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DIFFERENTIABLE APPROXIMATIONS
TO HOMOTOPY RESOLUTIONS AND

FRAMED COBORDISM

DONALD W. KAHN

The determination of homotopy groups of spheres remains a central
problem in algebraic topology. The various methods for addressing this
problem cover some considerable ground, from intricate algebra to the
structure of manifolds. Our general purpose here is to show that the gap
between some of these methods can in fact be closed, and that one may
find geometric structures (manifolds) which reflect the filtrations arising
from algebraic methods.

To be specific, the different methods for studying homotopy groups
of spheres include the construction of homotopy resolutions, [9], the
Adams spectral sequence, [1], and its variants, and the theory of framed
cobordism, [8], which is historically the first general method. Naturally,
there are now many extensions of these methods, and a great many results
have been obtained. But even in the area where the groups are now
well-known, the relationship between the different methods is often not
clear. For example, given a specific known element in ^(S-7), in the stable
range, one does not always know specific manifolds which represent the
element in framed cobordism, or specific cohomology operations which
detect the element, not to mention a finitely-computable procedure for
determining when a given map /: S* -* SJ would represent such an
element. An early attempt to analyze the relationship between the meth-
ods of homotopy resolutions and the Adams spectral sequence is the
paper of H. Gershenson [4]. Since that time, there has been some work on
analyzing what sort of manifolds, for example Lie groups, can carry
framings which represent certain classes in homotopy groups of spheres.
See, for example [2]. Recent results of E. Ossa [7] are remarkable in terms
of showing how relatively little can be carried invariantly on Lie groups.

The present paper originates in my idea that it should be possible, at
least in theory, to bridge the gap between framed cobordism and the
theory of homotopy resolutions (Postnikov towers). Specifically, one
should be able to build a "filtration" in framed cobordism, which is some
sort of reflection of the basic homotopy resolution of the space. This is
roughly the content of Theorem 2 below. The naive idea behind this is to
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effectuate a homotopy resolution in the category of differentiate mani-
folds without boundary. But a little reflection about the cohomology of
Eilenberg-MacLane spaces and Poincare duality will show that it is a rare
event indeed when an Eilenberg-MacLane space is such a manifold.
Therefore, one looks for manifolds and maps, which approximate in the
sense of fc-type, a given, finite piece of a homotopy resolution. That this
can be done in all reasonable cases is our Theorem 1. We also indicate, in
passing, how one might interpret the /^-invariant in this differentiable
setting. Some examples and applications follow Theorem 2. We begin with
some preliminary material and two lemmas.

It is my primary intention to try to stimulate interest in this area.
There are only a few cases, where explicit computation appears to be
practical at this time.

We work in the category of 1-connected spaces with base point. Maps
(continuous) and homotopies respect the base points, although we usually
omit them from the notation. All our spaces have the homotopy-type of a
CW-complex, with finitely-generated integral homology in each dimen-
sion. For such a space X, a homotopy resolution for X (see [5]) will mean
a family of spaces and maps

so that
O K •/>„ = ?„_,
(2) mn is an (n — Inequivalence; Pk is a A -equivalence.
( 3 ) * y ( ^ ) = o, i fy>*.

If X is (n — l)-connected, then Xn is clearly a K(πn(X)9 n) space. Note
that we do not assume that the πm are principal fibrations, with fibre
K(πm(X), m), because there is no ready analogue for them in the world of
compact, differentiable manifolds.

The literature is not consistent about what is a ^-equivalence. Some
authors want a map /: X-* Y9 inducing isomorphisms in homotopy
through dimension k\ others will settle for a map defined on some
skeleton. To make sense of a /^-equivalence, as distinct from a homotopy-
equivalence, I require that there be a map /: X(ί) -> 7, where / > k,
inducing isomorphisms on homotopy through dimension k.
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We note, also, that the main theorems of this paper will be valid for
any suitable equivalence. In this generality, the proofs are rather more
difficult than merely taking skeleta and suitable smooth neighborhoods.

