
PACIFIC JOURNAL OF MATHEMATICS
Vol 114, No. 2,1984

ON THE #O-ORIENTABILITY

OF COMPLEX PROJECTIVE VARIETIES

JAMES M. STORMES

The essence of the Riemann-Roch theorem as generalized by P.
Baum, W. Fulton, and R. MacPherson is the construction of a natural
transformation

from the Grothendieck group KQ%X of coherent algebraic sheaves on a
complex quasi-projective variety X to the topological homology group
KQ°PX complementary to the obvious natural transformation

/v° V° Y —> V° Y

from the Grothendieck group K®XgX °f algebraic vector bundles on X to
the Atiyah-Hirzebruch group K^opX oi topological vector bundles. Under
this natural transformation, the class of the structure sheaf Θx corre-
sponds to a homology class {X}9

the AΓ-orientation of X. Thus all varieties, singular or non-singular, are
ΛΓ-oriented, in contrast to the well-known fact that a smooth manifold M
is Z^-orientable if and only if the Stiefel-Whitney class w3M = 0 e
773(M,Z).

In this paper we begin the study of the problem of constructing
iίΓO-orientations for singular spaces by asking for which varieties X of
complex dimension k the class {X} lies in the image of the homomor-
phism

where

ε.: KO.X-* K.X

is the natural transformation dual to the complexification homomorphism

εm: KO'X -* KmX

from the group of real vector bundles to the group of complex vector
bundles. If X is non-singular, then it is necessary and sufficient that the
Chern class cλX = 0.
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Our principal tool in studying this question is an exact sequence

.. ^κoX±κnx
n^κon_2x

n^κon_xx-* ..

dual to an exact sequence introduced by R. Bott [Bo] and presented in
detail by M. Karoubi [K]. Here n denotes an integer mod 8, which must be
replaced by its mod 2 residue in the expression Kn X.

A technical problem confronting the mathematician working in this
area has been the lack of a definition of the homology theories K. X and
KO. X as natural and elegant as Grothendieck's definition of the algebraic
theory KQ*X. Recently, P. Baum [BD] has introduced a geometric defini-
tion of K.X which seeks to remedy this problem. Indeed, the results
presented here were originally formulated and proven in the context of P.
Baum's definition [S].

We adopt here a more primitive approach, in the hope of being
briefer and more readily accessible. The notation of [BFM2] is adopted
and extended, and Alexander duality is adopted as the definition of K. X
and KO.X. The exact sequence above is then a special case of the Bott
exact sequence. We prove a result reinterpreting the natural transforma-
tion γ. which is significant both conceptually and computationally, as we
illustrate by application to examples.

For a complex quasi-projective variety X of complex dimension k, the
natural transformation γ. leads to a new topological invariant y2k-i{ X)
which generalizes the first Chern class of a non-singular variety. Those
varieties for which this invariant vanishes constitute a class of examples of
singular spaces which are ̂ Oorientable.

1. Λ>theory and AP-theory. Let X be a closed subspace of a locally
compact topological space 7, such that the pair (7 + , X+) of one-point
compactifications is a pair of compact polyhedra. In [BFM2], the relative
group KXY is defined as follows. Consider complexes

0 — > F — » . . . —» F —» F — > 0

of complex vector bundles on 7 which are exact off X KXY is the
quotient of the free abelian group on the isomorphism classes of such
complexes modulo the following relations:

(a) if E. = EίΘ £.", then [E.] = [Eί] + [£."];
(b) if E. is exact on 7, then [E.] = 0;
(c) if E. is a complex on Y X [0,1], and E.(t) denotes the restriction

of this complex to Y X {t} = 7, then [E.(0)] = [E.(ΐ)].
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If C is a closed subpolyhedron of Y\X, such that the inclusion is a
deformation retract, then ^ 7 is isomoφhic to K°(Y+/C). If/: 7' -> Y
is a continuous map, such that f~\X) c A7, then there is a functorial
homomoφhism

If C/ is an open neighborhood of X in 7, and /': £/ -» 7 is the inclusion,
then

i*:KxY^ KXU

is an isomoφhism. The tensor product of complexes induces the exterior
product

and the cup product

Let π: V -> 7 be a real vector bundle of fibre dimension n = 2k
which has a particular Spinc-structure. M. F. Atiyah, R. Bott, and A.
Shapiro [ABS] construct a Thorn class μc

v e ^ 7 F as follows. Let P -> 7
be a principal Spinc(π)-bundle, such that F « P X sPin

c(«)^ Let Mc be an
irreducible Z/2-graded module over the Clifford algebra Cn ® R C of the
quadratic form Q(xl9...9xn) = — Σ*;2 on R", such that the element
eλ — - en acts on Mc° as the complex scalar ik. Let £ ' = P Xspin^)^' f°Γ

/ = 0,1. Clifford multiplication is a bilinear map

The canonical section of π*V -> F thus determines a complex

0 -> 77*£° -* TΓ*^1 "^ 0

on F which is exact off the zero-section 7. The element of KγV corre-
sponding to this complex is — μc

v. (The negative sign must be introduced
to correct for the discrepancy between this complex, which has ascending
indices, and the complexes in the definition of KγV, which have descend-
ing indices. In the definition, the rightmost non-zero bundle in a complex
is regarded as being in the zeroth position.)

