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SOME CONDITIONS ON THE HOMOLOGY GROUPS
OF THE KOSZUL COMPLEX

CARLA MASSAZA AND ALFIO RAGUSA

In this paper we introduce the concept of a (d, i)-sequence (d, i €
N) in a commutative ring 4, noetherian and with identity (cf. Def. 1.1).
Let K(z, A) be the Koszul complex on A4, with respect to the sequence
z=1z,...,2,: the concept of a (d, i)-sequence is expressed in terms of
the structure of H,(K(z, A)); in particular, it turns out that z is an
(n, i)-sequence iff H,(K(z, A)) = 0, and such a condition implies  is a
(d, i)-sequence for any d <n. W z,...,z, is a (d, i)-sequence in ,4 =
A/(zp+15---52,), d = h = n, then z is seen to be a (d, i)-sequence in 4;
so, in particular, if H,(K(z; ;4)) = 0in 4A4, then z is a (d, i)-sequence.
Moreover, for i = 1, the two conditions are equivalent, so that z is a
(d, 1)-sequence means precisely that z,,.. .,z is regular in ;4. Fori > 1,
examples show that z is a (d, i)-sequence is a condition strictly weaker
than z,,...,Z, is a (d, i)-sequence in , A, and we investigate the relation-
ship between those two properties. In fact, their equivalence allows us to
read the depth of a quotient ring 4 /(z,,,,...,z,) in terms of the Koszul
complex K(z; A) and implies, for (d, i)-sequences, properties which are
a natural generalization of good properties satisfied by regular sequences,
such as the depth-sensitivity of the Koszul complex. A characteristic
condition for their equivalence is a kind of weak surjectivity of a natural
map acting between syz'* |(K(z; A)) and syz' " (K(z; ,A)).

From an algebraic form of that weak surjectivity we get some
sufficient conditions, in terms of weak regularity of the sequence
Zj41,---5Z,. For instance, if z, . ,,...,z, is a d-sequence, or a relative
regular sequence, or less, if z,, |,...,z, is a relative regular 4-sequence
with respect to a convenient set of ideals, then z is a (d, i)-sequence in A
implies Z,,...,z, is a (d, i)-sequence in , A.

Moreover, if z is a (d, i)-sequence and z,, |,...,z, is a regular
sequence, then H,(K(z; A)) = 0, while this vanishing implies that it is
possible to find x,,...,x, in I =(z,...,z,) such that z,,...,z,_|,
X,5-..,X,isa(d, i)-sequence and x ;. |,...,x, is a regular sequence.

In the last section we give an interpretation of our results in terms
of the behaviour of some systems of linear equations.

N. 1. Let 4 be a noetherian ring (with 1) and z=2z,...,z, a
sequence of elements of A such that (z,,...,z,)4 # A. We denote by
K(z; A) the Koszul complex with respect to z, i.e. the differential graded
algebra (DGA for short) (cf. [G-L] cap. I for a definition)
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generated by e,, i = 1,...,n, with differential

dj(ej| A - /\eij) = 3 (—l)tHzi( e N NE N A,

1=1,...,j
Also we write
syz'(K(z; A)) = ker(d,_,) ¢ N\ '4"

for i=1,...,n+ 1. As in [M-R], for every 1 <i<d=<n, T"? will
mean the free 4-module generated by e, .. =e A---Ae , with 1 <}
<---<j,=n and j,>d, which is a complementary module of
N'(Ae, ® --- ®Ae,), briefly /N4, ,,in N'4",s0 N'A"= N4, . ,©
T;(n,d).
Then
W,: /\lAn - z(n,d)’
Xt NAT S Ny

will be the usual projections, i.e.

Wi( 2 afl' : ‘J.eJr . 'j-) - E aJl"‘J}ejr g

1<j,<---<j=n I=j,<---<)=n
x'( 2 a.ll"’JleJl"'J,) = 2 aj...;€ .
I<j<---<j=<n
and, more generally,
h. ign
Xi'/\A _)/\IAI'--I'( (hSn)

will be like x; when we set d = h.
When z,,...,z, are fixed elements of 4, we write

A=A/ (211,.052,)4

fort=0,...,n(,A = A), and Z, €, 4 means the image of z, by the natural

map p,;: 4 -, A.
For every two integers s = r we can define a map of DGAs,
(1) YO K(Z,,...,2,; ,A4) > K(2,...,2,5 ,4),
by
¥{*" = the natural map 4 >, 4
and

f; forl=si=r,
0 forr<i=<s,

O
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where €peees€s and f,.. f are, respectively, the free generators of
K(z,,...,z,; ,A) and K(Z,,...,Z,; ,A). ¥"" will be denoted simply by

V. Finally, we make the usual convention of setting
o 1\®
€ = (D s

where 7 is a permutation on {j,...,j,} and 8 is 0 or 1 according to
whether 7 is an even or an odd permutation.

DEeFINITION 1.1. Let z =z,,...,z, be a system of non invertible
elements of a ring 4 and i, d integers such that 1 <i < d < n. We say that
z is a (d, i)*-sequence if H,(K(z; A)) can be generated by the image of
T "9, We say that z is a (d, i)-sequence if it is a (d, i)*-sequence and
(z4,...,2,)A Crad 4.

REMARK 1.2. (1) Obviously {z,,...,z4 Z4415---,2,} 15 a (d, i)-se-
quence if and only if {z_ ), .12,y Zo(as1ys- - - 2oy} 18 @ (d, i)-s€qUeENCE,
where 7 and o are permutations on {1,...,d} and {d + 1,...,n}, respec-
tively.

(i1) Any (d, i)-sequence is a (d’, i)-sequence, for d’ < d.
(iii) (d, i)*-sequences go up and down by faithful flatness. In fact, if
f: A - B1is a morphism, then

K(z;A)®,B=K(f(z); B) and d,(/N\‘4")®,B=d(/N\'B").
Now, the (d, i)* condition says in 4 or, respectively, in B
Lo syzi'(A/z4) = d, ((N7A7) +[T0D(A4) N syzi ' (4/24)]
2. syzy '(B/f(z)B)
=d, (NTBY) +[T0(B) N syzy (B/f(2) B)].
If f is faithfully flat, then
yz'*!(A4/24) ®4 B = syz"*'(B/f(z)B),
and for every two A-modules M and N,
(M®,B)N(N®,B)~(MNN)®,B

so that 2. comes from 1. by tensoring with B; again by faithful flatness the
conclusion follows.