LEMMA 1. Given a space X and k > 1. Then there is a compact,
differentiable manifold, without boundary, say M, having the k-homotopy-type
of X. {That is there is an/: X(l) -» M, from the l-skeleton of X,l>k+ 1,
inducing isomorphisms in homotopy through dimension k {and an epimor-
phism in dimension k + 1)). We do not notate the generally large dimension
ofM.

Proof. It is well-known (see, for example, [3]) that if AT is a finite
subcomplex of the sphere Sn, then there is a compact, differentiable (C r,
r >: 1) manifold with boundary, say N, with K C N C Sn, so that the
inclusion K C N is a homotopy-equivalence. If n is much larger than the
dimension of K, we may assume Sn — N is highly connected. Using the
Mayer-Vietoris sequence of {Sn, N, Sn - N), with N Π {Sn - N) = dN,
we see that the inclusion dN C N induces isomorphisms on integral
homology groups through as large a range of dimensions as we wish,
depending on the choice of n.

Set M to be the double of N, gluing by the identity map along the
boundary. Writing JV, and N2 for the 2 copies of N in M, we have
N{ U N2 — My Nγ Π N2 — 3iV. By the above remarks, we may assume that
the inclusion 3iV -> N induces an isomorphism on homology through a
large range of dimensions, so that it follows that in such a large range of
dimensions, the Mayer-Vietoris sequence,

Θ

is a split sequence, and thus, for such a range, the inclusion of Nt in M
must also induce an isomorphism in homology.

If we let K be a suitably large skeleton of X, then the lemma is clear.
We note that in special cases, there are often better approximations

than those given by this lemma.

LEMMA 2. Let P: X -> Xm be any {continuous, base-point preserving)
map, where we assume that iTj(Xm) = 0, if j > m. Let k be an integer,
k > m. Then there are differentiable manifolds M and Q, which have the
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k-homotopy-type of X and Xm (resp.), given by maps fM\ X{1) -> M and fQ:

~* Q> with I <l< I'-In addition, there is a map P for which

M ^ Q

is homotopy-commutatiυe. P may be taken to be differentiable.
We also note that fM and fQ may be chosen to be any equivalences

through the correct range of dimensions.

Proof. Using Lemma 1, we easily construct a partial diagram

i ΪM + fζ)

M Q

where the vertical maps are λ>homotopy equivalences, for any suitable
k > 1 that we wish. Up to homotopy-type, we may then also regard M as
containing X^l) as a cellular subcomplex, where all remaining cells of M,
besides those of X^\ have dimension bigger than k. But on the other
hand, fQ may be chosen to be a homotopy equivalence through a range
exceeding the dimension of the cellular version of M, as constructed
above.

But then, the obstructions to extending the mapfQ P: X{1) -> Q to a
map M -» Q will lie in

for k <j < dim(Λf). Sincey > k > m,j — 1 > m, so Wj_x(Xm) = 0 in the
range at hand. Because wy.^Λ^) » ^)-i(β) through the dimension of M,
all groups containing these obstructions vanish, yielding the extension.

Replacing M by the original differentiable manifold, rather than the
cell complex, and taking a differentiable approximation yields the desired
P.

REMARK. Lemma 2 is a "stable" version of a differentiable approxi-
mation in the sense that we require k> m.

Our first theorem is then the following:
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THEOREM I. Let

x-*xm-> ••• -> xn
n

be a finite homotopy resolution in our category of spaces. Let k > m. Then

there is a sequence of differentiable manifolds, M, Qm, β w _ 1 ? . . . , β n , and

mapsf: X(l) -* M andf{. X}li) -» β z , π < / < m,/or suitable integers I and /,

0// greater than k, which are k-equivalences, and differentiable maps Pm and

#,., 50 /λαί the following diagram is homotopy commutative:

M 5 Qm - ••• * S ' ρ n

/« addition, one may assume

dim M > dim Om > > dim O .

Within the ranges of dimensions required in the proof, absolutely any choice

of k-equiυalence, for f and the fi is permissible here.

