G, c) contains a class of index m for every m > 1. Otherwise,
R(K/F, G, c) is a nontrivial subgroup of B2(K).

Proof In any event, π2 o c is admissible so R(K/F, G, c) must contain
classes of index 2. If 7rm o c is admissible for some m > 2, then i/m =
(ττw o c)" 1 ^) = c~\l) is a subgroup of G so c itself must be a homomor-
phism. Put another way, tnm © c is admissible for all m > 2 or just m — 2
according as c is or is not a homomorphism. An application of Theorem
2.7 finishes the proof.

In fact we can say slightly more when Im(c) C{1,— 1}. If c is a
homomorphism, then it is not too difficult to show R(K/F, G, c) contains
divisible subgroups. While if c is not a homomorphism, Lemma 3.3 gives a
precise description of the classes in R(K/F, G, c) — they are those classes
in B2(K) such that for any prime P̂ of F either all extensions to K yield
invariant 0 or all yield invariant \. We complete our discussion of size
with:

THEOREM 3.6. // there exists o EL G such that | c σ | > l , then

R(K/F, G, c) C Bm(K) for some m > 1 i.e., R(K/F, G, c) has bounded

exponent.
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Proof. Let n be the exponent of G, and set M = max τ € Ξ G{| cτ \
n] + 1.

Since | cσ | > 1, M > 1. It suffices to show that if [A] G R(K/F, G, c) then

TV = ind(A) < Λf. A routine induction shows inv2[y4] = c"inv2[^ί], and

hence l.La[^4] | cn

Ί — 1, for all primes £ of ΛΓ and all T G G. As TV is the

least common multiple of these local indices JV| c" — 1. We then write

\cn

a- 11= Λ:σΛΓ with kσ > 0 and use the inequality 0 < | c£ - 1 | < | c" |

+ 1 < M to see N < Λf.

Given ΛT/i% and hence G, we wish to show how to construct maps c

so that R(K/F, G, c) is nontrivial and has bounded exponent. To do this

we must construct c so that | cσ | > 1 for some σ EL G and πm° c is

admissible for some m > 1. Note that when πm o c is admissible its kernel

must contain G' the commutator subgroup of G.

THEOREM 3.7. Lei ΛΓ be a Galois extension ofF with Galois group G. Let

H be a subgroup of G containing G'. There exists a map c: G -> Z p o s and an

integer m > 1 such that tnm o c is admissible with kernel H. For this map,

R(K/F, G, c) is nontrivial and has bounded exponent.

Proof. HH=G, select m > 1 and set cσ = m + 1 for all σ G G. Then

πm o c is trivial and cσ > 1 so we are done. Thus we assume H Φ G and

write the abelian group G/H as a direct product of cyclic groups, say

G/H = Cί^j) X C(π 2 ) X XC(nr) where C(«,) is a cyclic group of

order nt. Using Dirichlet's Theorem on primes in an arithmetic progres-

sion, we may select distinct primes pλ,...,pr such that pi = 1 modn^

Then Z'Pi is cyclic of order pt — 1 and has a cyclic subgroup of order nt.

Choosing integer representatives of this subgroup allows us to construct a

map c,.: C{nt) -» Z p o s with the property that πPj ° ct is an isomorphism.

Now, using the Chinese Remainder Theorem, we can lift to a map c:

G/H -> Z p o s such that τrΛ o c is admissible with kernel \[j¥=iC(nj). Fi-

nally, by keeping the map constant on cosets, we lift to a map c: G ^ Zpos

which clearly has the property that πm o c is admissible with kernel H

whenm = Π/v
As we mentioned previously the classifying map c is not fully under-

stood. An example will help illustrate the subtleties that may occur.