(iv) For n =d, z is an (n, i)-sequence iff H,(K(z; A)) = 0; so, in
particular, if depth(z,,...,z,) =n — i + 1, then z is a (d, j)-sequence, for
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every d, j such that i <j < d < n (because of (ii) and the depth-sensitivity
of the Koszul complex [A-B]).

(v) If d, is the largest integer such that z is a (d,, i)-sequence, n — d,
gives a measure of the obstruction to z having depth bigger than or equal
ton — i + 1; in particular, for i = 1, n — d, says how far z,,...,z, is from
regularity.

THEOREM 1.3. Let z = z|,...,z, be a system of elements of a ring A,
with(z,,...,z,)A C rad A4, and i, d,ﬁ integers suchthat 1 <i<d=<h=<n.
If z,,...,z, is a (d, i)-sequence in , A, then z,,...,z, is a (d, i)-sequence in
A.

Proof. Let

a = 2 aj-- €,
1<j,<--- <j=n

be an element in syz' " '( K(z; A)). Since ¥" is a map of complexes,

\I,ih(a) = 2 &_jl"'j,*fjl"'in

1=)<--- <jj<h
will be in syz'*'( K(z; 4)). Then the hypothesis on , A4 says
E Ej".‘jl'f‘}"..jl = d1+lﬁ+ 2 ./l'”jlf]‘l"'jl

I=j<--- <j=d 1)<+ <jsh
i W=>d
_ N _ _
forsome B € N, A" and b, ., €,4.
From this we get
2 ey = diniBF 2 by &

=< <j=d 1=5<--- <j=h
Ji=d

+ 2 C/l o '/:efl U
1=j,<---<j=n
J=h

S

n
+ 2 2 c]]“‘]:Z’eh"'J:

1<j,<---<j<h \t=h+1

for some 8 € /_\’.+1 " ¢, €A, for 1 =j, <---<j =n and for any
lifting b, .., of b, ...
Now we can conclude the proof just by remarking that

2Ky T di+1(ejr--1,) tane,

for every k # j,,...,j, for some a € /\'"'4",
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COROLLARY 1.4. If depth(Z,,...,Z,) =d — i + 1 in 4A, then z,,...,z,
is a (d, i)-sequence in A.

Proof. Use Remark 1.2 and then apply Theorem 1.3 for 4 = d.

Theorem 1.3 allows us to lift (d, i)-sequences from hI to 4, but,
conversely, a (d, i)-sequence in 4 does not necessarily remain a (d, i)-se-
quence in , 4, as we can see from the following

ExAMPLE 1.5. Let A = k[[X, Y, Z||/I, I = (X*— Z* XY, XZ), k a
field, and denote by x, y, z the images of X, Y, Z in A. We show that x, y,
z is a (2,2)-sequence in A4, but, in 4 = 4 /(z), X, y is not, i.e. depth(X, y)
= 0 in A. The second fact is trivial since 4 /(z) = k[[ X, Y]]/X(X,Y) so
depth(A4/(z)) = 0.

Now let B8 = a,e; Ne, + apze; N\ ey + ape, /\e; be an element of
syz*(K(x, y, z; A)); this says

(2) a,ytasz=0, -a,x+ta,z=0, a;x+ayy=0,

and we have to show a,, € (z)A. Since y is a regular element in 4 /(x),
from the third equation in (2) we get a,; = Ax, for some A € 4. On the
other hand, in 4 /(z)A we have ann(X, 7) = (X)4, so from the first and
second equations of (2) we have a;, = px + vz for some pu, » € A. Now
the second equation in (2) becomes ux? = 0, so ux € ann(x), but ux €
ann(y) and in 4 we have ann(x) N ann(y) = (y, z)4 N (x)4 = (z*)A.
Thus a,, € (2)A.

Corollary 1.4 suggests investigating the condition we need in order to
have the relationship

Zy,...,2, is a (d, i)-sequence in A

(3) = depth(z,,...,z,) =d—i+ 1 in A.

We know this is always verified, for i = 1, for a local ring (4, m) and
(zy,...,2,)A = m (see [M-R] Theorem 2.5); here we prove it without any

assumption on 4 and z,,...,z, (cf. Corollary 2.4).
For i = 2 we certainly need some conditions (Example 1.5 says (3) is
not generally true). We will see that (3) holds whenever z,,,...,z, is a

regular sequence; nevertheless there are weaker conditions which imply
our relation. We will dedicate the next two sections to investigating such a
question and some related ones. For this, most of our technique depends
on the solutions of some systems of linear equations and their subsystems,
and we will devote the last part of the paper to explaining this idea.
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N. 2. The equality ¥/(syz'*'(K(z; A))) = syz' " (K (Z; ,A)) (cf. (1)
N. 1) clearly implies that if z,,...,z, is a (d, i)-sequence in A4, then
Z,,...,Z, 1s a (d, i)-sequence of hZ. However, such a condition is not a
necessary one, because the (d, i)-condition gives a link only between those
components of the elements of syz'*!(K(z; A)) which liein /\4,.. . Itis
easy to check that (d, i)-sequences descend from A to , A if the following

condition is verified:

Weak Lifting Condition (W.L.C.), ;. Let
a=a+besy(K(z;,4)),

wherea € N\, 4,.. ,, b € T"* (as ,A-module). Then thereis « = a + b
€ syz'"|(K(z; A)), where a € N\'4,...,, b € T (as A-module), such
that ¥/(a) = a. We will call a a weak lifting of a.

REMARK 2.1. (W.L.C),; is equivalent to ¥#(syz'"'(K(z; A))) =
syz' " {(K(Z; ,4)), because in such a situation we have b = 0; in other
words, (W.L.C.),; is exactly the surjectivity of the restriction of ¥ to the
syzygies.

Now, let us prove that (W.L.C.), , is also necessary to pass (d, i)-se-
quences from 4 to ,A.

PROPOSITION 2.2. Let z,,...,z, be a(d, i)-sequencein A. Then z,,...,z,
is a (d, i)-sequence in , A if and only if (W.L.C.), ; holds.