Proof. By Lemma 2, one may easily deduce the theorem (apart from

the final sentences) for a two stage homotopy resolution JΓrt+1 -> Xn. If we

have a 3-stage resolution Xn+2-^> Xn+λ ^> Xn, then using Lemma 1, we

may easily construct

I fn + 2 ifn+\ I fn

for suitable integers / Λ + 2 , /Λ + 1, and /„. Referring to the proof of Lemma 2,

we may construct a horizontal map in the lower-left hand corner, τrπ + 2:

Qn+2 ~* Gπ+i' P Γ 0 V ^ e d / r t + 1 is a homotopy equivalence in dimensions up

to dim(gM+2) But the dimensions / π + , and ln may be chosen as large as

we wish, as well as the dimension through which fn+x and/M are homotopy

equivalences (Lemmas 1 and 2). Therefore, we change Qn, Qn+X,fn, and

fn+λ—if necessary—to assure that/ w + 1 is a homotopy-equivalence, through

a sufficiently large dimension, and the map # n + 2 may then be constructed.

It is clear that this process may be repeated for any finite homotopy

resolution, completing the existence of the diagram in the Theorem. To
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arrange matters so that the dimensions are increasing, preserving the rest
of the Theorem, one simply selects suitable family of spheres, of increas-
ing dimensions, all larger than k, replaces the manifolds with their
Cartesian products with the spheres, and the maps such as πt by the
product of the original %i with a trivial map between the spheres.

Before passing to framed cobordism, we wish to briefly indicate how
the /c-invariants of a Postnikov system may be described in the framework
of differentiable approximations. In other words, we wish to analyze the
/c-invariant, modulo torsion, in terms of differential forms. Consider a
stage of a Postnikov tower, that is a principal fibration

Let φ: Xn_x -> Cπ be the usual map of Xn_x to the mapping cone of π.
Following Lemma 2, let φ: Q -» M be a differentiable approximation to φ
up to &-homotopy type, with k large.

We may easily assume that we have embedded spheres, say S?~*~x

9 in
M, representing generators of the free summand of 7rw+1(M). (Note that
M is ^-connected). Suppose ω is a closed (n + l)-form on M, whose
restriction to S"+ι represents the dual to a generator in real homology.
Then, the differential form (ψ)*(ω) represents the restriction of the
/c-invariant, kn+\ to that summand in cohomology, corresponding in the
coefficients to the generator represented by S"+\ up to a possible non-zero
real multiple.

We now wish to exhibit a filtration in framed cobordism, arising from
a homotopy resolution. Recall that if g: Sp -* Sq

9 then the classical
construction of Pontrjagin replaces g by a differentiable map, and then
takes the inverse image of a regular value, say M = g~\xo)9 yielding a
framed manifold in Sp (see [8]).

THEOREM 2. Given a (stable) homotopy class, represented by g: Sp -> Sn

9

and a finite homotopy resolution

then
(1) There is a compact (without boundary) manifold V9 having the same

k-homotopy-type as Sp,k> /?, with Sp a submanifold of V9

(2) There is associated to our resolution a decreasing family of framed
submanifolds of V, called W{ and W9

VDWnDWn+ιD •••DWmDW,
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and
(3) W Π Sp is a framed submanifold of Sp which represents {g} in

framed cobordism.

Proof. Up to /^-equivalence, we may replace the resolution by

j = *j+x 7rmPm)

where M has the fc-homotopy-type as Sn

9 and Qi has the same &-homo-
topy-type as Xt. The dimensions may be chosen as in Theorem 1. It is easy
to see, using standard theorems on transversality, that it is no loss of
generality to assume the base point in each space is a regular value of the
maps for which it lies in the range.

We choose V to have the same Λ -type as Sp c V, with dimension
bigger than that of M, and select a differentiable extension map g:
V -» M, homotopy-equivalent to g through dimension k. We may clearly
assume, without loss of generality, that the base point in M lies in Sn C M
and is a regular value for g\Sp. The usual density of transverse maps
(Thorn lemma) assures us that we may also assume that the base point in
M is a regular value for g: V -> M, without destroying the fact that it is a
regular value for g\Sp.

We now denote

Wi=(Pi- g)"1 (base point)

(recall P, = # / + 1 τrm - Pm) and

W= g~ι (base point).