EXAMPLE 3.8. Let F = Q and K = Q(i94^2). Then G is the Dihedral

group of order 8. With presentation ( r , f\ r4, / 2 , /r = r 3 / ) , G consists of

elements r*fj where i = 0, 1, 2, 3 andy = 0, 1. The commutator subgroup



378 GARY R. GREENFIELD

of G is (r2). Consider the maps c,, c2: G -> Z given by

C!,c2: e ,r 2 -> 1

cy. r , r 3 -> - 1 , c2: r, r 3 -» - 6 ,

c, :/,r 2 /->6, c 2 : / , r 2 / - > - l ,

C l : ι / , r 3 / - > - 6 , c 2 : r / , r 3 / - 6 .

Independent of i, 7rm © c is admissible if and only if m = 5, 7, or 35.
Moreover the image is the same in all cases and the kernel is Gf when
m = 35. The groups R(K/F, G, cf ) have the same exponent but not the
same classes. If would be interesting to know if, apart from the obvious
bijection which preserves indices, there are any further relationships.

4. Common local indices. In this section we characterize by local
indices a splitting criterion for classes [A] G B(K). Assume for the time
being that F is merely a proper subfield of the algebraic number field K.

DEFINITION 4.1. The class [A] G B(K) has common local indices
relative to F if for any prime 9 of F and any extensions S1 ? S 2 of P̂ to K,

^ 2

Let C(K/F) be the set of classes with common local indices relative
to F. It is clear that [K] G C(K/F) and if [A] G C(K/F) then [A]' G
C(K/F) for all i G Z. We shall show C(K/F) respects primary de-
composition of classes, but first it is important to notice the:

PROPOSITION 4.2. The set C(K/F) is never a subgroup of B(K).

Proof. Let [K: F] = m>2. Select finite primes ^ )

1 , . . . , < 3 )

w + 1 of F
which split completely in K9 and let %j where j = 1,... ,m be the primes
of K above % Via Theorem 1.2 we construct algebras [A], [B] E B(K)
whose nonzero invariants satisfy inv2 [̂ 4] = l/(m + 1) for all /, j ;
inv2 [B] = \/{m + 1) if j < m, and invs [̂ 4] = — l/(m + 1). By inspec-
tion^], [B] G C(K/F) and since invS/]y4 ®KB] = 2/(m + \)'ύj <m
and zero otherwise, we have l . ί s [A ®KB\ > 1 if j < m while
Lί%m[A ®KB] = 1. Thus [Λ ®*5] £ C(K/F).

Once more the key to working in C(K/F) is to use primary de-
composition, so we prove:

THEOREM 4.3. Let [A] E: B(K) have index greater than one and
primary decomposition [A] = [Aλ] [Ar], Then [A] G C(K/F) if and
only if [A,] G C(K/F) for all i.
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Proof. Let &,, S 2 be primes of K above a common F-prime. Primary
decomposition promises ( l . i . 2 [^], l.i.a [>4Λ]) = 1 foτj¥=k and that

ΠyΠ-al^y]- This forces l.i.Si[^4] = l.i.gJΛ] if and only if

Assume now that K/F is Galois with Galois group (7, a nontrivial
subgroup of Aut(K). After Proposition 2.6, we see R(K/F,G,c)(Z
C(K/F). Thus our next theorem, the principal theorem of this paper,
provides an algebraic description of the classes in R(K). Denote by F a
fixed algebraic closure of F.

THEOREM 4.4. Let [A] E B(K). Then [A] E C(K/F) if and only_ if
whenever a finite extension L of K is a splitting field for [A\ and T: L -> F is
an isomorphism such that r \κ E G, then τ(L) is a splitting field for [A].

Proof. Assume [A] E C(K/F) and L, r satisfy the above hypotheses.
Let T \κ = σ E G. If S is a prime of K with inva[^l] ^ 0, we must show

®κ τ(L)] = 0 for all primes 91 of L extending S. But

so it suffices to show Li.a[Λl] | [τ{L)^: ϋΓa]. Now T \tfl) is a prime of L
lying above τ~\<&,) Π K= σ ' ^ S ) . Clearly £ and σ" ! (S) he above a
common F-prime so l.i.2σ-i[^4] = li.a[>4]. Also, L splits [>4], hence

[Laτ-i : -SΓaα-»]. Finally, the fact that [ L ^ 1 : K^-i] —
J establishes the result.