Proof. We already observed that (W.L.C.), ; is sufficient. Let us prove
its necessity. With the same notation as in (W.L.C.),;, leta=a+b €
syz'*(K(Z; ,A)), where

a= 2 Y/

1s),<---<j=d
The (d, i)-condition on the sequence says that

ajl"'j:: 2 Ejl"'f"'j,-.zt’ lle<<J,5d

t€{1,...,h} = s i)
We lift these relations to 4, defining

a;.;= 2 Cirooten

t€(1,..., Ry = (.. )i}

4
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) = Cirotennjpo and finally

a= 2 ah' : ']}ef\‘ i/
1<j,<--- <j=<d

Moreover, we define b € T™" as follows:

b= 2 bjl"'j.ejl“‘j:’
1<<---<j_ | =d
d<j<h

where

b'--~j,: 2 ' _ Cpeveteeey, " 2o
IE{[,...,d}“{_][,...,j,}

l=j,<---<j_,=d, d<j=h.
Since trivially ¥/(a) = a, it is enough to prove that

a+besyz"(K(z; A)).

The coefficient of e, ..., ,1=<j,<---<j_,=d,ind(a+ b),is

h
2 ajl“'u'uz—-l .Zu+ E bjl"'jl—lr.zr
ue{l,....d}Y—{J1,---sjim1} r=d+1

= 2 2

ue{l""’d}—{jl""’jl‘l} te{lv-~~’d}_{jl’~-~’jt—l’u}

X ¢, it X C g 22,

Jirwe gy

h

+ 2

r=d+1 (te{l,...,d}-—{j,,...,j,_l}

W€ (L, d} =iy}
u¥Ft

Cj["'l""l—lf * ZI)Z,

u€{l,...,d}={j1....j_y) t=d+1

h
+ 2 2 le-'~l---',~]r' thr’

r=d+1 t€{1,...,d}—{ji,... ji—1)

which is zero, because for p ¥ m, p, m = 1,...,d, the coefficient of 2,2,

1S

(T) le"'P""""‘J}—l + C/l"'m"'P"'Jl—l = O’
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coming from the first 2, and for 1 < p <; and d < m < h, the coefficient
of z,z,, is again (}), coming from the second and the third 3. Similarly,
the coefficient of e;.., , 1< <---<j_,=d, d<j_;=<h, in
d(a+b)is

b z, =

. ‘ j]"'u"'ﬁ—l. u
ue{l ,,,,, d}_{jly"'/z—z}

= 2 > Cirovontenyy Zufe =0
ue{l,..., d}Y—={j1,--sji—2} t€Q,....d}Y—{j1s---sfi=2,U}

with the same computation.
Theorem 1.3 and Proposition 2.2 can be restated as follows.

THEOREM 2.3. The following conditions are equivalent
(D) zy,...,2,is a(d, i)-sequence in A and (W.L.C.), ; holds.
() z,...,z,is a (d, i)-sequence in ,A.

In particular, for # = d, Theorem 2.3 becomes

COROLLARY 2.4. The following conditions are equivalent:
(D) zy,...,z,is a(d, i)-sequence in A and (W.L.C),, holds.
(2) depth(z,,...,z,) =d — i+ lin 4A.

The case i = 1 looks much simpler because of

ProposITION 2.5. Condition (W.L.C)),, is always verified, as
Y (syz*(K(z; A))) = syz*(K(Z; ,4))-

Proof. 1t is clearly enough to show the equality for # = n — 1 because
then we use induction. If

n—1 _

2 af € syzz(K(g—; n—14 ))>

i=1
we have 37-'a;z, = 0; so there exist aj,...,a, such that 37, a,z, = 0,
which implies 3"_, a,e; € syz*(K(z; A)) and ¥(" " D(Z"_, a,e,) = 27} &, f.

As a consequence of Proposition 2.5, we get
PROPOSITION 2.6. The following are equivalent:

(1) zy,...,2,is a(d, 1)-sequence in A.
2) zy,...,z,is a(d, 1)-sequence in ,A.
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(3) z,,...,Z, is a regular sequence ode.
4 (2155215 Zgygse e esZp)i Zi = (Zpse e s Zi gy Zgitse e esZy)y 1=
1,...,d, (z, = 0).

Proof. The equivalences (1) < (2) < (3) follow from Proposition 2.5,
Corollary 2.4 and Remark 1.2. The equivalence between (3) and (4) is just
an easy computation, translating the definition of regularity for the
sequence z,,...,Z,.

From condition (3) of Proposition 2.6 and Remark 1.2(1), we im-
mediately get

COROLLARY 2.7. If z,...,24, Zg41s---52, is a (d,1)-sequence, then
XiseoesXy_gs Zgits-+-s2, I8 a (d — s, 1)-sequence, where x,,...,x,_, is any
non empty subset of z,,...,z,.

RemMARK 2.8. If (W.L.C.),, holds, Corollary 2.7 can easily be gener-
alized to the i case; so, in this case, if z,,...,z, 1s a (d, i)-sequence, then
XiseresXg_gs Zgi1s---52, 18 @ (d — s, i)-sequence for x,,...,x, , any sub-
setof z,,...,z,0=s=d—i.

7 REMARK 2.9. Let (A, m) be a local ring and z,,...,z, a set of
generators of m; then Z,,...,Z, is a set of generators of T in ,4, so
condition (3) of Proposition 2.6 says that dfT is a regular ring. Moreover,
the (d,1)-condition on z is the same as condition R% defined for a
projective resolution of A /m in [M-R]; so, Proposition 2.6 implies Theo-
rems 2.5 and 2.7 of loc. cit.

Now we can generalize Corollary 2.12 of [M-R].

ProrosiTION 2.10. If z,,...,z, is a (d,1)-sequence of A and I =
(z4s15---+2,) has co-height = d (i.e. dim(A/I) =d), then A/I is Cohen-
Macaulay. In particular, if (A, m) is local and (z,,...,z,) = m, then A/l is
regular.

Proof. Applying Remark 1.2(iii) and Proposition 2.6 we get
depth(A/I), =d for every p € Max(A/I); since, by hypothesis,
dim(A4 /1) < d, the conclusion follows.