This clearly yields the desired decreasing filtration of framed submani-
folds of V.

We need only prove (3). Consider the diagram

OS'

g is an extension of a map homotopic to g, and (g\Sp) !(base point) =
g-1(base point) Π Sp. But W = f ^ b a s e point), completing the proof.

REMARKS. (1) One may clearly also relate the various normal framings
on the Wt and W.
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(2) One may take the intersections of the Wι and Sp, and form a
decreasing filtration of subspaces, but I don't know how one can arrange
matters so that they are all distinct framed submanifolds. At any rate, the
manifold V is naturally related to the homotopy structure, and it is an
appropriate place for our filtration to be displayed.

In the way of examples and applications, we first look at the Hopf
map h: S3 -* S2 from the point of view of Theorem 2. The first stage in a
Postnikov decomposition for S2 is

K(Z93) -> X3

K(Z92)

with the ^-invariant being, up to sign, the square of the generator. To
approximate up to dimension 3, we may replace X3 by S2 and K(Z9 2) by
CP2. To keep the dimensions increasing, we then replace S2 by S 2 X S4,
and mapping S4 trivially, we get a differentiable approximation to π3 as

/: S 2 X S 4 ^ CP2.

For the approximation, through dimension 3, to Λ, we take

hXl:S3XS4-> S2XS4.

As in Theorem 2, we must then replace / and h X 1 by close approxima-
tions which satisfy the transversality conditions of the theorem.

We then can see easily that W is a circle which actually lies in
S3 C S3 X S4. There is a single stage in our filtration W2 corresponding
to the points in S3 X S4 which project to a point in CP2. This is a three
manifold, in S3 X S4, containing the circle W9 which will depend, in
general, on the approximations chosen to insure transversality. One may
check that it is possible to arrange matters so that W2 is the Cartesian
product of Sx and a compact 2-manifold.

As for potential applications of these methods, we note that there are
many algebraic properties of the stable homotopy groups of spheres,
which have not been fully analyzed from the purely geometric point of
view of framed cobordism. Examples would be filtration in the Adams
and other spctral sequences, order, divisibility in the sense of composition
product or Toda brackets, etc. There is interest in a geometric understand-
ing of such properties. We signal two potential applications, which will
become concrete when the manifolds in Theorem 2 are precisely known.

(a) A Postnikov system determines a filtration of a space, in terms of
the fibres of the maps Pm\ X-> Xm (see [6]). This gives rise to a 1st
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quadrant spectral sequence. In case X is a sphere, in the stable range, the
homology sequence contains the stable homotopy of spheres on they-axis,
and converges to zero in positive dimensions. Every element in stable
homotopy of spheres, in positive dimension, has finite filtration, that is
vanishes in some E(r\ r < oo, and this filtration is related to the order of
the element (compare [6]). Theorem 2 above offers a geometric interpreta-
tion in that an element may only have high filtration if there is a long
chain of distinct manifolds Wn D D Wm from Theorem 2. If one knows
enough about these manifolds to assure that a chain of some length is not
possible, then one would have a purely geometric interpretation that the
filtration of an element is less than some number, as well as a purely
geometric interpretation of order.

(b) Suppose a — b'C, in the stable homotopy of spheres, with all
elements having positive dimension. Then the filtration of α, described
above, must be less than or equal to the minima of the filtrations of b and
c. (See [6].) Therefore, (a) above offers the potential of having a purely
geometric understanding of divisibility properties in the stable homotopy
of spheres.

In closing, I would like to signal some relevant problems:

(1) Can one specifically calculate these manifolds in explicit, interest-
ing cases?

(2) The methods of Theorem 1, for finding differentiable approxima-
tions, clearly apply to finite homotopy resolutions. Is there any meaningful
stabilization of these constructions, when the length of the resolution is
allowed to go to infinity?

(3) Can one relate the ^-invariants of the resolution to the manifolds
Wt and their normal framings?

(4) Can one bring the "induced maps" of [5] into this framework? If
the differentiable approximations are fixed in advance, there appear to be
difficulties.

(5) What is the effect of a non-trivial (framed) cobordism on these
manifolds?
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