If 77: F -> 7 is a complex vector bundle of complex fibre dimension
k, then μc

v is also represented by the complex

0 -> τr*Λ°F -> π*tiV ->•••-* π*AkV -» 0
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determined by exterior multiplication with the canonical section of π*F
-> V. Dual to this complex is the complex

0 -> π*AkV* -»•••-> π*AxV* -» π*A°V* -» 0

which represents the Koszul-Thom class λ v e AΓrF. Thus for a complex
vector bundle,

where the bar denotes the automorphism of KγV induced by complex
conjugation. For a real vector bundle of fibre dimension n = 2k, given a
Spinc-structure, this equation may be taken as the definition of λv. The
Thorn isomorphism

φ:KxY-+KxV

is then defined by

φa = π*a w λ κ .

Graded relative groups are defined by

KχnY=Kx(Yx Rn)

for n > 0. The Thorn isomorphism corresponds to Bott periodicity

β-"~2: KX"Y -> Kχ"-2Y,

Thus K'XY may be regarded as a Z/2-graded theory.
If X is embedded as a closed subpolyhedron of Rrt, the Alexander

duality isomorphism

KxR
n = KnX

may be taken as the definition of Kn X for n > 0. The Thorn isomorphism
again corresponds to Bott periodicity

which, together with the fact that any two embeddings are isotopic if n is
sufficiently large, implies that KnX is independent of the particular
embedding. K.XΊs also regarded as a Z/2-graded theory.

If /: X -> X' is a closed embedding, then

corresponds to the homomorphism
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induced by the identity map on Rn. If /: X -> X' is a proper continuous
map, then /* may be described as follows. Let / = h° g, where g:
X ^ X' X D2k is a closed embedding and Λ: X' X D2 / c -» X' is the
projection. If Xr is embedded in R", then there is an isomoφhism

Composition with the Thom isomorphism yields an isomoφhism

whose inverse is h *. Then/^ = Λ * ° g*.
The definition of relative groups KOXY from complexes of real vector

bundles on Y is identical to that of KXY. For a real vector bundle π:
V -» Y of fibre dimension Λ = 8/:, the description of the Thom class
μv e ^OyF is similar to that of /x̂ , except that one uses an irreducible
Z/2-graded module M over CΛ, such that ex - en acts on M° as the
identity. The definition of the Thom isomoφhism and of graded groups
KOx

nY and KOnX is parallel to that of Kx

nY and KnX9 except that
Z/8-graded theories are obtained.

2. Orientations of manifolds. Let M be a Spinc-manifold, that is, a
smooth manifold whose tangent bundle TM -> Λf is given a particular
Spinc-structure, of dimension n. Let f: M -> Rn+2k be a smooth embed-
ding. Then the Spinc-structures on TM and Rn+2k together determine a
unique Spinc-structure on Nf9 the normal bundle of the embedding (see
Milnor [M]). Let U be a tubular neighborhood of M in Rn+2k, which we
identify with a neighborhood of the zero-section in Nf. The class in KnM
corresponding to the Thom class λN ^ KMNf under the isomoφhisms

is denoted by {M}c, and is called the X-orientation of the Spinc-manifold
M.

Similarly, if M is a Spin-manifold of dimension n, then, letting /:
M -» R"+8k, one obtains the #0-orientation {M}

There is an exact sequence

due to R. Bott [Bo]. The natural transformations which appear in this
sequence are described by M. Karoubi [K] as follows.