By Remark 1.2(u) if z,,...,z, is a (d, i)-sequence, it is also a (d’, i)-
sequence for every d’ <d (i =d’). It seems meaningful to ask whether
every (d, i)-sequence is also a (d, j)-sequence forj =i(j=d). Ford=n
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this becomes the well-known rigidity of the Koszul complex (see for
instance [G-L)).
Another partial answer to this question is given by

PrROPOSITION 2.11. If z,,...,z, is a (d, 1)-sequence, then it is a (d, i)-
sequence for every i = 1.

Proof. By Proposition 2.6 and the (d, 1)-condition on z, we have
Z,...,Z,is a (d, 1)-sequence in ,4, which means H,(K(Z; ,4)) = 0. Now
the mentloned rigidity of the Koszul complex implies H(K(Z; 44)) =
for every i > 1. Then Theorem 1.3 says z,,...,z, is a (d, i)-sequence in A.

The well-known depth-sensitivity of the Koszul complex says, in
particular, that if H,(K(z; A)) =0 then there exist n — i + 1 elements
XiseoosXy_jy1 1 (2y,...,2z,) which form a regular sequence, i.c.

H(K(x),...,.x,_j15 A) = 0 Now we prove a sort of (d, 1)-sensitivity of
the Koszul complex Namely, we have

THEOREM 2.12. If z),...,z, is a (d, i)-sequence and (W.L.C.),; holds,

then for every s, 0 < s </, there exist x,,...,x,_; € (2y,...,2,) such that
XiseoesXgogs Zgr1s--->2, 18 a (d, i — s)-sequence. In particular, we can find
d— i+ 1elementsin (z,,...,z;) Such that x,,...,Xy_ ;115 Zgi15-+++2, iS5 Q

(d, 1)-sequence.

Proof. By Corollary 2.4 H(K(z; 4A)) =0, so, for 0 <s <, we can
find X,,...,X,_, € (Z,5...,2,) such that H,_ (K(X,...,x,_,; 44) =0
Now from Corollary 1.4 we get the desired result.

The (W.L.C.), ; condition in the previous theorem seems to be neces-
sary (in some sense) to the above (d, 1)-sensitivity of the Koszul complex.
In fact, if (W.L.C),, does not hold in ,4 =A/(z4,,,...,z,), then
Proposition 2.2 says we can find a (d, i)-sequence, z,,...,Z;, Z 4 1s- 2
such that z,,...,Z, is not a (d, i)-sequence in ,A4. Now, let 1 < <i be
such that (W.L.C.), ; holds in ,A; then we cannot find d — i + j elements,
$aY X)ye.osXg i1 €(2p5-..,2,), such that xy,....X, ;4 Zz415...52,
is a (d— i+, j)sequence. Namely, otherwise it should be
H(K(Xp,- - sX 4145 dA)) 0, which implies H,(K(X;...,X;_;4;; A)
=0, and also H(K(z,,...,z,; 4A)) = 0, which means, by Corollary 2.4,
that z,,...,z, should be a (d, i)-sequence.

Therefore, for j = 1, using Proposition 2.5, we get

PROPOSITION 2.13. If for any (d,i)-sequence z,...,Z 5 Zyy1s-+-s2ys
with fixed tail z,,,,...,z,, we can find a (d — i+ 1,1)-sequence
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Xise o5 Xgoyits Zggrse - 52y With X0 X4y € (2y,...,2,), then
(W.L.C), ;, must hold for JZA = A/(z4,,,...,2,).

In order to investigate the behavior of (d, i)-sequences when we pass
to a quotient with respect to elements of its head (the first 4 elements), let
us denote by

¢: K(z,...,2,5A) > K(Z3,..., 25 A =4/ (2,))

the usual map of DGA, defined by

nat

¢ A=A/ (z)),

f; fori=2,
e =
#i(e) {o fori =1,
where {e;};—, , and {f};—, , are free generators of K(z; 4) and
K ,(Z; A), respectively, and denote by
¢ H,~H, and ¢} H/T"H,~ H,/T¢" " H,

the induced maps, where H, = H,(K(z; A)) and H, = H(K(Z; 4)).
The crucial fact for our purpose is

LEMMA 2.14. With the above notation,
(1) if z, is regular in A, then ¢} is surjective,
(i1) if z, is regular in 4A, then ¢F is injective.

Proof. (i) is trivial since the regularity of z, in 4 implies the surjectiv-
ity on the induced map

(i) Let [a] be an element of H,(K(z; A)) and suppose ¢,([a]) €
T("~ 14 DH; then

[a] = 2 a;..;€..; T 2 Ajy €y |
2=j<--- <j,=n 2= < <ji=n
J>d

Since a is a cycle, for every 2 <j, < --- <j. < d, we have

n
aljl...j'_ * Zl + . §+laj2...j'k * Zk == 0.
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So the regularity of z, in ;A4 implies

n
Qyjye-j, = 2 Chr -k %k
k=d+1

forevery2 <j, < --- <j,=<d. Then

[a] = 2 b€ T 2 A1y 41y,
2= <. <ji=n 2=j,<--- <j=n
jl>d jl>d

for some b, ... Thus [a] € T"9H,.

ProposiTiON 2.15. If z,,...,z, is a (d,i)-sequence and z,,...,z,,
1 =s=d—i, is a regular A-sequence, then % _,,,...,Zz, is a (d — s,i)-
sequence in A = A/(z,,...,z,).

Proof. By induction reduce to the case s = 1, then apply Lemma
2.14(i) to conclude H,/T " “4"VH =0, so %,,...,%, is a (d — 1,i)-
sequencein A = 4/(z,).

Conversely, we have

PrOPOSITION 2.16. If z,,...,z, is a sequence (in tad A) such that
Zoitse- sz isa(d— s, i)-sequencein A =A/(z,,...,z,) and Z,,...,Z is a
regular sequence in ,A, then it is a (d, i)-sequence.

Proof. Again by induction reduce to s = 1, then apply Lemma 2.14
(ii), so H/T"DH, = 0, i.e. z,,...,z, is a (d, i)-sequence.