For the converse, let [̂ 4] E B{K) have primary decomposition [̂ 4] =
1J. Evidently the splitting property holds for [̂ 4] if and only if it holds

for each [A^. This observation coupled with the previous theorem allows
us to reduce to the case where [̂ 4] has prime power index pe > 1. Suppose,
for the purpose of contradiction, that the splitting property holds for [A]
but [A] & C(K/F). This means there is a prime 9 of F whose extensions
&,,...,£. where s > 1 of K when ordered so that Li.« [̂ 4] < Li.a [A] for
i <j satisfy p\λ — l.i.2i[y4] < l.i.a [v4] = pe*. Choose σ G G such that
σ(Sj) = S5. Let § p . . . ,§ m be the (finitely) many primes of K not over ̂ P
at which [̂ 4] has nonzerro invariants. From the Grϋnwald-Wang Theorem
there exists a cyclic extension L of K such that if <3ίi is an L-prime above
S. then

** for i = 1,
e* for i > 1
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while if ^ is an L-prime above S,. then

\pe for §7 finite,

\2 for S, real.

It is immediate that L splits [A], Let T: L -> F be any isomoφhism
extending σ. If % is a prime of τ(L) above £ 5, then [τ(L)^: A^J =
[L^r-i : Kzo-i] = [Lĉ τ-1 : j f a j = />*». Writing inv^Jyl] = a/p*9 where
(α, p) = 1 and recalling that ^ < es we have

whence τ(L) is not a splitting field for [Λ]. This gives a contradiction, and
the proof is complete.

5. Extensions of automorphisms. Let K be an algebraic number
field, and A a A-algebra. Following [4], we denote by I(A) the subgroup
of Aut(K) consisting of those σ which satisfy inv2[^4] = inv2σ[yl] for all
ΛΓ-primes S; and by Aut(K; A) the subgroup of Aut(A') consisting of
automorphisms which can be extended to A. Then [4, Theorem 3] I(A) =
A\xt(K; A). In this final section we obtain algebraic information about
classes [A] G R(K/F, G, c) by considering Aut(jRΓ; A). Recall that when
tπm o c is admissible, Hm is its kernel.

THEOREM 5.1. // [A] G R(K/F, G, c) has index m > 1,
ί) n G = fΓm.

Proof. We need only show 7(̂ 4) Π G = Hm. If σ G /ίw, write cσ = 1

σm. Then for any prime S of Â , l.i.^ [^] j m so inva[^4] = cσinv2σ =
σ[̂ 4] and this gives containment in one direction. Suppose now σ G

I(A) Π G. From cσ inv2σ[^l] = inv2[>4] = invSσ[τ4] we see cσ = 1
. Theorem 1.1 part (iv) gives cσ = 1 mod m whence σ G //w.

COROLLARY 5.2. Suppose R(K/F, G, c) w not trivial.
(i) //c w a homomorphism with kernel H then Aut(K; A) Π G = /ί/or

(ii) //* c is «o/ α homomorphism, then Hm C Aut(jSΓ; A) for all [A] G
R(K/F, G, c) wλm? m ώ /Ae exponent of R(K/F, G, c).

Pr<κ>/. Let [̂ 4] G R(K/F, G, c) have index n> 1. By the previous
theorem, Hn — G Π Aut(.fiΓ; ^4). If c is a homomorphism, then Hn — H
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and we are done; if not, by Theorem 3.6 m is well-defined and n \ m so
Hm C Hn as required.

REMARK. Recalling that G' C Hm and using Theorem 3.7 one may
construct classifying maps c such that Gf C Aut(K; A) for all [A]E.
R(K/F, G, c). All examples known to us also allow the construction of a
map c such that H C Aut(#; Λ) for all [Λ] G R(K/F9 G, c) where i/ is
any fixed subgroup with G' C H C G.
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