ε-":KOχ"Y ^ Kχ"Yχ
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is the homomoφhism induced by complexification of a real vector bun-
dle.

y'n+2: KχnY ^ KOχn+2Y

is the composite of the inverse of the complex periodicity isomoφhism
and the homomoφhism p induced by regarding a complex vector bundle
as a real vector bundle

Finally

is the homomoφhism defined by

σa = a X £

where £ e KO~t

ι (pt) = Z/2 is the generator.
If M is a smooth manifold of dimension n, embedded in R"+ 8\ then

the exact sequence above becomes the homology exact sequence

••• - > K O n M ^ K n M Ί } ^ 2 K O n _ 2 M " - ^ K O n _ x M - > •••

From the short exact sequence of groups [ABS]

1 -» Spin(w) -> Spinc(rt) ^ 1/(1) -* 1

it follows that
(a) if M is a Spin-manifold, then M can also be regarded as a

Spinc-manifold,
(c) if M is a Spinc-manifold> then M is given a complex line bundle

L -> M, and
(c) if M is a Spinc-manifold, then M admits a Spin-structure inducing

the given Spinc-structure if and only if the complex line bundle L «
M X C

PROPOSITION. IfM is a Spin-manifold, then εn{ M) = {M}c,

Proof. The construction of μc

N e KMN requires an irreducible Z/2-
graded module Mc over C%k X R C such that ex e8/- acts on Mc° as the
scalar i4k = 1. If M is the module required in the construction of μN, then



/ΓOORIENTABILITY OF COMPLEX PROJECTIVE VARIETIES 475

M C ~ M X R C It follows that ε°μN = μc

N e KMN. Complex conjugation
leaves invariant the image of ε, thus

Under the isomorphisms KOMN = KOnM and ^ J V = ϋ^M, this equa-
tion corresponds to εn{ M} = {M}c.

Let M be a Spinc-manifold, and let L -> M be the associated complex
line bundle. Let s: M -> L be a smooth section which is transverse to the
zero-section of L. Let Z = ^ ( O ) . Then Z is a smooth submanifold of M
of dimension n — 2. Let/: Z -» M be the inclusion.

PROPOSITION. If M is a Spinc-manifold, then Z is a Spin-manifold, and

Proof. Let e: M -> R"+8/:-2 be a smooth embedding. The differential
: ΓM -> 7X, together with the canonical decomposition TLX = TMX Θ

x for x e M, induces an isomoφhism

Thus there is an isomoφhism

Note that if K is the complex line bundle associated with the Spin'-struc-
ture onNe9 then K®CL ~ M X C, so that L ~ K.

Using the isomoφhism [ABS]

inc(π) = Spin(π)x z / 2 ί / ( l ) ,

we define a homomoφhism

A: Spinc(«) -> Spin(« + 2)

by

A(x,e'"') = x(cos//2 - eΛ + 1e/ I + 2sin

if ϊ : ί/(l) -* Spinc(2) is defined as in [ABS] by

\{eu) = (cosf/2 + e ^ s i n ί/2, e / / / 2)
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then the following diagram commutes

Spinc(t/) lά^d Spinc(rt) X

J,id X ϊ

«) X Spinc(2)

I
Spin(rt + 2) -> Spinc(« + 2)

It follows that the Spinc-structure on Ne induces a particular Spin-struc-
ture on Ne Θ L ~ JVe Θ K, and thus on JVeo/. Together with the standard
Spin-structure on R«+8/c-2

? this determines a Spin-structure on Z.
Let φ: V -> Fbe the exponential diffeomorphism of a neighborhood

F' of the zero-section in Λ̂  onto a tubular neighborhood V of Z in M.
There is a vector bundle map

Φ T Γ ^ F -> L |F

over φ, extending the map

over the zero-section, such that if

r: F -» T

is the canonical section, then the following diagram commutes

Φ

φ

Explicitly, if π(υ) = x, then

is defined by

Φv(λv) = λs(φv)

for λ e C, υ e V\ v Φ 0. Then

limΦλι;(ι;) = lim -z-s °φ(λv) = dsx(v)
Λ — ^ 0 Λ — * 0 »*

so that Φ extends to the required map over the zero section.



KOORIENTABILITY OF COMPLEX PROJECTIVE VARIETIES 477

More generally, let U and U' be tubular neighborhoods of M and Z,

respectively, in R" + 8 / c - 2

? such that V c U. Identifying U and U' with

neighborhoods of the zero sections in Ne and Neof ~ /*Λ ê Θ /*L, there is

a vector bundle map

π*Neof-»π*Ne(Bπ*L

over the inclusion U' Q U such that, if r': U' -» π*Neoj and r: U -* rn*Ne

are the canonical sections, then the following diagram commutes

τr*Λ^o/ -» π*Ne®ir*L

Regard t/ = U X {1} c U X [0,1], and extend the use of π to denote

the projection U X [0,1] ~> Λ/. Define a section

ί / x [ 0 , l ] -» π'Ne θ TΓ^L

by

(M, t) -* r(u) θ tπ*s(u).

This section, together with the Spin-structure on iVe θ L, determines, as in

the construction of the Thom class, a complex of real vector bundles

0 -> 77 *£° -> TΓ*^ 1 -» 0

on £/ X [0,1] which is exact off Z X [0,1] U M X {0}.