N. 3. Now, our aim is to translate (W.L.C.), , into an algebraic form.
The next proposition will be helpful; it says, roughly, that, if (W.L.C.), ;
holds, we can build a weak lifting of @ = @ + b starting from any lifting a
of a.

PROPOSITION 3.1. Let

a+besyz?"(K(z;,4)), a+besyz(K(z; 4)),
wherea € /\'A, . 4, b € T\, ¥(a) = a. Then, forany a’ € (¥})"\(a),
there exists b’ € T ™ such that a’ + b’ € syz'"'(K(z; A)).

Proof. If
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and

Y A— ’
a = 2 Aj. sy
I=j<---<y=d

then ¥/ (a) = ¥(a’) is equivalent to

The element we are looking for is

[ Jp—
b= E ajl"'f,efl"‘j: +
d=ji< - <y=h
Ji-1>d

d
S B DS P
1</,<--- <j_=d
Ji=h

because it is a matter of computation to see that d,(a” + b’) = 0.
We recall the notation (cf. N. 1): ¥*: /\'4" > A\ '4, .., defined by

h —
¥ 2 4, -j.ejr'-/.) - 2 a/1~-J,er e

I=p<---<j=n

LemMa 32. Let @+ b € sy’ \(K(Z; ,A)), where a € N'A,..
beT") and let a € (¥}~ '(a), b € (¥")"'(b). Then there exists ¢ €
T ™", whose components with at least two indices bigger than h are zero,
such that x"_d.(a + b+ ¢) = 0.

Proof. The hypothesis d(a + b) = 0 implies d,(a + b) €
(zh+l"">zn) /\i_lAl.,.h, that iS

d,(d + b) = 2 2 CJI"'J:-I[ ) Z’ejl"'J;—l'

1<j<---<j_|=<h t=h+]1
It 1s easy to verify that we can choose

¢= E Tt €y
I=/<--- <j_1=h
t=h+1,...,n
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According to Lemma 3.2, we can give the following

DEFINITION 3.3. Let @ + b € syz' " (K(Z; ,4)), wherea € N\', 4, ,,
b e T", and let a € (V') '(@). We set ¢(a) =a + b’, where b’ €
T(" is chosen such that:

(o) X! \di(a+ b) = 0;

(B) ¥(b') = b;

(v) the components of ¢(a) with at least two indices bigger than h are
zero.

PROPOSITION 3.4. The following conditions are equivalent:

(i) (W.L.C), ;. B o _

(i) Let a+ b €syz’*(K(z; ,A)), a€ N, A4,..4, bET™, a €
(¥/)~(@). Then there exists A € T ™ such that

(D) m_d,($(a)) = m,_,d,(N);

@) x!-1d,(A) = 0.

Proof. (i) = (ii). Let a + b be a weak lifting of @ + b (cf. Proposition
3.1) and ¢(a) = a + b’; then A = b’ — b is the required element. In fact
A € T/"9, as b and b’ belong to that module; moreover from d,(a + b)
= 0 we get

m,_,d,(9(a)) = m,_d;(a) + m,_,d,(})
= —m_,d(b) + m_,d,(b') = m,_,d,(b — b');
so condition (1) is verified. Now, since we have x’_,d,(a + ) = 0 and
x"_,d(a+ b) =0, then x"_,d,(b’ — b) = 0 and (2) follows.

(i_i) = (1). From ¢(a) = a + b’, we obtain a weak lifting a + b of
@ + b by choosing b = b’ — A. In fact ¥’ — A € T,"9) and, moreover,

m—ldi(a +b —A)= Wi—ldi(¢(a)) - "Ti—ldi()\) =0,
X;j—ldi(a +b —A)= X?—Idi(qb(a)) - X?—ldi()\) =0.

REMARK 3.5. Condition (1) of (ii) in Proposition 3.4 can be replaced
by 7\ d,(¢(a)) = =" ,d,()), because of condition (2).

Now, let us look for conditions stronger than those in Proposition 3.4
which are easier to formulate and verify. First, we point out that d,(¢(a))
is a boundary with some zero components, so that it is of the form

B = 2 Bkl"'kx—lekl'“ki—l’

1=k <---<k;—»=<h
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where
I. Bkl'“k:—l EI,ﬁ'l...kl_zz(Zl,...,fkl,...,2’k‘_2,...,2h)A,
II. > By, 2=0

te{1,...,n}= (- Ji—a}

(the B’s with more than one index bigger than 4 are zero). From this,
taking into account only relations II, corresponding to 1 <j, < --- <j,_,
=< h, we easily get

CoroLLARY 3.6. (W.L.C.),, is verified if 2/} \By,..k, -2 =0,
with B, .., €I} .,  implies
Bkl"'k,—zt = 2 }\klv-‘u“-k,_zt T2y
uE(l,...,hy—{ky,...,k,—3)
forl =k < ---<k, ,<h,where, foreveryl <k, <---<k,_,<h,
0 S Ak ez =0,
v=h+1,..., n

Proof. As we just observed,

d(¢(a)) = 2 Bk.-uk,_,ekruk,-_,’
1<k <---<k,_,=h
k:—l>h
where
h _
Bi-k, € 1k, k,, and 2 Buskwn=0,
t=h+1,..., n
SO
Bkl Kimy — 2 }\kl-~~u~~k,_| Zy
u€{l,....hy—{ky,....ki—3}

and this shows condition (1) of (ii) in Proposition 3.4 holds. Condition (2)
is implied by (4) if we choose A, =0forr=h.
Two weaker versions of Corollary 3.6 are the following:

CoROLLARY 3.7. (W.L.C.),, ; is verified if
2 Bk,~-~k,-_2t ~z,=0,

Bkl“'ki—zl € Ililr“k,_z (1 = kl << ki—2 = h)
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implies
n
lBk,-~-k,_2t = 2 Bkl---k,_zut "zt
u=h+1

h .
for some e, .., €L .,  -(0:z).

Proof. Just check that (4) holds.

According to the following definition (Fiorentini [F)), if N C M are
A-modules, x,,. .. ,x, is said to be a relative regular M-sequence with respect
to N if

(%15 %, )N:x,01) NN = (xp,...,x,)M, i=0,....n—1,

we have

CoroLLARY 3.8. (W.L.C.), ; is verified if z,,,,...,z, is a relative
A-sequence with respect to I,ﬁ'l_,,k‘_z forevery l =k, <---<k, ,<h.In
particular, (W.L.C.), , is verified if z; . \,...,z, is a relative regular sequence
(cf. [F)) or a d-sequence (see [H]).

Proof. Just apply Corollary 3.7, since from the hypothesis we get the
required implication for ¢ = 0.
Finally we have the result quoted in N. 1.

COROLLARY 39. If z,,,...,z, is a regular sequence, the following are
equivalent:
(1) zy,...,2, is a(d, i)-sequence;

(ii) depth(Z,,...,z,) =d — i + 1 in 4A.

REeMARK 3.10. The interesting particular case # = n — 1 gives rises to
an easy way of expressing the conditions of both Corollaries 3.6 and 3.7
(which in such a case coincide); precisely, with the above notation,

(0: Zn) N Il?lfluk,_z = (O Zn) ’ II?FIHk

—2"
Moreover the condition of Corollary 3.8 simply becomes
(O:z,)nn"'., =0.

As an easy application of the previous remark, we have

PROPOSITION 3.11. Let a, b, ¢ be a (2,2)-sequence of a local ring
(A, m), and suppose Tor,(A/(a, b), A/ann(c)) = 0. Then depth(a, b) = 1
inA=A/(c).
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Proof. The Tor condition says that (a, b) N ann(c) = (a, b) - ann(c).
From the previous remark this implies (&, b) is a (2, 2)-sequence, and this
just means depth(a, b) = 1.

Now we are able to give an application which is a sort of generaliza-
tion of what we proved in Propositionn 2.10.

PROPOSITION 3.12. Let I = (z,,...,z,,) be an ideal of A generated by a
relative regular sequence (in particular a d-sequence or a regular sequence),
with dim(A/I) =d. If, for some i >0, there exist d + i — 1 elements

XipeoosXgy,—1 SUCh that X,,...,Xgi; 1y ZyseeesZy I8 a (d+i—1,0)
sequence, then A/I is Cohen-Macaulay. Moreover, if (A, m) is local and
XiseoesXgyi1s Z1s- -+ 2, IS @ System of generators of m, then A /1 is regular.

Proof. By Corollary 3.8 (or Corollary 3.9) and Proposition 2.2, we
have, in 4 /1, depth(x,,...,X,;,,_ ) =d+i—1—i+1=d, so, for ev-
ery p € Max(A4 /1), depth(A4 /1), = d and the conclusion follows.

We can realize how much the condition z,,,...,z, is a regular
sequence is stronger than (W.L.C.),; by looking at the next proposition,
which points out a strict relation between (d, i)-sequences, the regularity
of the tails of sequences and the vanishing of the Koszul homology.

PROPOSITION 3.13. For a sequence z,,. . .,z, (in rad A) we have:

() If z,,...,2, is a (d, i)-sequence and z,,,,...,z, is a regular se-
quence, then H(K(z; A)) = 0.

(2) if H(K(z; A)) =0, then there exist x|,...,X,_;11 € (Z},..-,2,)
such that z,...,z;_y, Xy,...,X,_;4+; is a (d,i)-sequence and
Xy i42s--->Xy_;41 IS a regular sequence.

Proof. (1) From Corollary 3.9, the hypothesis implies depth(z,,...,z;)
=d—i+1;asz,.,...,z,1s a regular sequence, we get depth(z,,...,z,)
=n — i+ 1, which implies H,(K(z; A)) = 0.

(2) The hypothesis is equivalent to depth(z,,...,z,)=n —i+ 1, so
we can take a regular sequence x,,...,Xx,_;4,n(z,,...,z,). So we have

depth(z,,...,z,_ 1, X|yeeesXp_ipy) =0 — i+ 1,
withx, . ,,...,%,_;;, aregular sequence. This implies
depth(z,,...,2;_ |, Xpsee s Xy_ip) =d — i + 1,

so, by Corollary 3.9 and the regularity of x, ,.5,...,X,_;+;, we have
ZiseeesZy 1y Xpse - s Xp_iv1 18 @ (d, i)-sequence.
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Let us remark that, for i = 1, part (1) of the previous proposition
becomes the well-known result

H(K(z; ,A4)) =0andz,,,,...,z, a regular sequence
= H\(K(z; 4)) = 0.

If (W.L.C.),; holds for every i, the smallest i for which z,,...,z,1s a
(d, i)-sequence says exactly that depth(Z,,...,z,) =d — i+ 1in 44 (cf.
Corollary 2.4); if, moreover, z,, ,...,z, is a regular sequence, such an i
says that depth(z,,...,z,) =n — i+ 1 (cf. Proposition 3.13). If we do
not assume (W.L.C.), ; holds, we can only say that depth(z,,...,z,) =s
implies z,,...,z, 1s a (d, i)-sequence for i =d + 1 — s; however it may be
a (d, i)-sequence for smaller i’s, as we saw in Example 1.5, where
depth(x, y) = 0, and x, y, z is a (2, 2)-sequence.

Let us give more examples of (d, i)-sequences z,,...,z, which do not
pass to the quotient 44, that is where (W.L.C.) 4, does not hold.

ExaMPLE 3.14. We consider again the local ring of Example 1.5:
A=k[[X,Y, Z]l/(X*— Z%, XY, XZ) = k[[x, y, ]].

The element z is not a d-sequence (according to [H]): in fact (0: z) = (x)
and (0: z?) = (x, z). This remark agrees with what we proved in Example
1.5, that is, (x, y, z) is a (2, 2)-sequence and (X, y) is not a (2, 2)-sequence
in A /(z) (cf. Corollary 3.8).

As in A/(z) every ideal can be generated by two elements. Let us
examine all the sequences (a, B8, z) in A. They cannot be (2, 1)-sequences,
because, in that case, they should pass to 4 /(z) (cf. Proposition 2.5), but
depth A /(z) = 0. So, the only meaningful question is whether or not they
are (2, 2)-sequences. It is a matter of computation to show that they are
essentially of the following three types:

s;=(x+y™-u,y",z), 1=<m<n,uinvertiblein 4;
SZZ(ymayn’Z)a m’”Zl;
53 = (x, y™, z), m=1;

now s, and s, are not (2, 2)-sequences (for instance the cycle
xep, — Uy "ze s + zey & NAP + TSP
in K(x + y™u, y", z; A) and, respectively, the cycle

x(eIZ te;t 323) & N4>+ T2(3'2)
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in K(y™, y", z; A)), and s, is a (2, 2)-sequence which does not pass to the
quotient A /(z).