The restricted complex

0 ^77*£°(1) -* T Γ ^ ^ I ) ^ 0

over U corresponds under the excision isomorphisms

KOZU -> KOZU' <- KOzNeof

to the class -/x^ , and thus, under the isomorphism

tfozt/ <- ί:ozR"+ 8 / :"2 - κon_2z

to the class - {Z}.

The homomorphism A: Spin'(π) -» Spin(« + 2) defined earlier ex-

tends to a homomorphism of Clifford algebras
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determined by

If M is an irreducible Z/2-graded module over C8A;, then via this homo-
moφhism M can be regarded as a Z/2-graded module over C8^_2 ® R C .
A dimension count [ABS] shows that M is irreducible over Cu_2 ®RC.
Moreover, if ex e8A: acts on M° as the identity, then via this homomor-
phism ex e%k-i a c t s o n M° as multiplication by the scalar /, rather
than/ 4*" 1 = -i.

It follows that the restricted complex

0 -> 7Γ*£°(θ) -> 77*^(0) "> 0,

regarded as a complex of complex vector bundles, represents the image of
the class μc

N under the excision isomorphism

KmNe - KMU.

Disregarding the complex structure of this complex, it represents the
common image of μc

N and — λ^ = (— l)4kμc

Ne under the composition

Thus this complex corresponds to the image of - {M}c e KnM = Kn_2M
under the homomorphism

Pn_2:Kn_2M-+KOn_2M.

The identity map of U induces the homomorphism

id*: KOZU -> KOMU

which corresponds to the homomorphism

The homotopy of the complexes above shows that they represent the same

class in KOMU. It follows that

3 Application to complex projective varieties. Let X be a complex
quasi-projective variety of complex dimension k. Denote the image of the
structure sheaf Θx under the natural transformation
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by {X}c. If X is non-singular, then X is a Sρinc-manifold, and it follows
from [ABS] and [BFM2] that this class is identical to the class [X}c

constructed in Section 2. The non-singular variety X admits J^Oorienta-
tions compatible with its ^-orientation [K}c if and only if cλX = 0 e
H2(X;Z), which is equivalent to the condition that Ί2k-i{χY = 0 e

KO2k_2X
If X is singular, then the above results may be used to calculate

γ2£_2{Jίf}cby finding a sum of structure sheaves of non-singular varieties
to which the structure sheaf is equivalent in the Grothendieck group.

A simple example is provided by the nodal cubic curve X. To
compute γo{ X}c e KO0X = KO0(pt) = Z, we observe that if/: Px -> Xis
a resolution of the singularity, and i: pt -> X is the inclusion of the
singular point, then

and

When computing γo{ ^} c , we must exercise care to find the image of each
component of {X}c in KO0X. Thus the above decomposition is not
suitable, but can be replaced by

where g: Px -> X collapses Px onto the singular point.We now apply γ0 to
find that

= 2 - 2 = 0 e KO0X.

Thus the nodal cubic admits ΛΓO-orientations compatible with its K-oήen-
tation.

A more subtle example is provided by the following example [BFMJ.
Let C be a non-singular projective curve of genus g > 2, and let d be an
integer between g and 2g. Let L -> C be a complex line bundle, such that
cxL = -d. Let Xbe the variety obtained from the projective completion
P = P(L Θ 1) by blowing the zero-section down to a singular point. Let
f: P -* X be the blow-down and /: pt -> X the inclusion of the singular
point. Then

where n = dimc H°(C; L ).
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An examination of the Atiyah-Hirzebruch spectral sequence shows
that

K02X = Z θ Z/2.

Thus γ2{ X}c consists of an integer and an integer mod2. The integer part
is equal to the integer

cλX(Ξ H2(X:Z) = Z

where cλX here denotes the component of codimension 2 of the total
Chern class of X defined by R. MacPherson [M]. A calculation shows that

cxX=d+2- 2g.

The summand Z/2 of K02X is merely the contribution of KO2(pt)9

thus if h: X -> pt, then the mod2 component of γ2{ X}c is Λ*γ2{ X}c =
y2h*{X}c. We see that

h*{X}c = Λ*/*{P}C + A2{pt}c = 1 - g + ii e tfo(pt) = Z,

and that γ2: i^0(ρt) -> #02(pt) = Z/2 is reduction mod 2; thus the mod 2
component of γ2{ X}c is the mod 2 residue of 1 - g + w.

In particular, if L is the dual of the canonical bundle K, then
d = 2g — 2 and w = g, thus c xZ = 0 but γ2{ Z } c is equal to the non-zero
element in the Z/2 summand.
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