By using Proposition 1.3, the previous example gives rise to the
following one: in the ring B = k[[ X, Y, Z]], the sequences

(X,Y", Z, X* — 2%, XY, XZ), h=1,

are (2,2)-sequences which mod(X? — Z2, XY, XZ) remain (2,2)-se-
quences (note that X*> — Z2, XY, XZ is a d-sequence); however they do
not give rise to (2,2)-sequences in B/(Z, X* — Y?, XY, XZ) = A/(z),
so, in particular, (Z, X2 — Z2, XY, XZ) is not a d-sequence in B.

EXAMPLE 3.15. Let B = k[[ X, Y], n = (X, Y), 4 = B/n® = k[[x, y]].
Then:

(@) (x, y; x%, xp, y*)is a (2, 2)-sequence in 4.

(b) (X, 7; X%, Xy) is a (2,2)-sequence in 4 /(y?), though y? is not a
d-sequence. This fact shows that the condition to be generated by a
d-sequence is strictly stronger than (W.L.C.), , (cf. Corollary 3.8).

(c) (X, y) is not a (2,2)-sequence in 4/(x2, xy, y?).

Let us prove (a). It is equivalent to show that

apy +apx®+ apxy + a;5y° =0,
ApX = apX® — ayXxy — ay*? =0,
(5) apx +ayy — ayxy — a;y® =0,

2 _ 2
X +ayy t ayx asy- =0,

aisx + ayy + azx? + axy =0

implies a,, € (x?, xy, y*). Now, working mod(x?, xy, y*) we can see that
a,;, a,,, i > 2, are not invertible, so (5) becomes a,,y = a;,x = 0. From
this the conclusion follows easily.

The proof of (b) is similar; (c) is trivial, as dim 4 /(x2, xy, y?) = 0.

N. 4. In this last section we just want to give a new version of the
results we obtained in the previous ones. Here we use essentially the idea
of looking at the syzygies of the Koszul complex as particular systems of
linear equations, so that conditions on syzygies can be seen as conditions
on the solutions of these systems. For a better understanding, we intro-
duce some general notation and definitions.

Let (F) be a system of linear equations with coefficients in a ring A
and with indeterminates X = {X,,...,X,}; let gt A - B be any ring
homomorphism and denote by ( g(F)) the system we get from (F) when
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we apply g to the coefficients of (F). So (g(F)) is a system of linear
equations with coefficients in B and with indeterminates {X;,...,X, }
where {X,,...,X;} C {X,...,X,} (we delete all indeterminates with
coefficient zero).

DEFINITION 4.1. (F) is said to be admissible with respect to g: 4 — B
(or (g(F))) if for every solution 8= {B,,...,8,} of (8(F)), ,8,/ € B,
Jj = 1,...,r, there exists a solution a = {ea,,...,a,}, a, €EA, k=1,...,n,
of (F') such that g(aij) = ,Bij,j =1,...,r.

An easy consequence of the previous definition is

PROPOSITION 4.2. Let g: A = B a surjective morphism and Ker(g) =
(uy,...,u,); consider a system of the form

n, r
(F) 2aPXO+ Yuy®=0, i=1,..h
=1 =1

Then (F) is admissible with respect to g.

Proof. 1t is almost trivial since every solution S of (g(F)),

n,

S a?)x0=0. 1= 1.

j=1
can be lifted to a = {a/”},—; .= 4 in 4, s0 Zjr, a}’.)aj") € Ker(g).
Then we can find elementsin 4,y = {y"},_, ;= .4 With
n, r
2 @’ + 2 vu, = 0.
j:l 1=

Now (a, y) is a solution of (F) and g(a) = B.

We point out that Proposition 4.2 can be easily generalized by letting
g be surjective only on the solutions of (g(F)). We now introduce a
similar terminology to deal with a subsystem of a system of linear
equations.

DEFINITION 4.3. Let (F) be a system of linear equations with coeffi-
cients in 4 and indeterminates X, Y, where X = {X|,...,X,} and Y =
{Y,,...,Y,}, and let (F’) be a subsystem of (F) with indeterminates X.
We say that (F) is admissible with respect to (F”) if, for every solution
X = a of (F’), there exists a solution of (F) of the form X = a, Y = B.
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ExaMPLE. In Z it is easy to check that

x+y+z=0,
(F) 3x—y+z=0,
3x+4y+z+5t=0

is admissible with respect to

, x+y+z=0,
(F) {3x—y+z=0.
Now let us return to our subject and let z = {z,,...,z,} be elements

of A4 with (z,,...,z,) C rad(A4).
For a fixed i consider the system

()

7, X; ., =0, =< <ji-1=n,

I =
—_
|
—
SN
\h
B\
=
3
x

L

=1
1557 TN Ji—1

with () linear equations and (}') indeterminates, and s, = number of j’s
preceding ¢. There is a natural bijection between the set of solutions of (S)
and syz'"'(K(z; A)), so the definition of (d, i)-sequence can be restated
as follows:

Every solution of () must have the form

n
(diy X,.,= 2 a2z foreveryl<j <-..-<j<=d,
st

witha, ... € A4 and the usual convention on the a’s.

We remark that the condition (d, i) concerns only some components
of every solution of (S).

Now let us fix an integer 4, d < h < n, and denote by

n

(Sy) 2 (_I)SIZth,~~-z~-',_,:03 l=sj<---<j,=h,
ey
the subsystem of (.S) corresponding to the indices 1,2,...,A.
Proposition 4.2 implies (S,) is admissible with respect to the natural
map ¢,: A = A4, 1.e. with respect to the system

h
(S,) 3 (=1'zix =0, 1=<j<--<j_,=<h,
=

as we already knew by Proposition 3.2.
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Clearly every solution of (S) gives a solution of (S,) and then a
solution of (Sy); so, if there is an integer h, d =h = n, such that the
solution of (S,) has the form (d, i) in , A4, i.e.

X .= 2 &.,z, 1=<--<j=d,
=1

R
SEN

then every solution of (S) in A will be in the form (d, i), i.e.

X..= 2 a. ..z 1<j,<---<j=d.

1
s=1
SEN

This simply says that if there exists & such that z,,...,Z, is a (d, i)-se-
quence in , A4, then z,,...,z, s a (d, i)-sequence in 4, and that is Theorem
1.3.

When n = d, condition (d, i) concerns the whole solution, so in this
case to say that every solution of (§) has the form (n, i) is equivalent to
depth(z,,...,z,) =n — i + 1. The Corollary 1.4 becomes: if the solutions
of (S,) have the form (d, i), then the same is true for the solutions of
(S).

Now we want to study how a property (%), in particular (d, i),
passes from the solutions of a system ( F') to the solutions of a subsystem
(F”). We have this first easy result.

LEMMA 44. If (F) is a system of linear equations with two sets of
indeterminates X, Y, and if the solutions of (F) satisfy a property (%)
related to the part concerning the X indeterminates, then every admissible
subsystem (F"), with indeterminates X, has all the solutions satisfying ().

Proof. 1t is trivial; just take a solution « for (F’) and (a, ) the
solution of ( F) arising from the admissibility; then since («, 8) has (),
which is related to the X’s, a has (%).

COROLLARY 4.5. If z,...,z, is a (d, i)-sequence and our system (S) is
admissible with respect to (S,), then depth(Z,,...,z,) =d — 1 + i.

REMARK 4.6. For i = 1, (§) = (S,,) for every & < n, so Corollary 4.5
gives again: z = {z,,...,2,} Is a (d,1)-sequence implies z,,...,z, is a

regular sequence in ;A4 (cf. Proposition 2.6).

Corollary 4.5 can be easily generalized to
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COROLLARY 4.7. If the composition of system maps
B v =
()~ (5,) > (S3),

where j means to pass to a subsystem and v is the induced map of the natural
one A =y A, is admissible (i.e. every solution of (S,) in ,A can be llfl‘f’_d toa
solution of (S) in A), then the condition {d, i) descends from A to ,A.

We observe that the hypothesis of Corollary 4.7 is really weaker than
in Corollary 4.5 (also if we use there & instead of d), since compositions of
admissible maps (of systems) are admissible, but conversely if the
composition is admissible (and the second map is too) the first map
is not necessarily admissible. In fact, the admissibility of (S) with
respect to (S,) simply means the surjectivity of y/: syz'"(K(z; A)) -
syz’*(K(z; ,A)), while the admissibility of (S) with respect to (S))
means the strongest relation:

(v2) " (syz* (K (2,,4))) = syz"t(K(z; A)).

Nevertheless the hypothesis of Corollary 4.7 is still not necessary to
pass the { d, i )-condition from 4 to , 4.

From now on, in our system (S§) we denote by X the set of inde-
terminates {le,“ J Ji=j,<---<j=a and by Y all the remaining inde-
terminates, i.e. {X; ..} < <...<j=n>d; h is always an integer such that
d=h=n.

We need a weak version of admissibility.

DEFINITION 4.8. Let (F) be a system of linear equations with coeffi-
cients in A and with two sets of indeterminates X, Y; let g: 4 —» B be a
ring homomorphism and (F’) the system induced from (F) by g with
indeterminates X and Y’, where Y’ C Y. We say that (F) and (F’) are
admissible with respect to X (or weakly admissible when there is no
chance of confusion) if for every solution (&, b) of (F’ in B, with X = &,
Y’ = b, there is a solution (a, ¢) of (F) in 4, with X = a, ¥ = ¢, such that
g(a) = a (more precisely, putting a = {a,,...,a,} and a = {a,,...,q,},
g(a;) = a,).

ExampLE. Take Z - Z/6Z and

nat

x+y+2z+6t=0,
(F) 3x—y+2z+6:=0,
6x + 6y + 6z + 24t =0,
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SO

+ =
(F) {x y+2:=0, . 26z,

3Ix—y+2z=0

As is easy to see, they are not admissible (for instance, we cannot lift the
solution of (F’) x =y =0, z = 3), but with respect to the set of inde-
terminates (x, y) they are; namely, the only solutions of (F’) in Z/6Z
have the form (X, X, -X) or (X, X, -A + 3), with A € Z/6Z; so they can
be lifted to a solution of (F) in Z, for instance (A, A, 2A,-A), for some
A € Z whose image in Z /6Z is .

Of course, when Y’ = @, admissibility coincides with weak admissi-
bility; in particular, this happens for (S) and (S,).

Let us go back to our system (.5); now Proposition 3.1 can be restated
as follows.

LemMmaA 4.9. If (S) f—)(g,,) (the usual composition (S) - (S,) = (S,)) is
weakly admissible and (@, b) is a solution of (S,) in ,A, for every a’ €
p~ (@), we can find ', set of elements in A, such that (a’, ¢') is a solution of

(S)-
Finally, the new version of Proposition 2.2 is

THEOREM 4.10. For z,,...,z
following are equivalent:

W) z,...,z, is a (d,i)-sequence in A and (S) — (.Sz'h) is weakly
admissible.

@ii) Z,,...,2, is a (d, i)-sequence in , A.

in A, with (z,,...,z,) C rad(4), the

n

REMARK 4.11. The conditions in Corollaries 3.6-3.9 are all sufficient
in order to have (S) - (S) admissible.

Just to show how one can deal with these problems in terms of linear
systems, let us rewrite the proof of Proposition 3.11.

The admissibility of the systems

(s {Pr@=o (5,) {5

—-ax + cz =0, ax

0,
0,

1]l

says that, for some lifting a of a solution of & of (S,), there exists a
solution (a, B, v) of (S,); since Ba + yb € (a, b) N (0: ¢), for the Tor-
condition, fa + yb € (a, b) - (0: ¢), so we have elements B,y € (0: ¢)
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such that B8a + yb = B’a + y'b. Now (a, B — B’, Yy — ¥’) is a solution of

bx +cy =0,
(S) —ax + cz =0,
ay + bz =0,

that is, (S) and (S,) are admissible. The (2, 2)-condition implies & = Ac,
for some A € 4, i.e.a = 0.
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