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ON THE KO-ORIENTABILITY
OF COMPLEX PROJECTIVE VARIETIES

JAMES M. STORMES

The essence of the Riemann-Roch theorem as generalized by P.
Baum, W. Fulton, and R. MacPherson is the construction of a natural
transformation

ap: KX - KiPX

from the Grothendieck group KX of coherent algebraic sheaves on a
complex quasi-projective variety X to the topological homology group
K P X complementary to the obvious natural transformation

a®: Kg X = KQ X

top

from the Grothendieck group K ‘,ﬁgX of algebraic vector bundles on X to
the Atiyah-Hirzebruch group K ng of topological vector bundles. Under
this natural transformation, the class of the structure sheaf O, corre-
sponds to a homology class { X'},

ao[Ox] = { X},

the K-orientation of X. Thus all varieties, singular or non-singular, are
K-oriented, in contrast to the well-known fact that a smooth manifold M
is K-orientable if and only if the Stiefel-Whitney class w;M = 0 €
H*(M,Z).

In this paper we begin the study of the problem of constructing
KO-orientations for singular spaces by asking for which varieties X of
complex dimension k the class { X'} lies in the image of the homomor-
phism

&, KO, X = Ky X,
where

e. KO.X > K. X

is the natural transformation dual to the complexification homomorphism
e KO'X—-> KX

from the group of real vector bundles to the group of complex vector

bundles. If X is non-singular, then it is necessary and sufficient that the
Chern class ¢; X = 0.
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Our principal tool in studying this question is an exact sequence
&y Yn-2 Op—1
- > KO,X->K,X— KO, ,X—> KO, [ X— ---

dual to an exact sequence introduced by R. Bott [Bo] and presented in
detail by M. Karoubi [K]. Here n denotes an integer mod 8, which must be
replaced by its mod 2 residue in the expression K, X.

A technical problem confronting the mathematician working in this
area has been the lack of a definition of the homology theories K. X and
KO. X as natural and elegant as Grothendieck’s definition of the algebraic
theory KZ'8X. Recently, P. Baum [BD] has introduced a geometric defini-
tion of K.X which seeks to remedy this problem. Indeed, the results
presented here were originally formulated and proven in the context of P.
Baum’s definition [S].

We adopt here a more primitive approach, in the hope of being
briefer and more readily accessible. The notation of [BFM,] is adopted
and extended, and Alexander duality is adopted as the definition of K. X
and KO. X. The exact sequence above is then a special case of the Bott
exact sequence. We prove a result reinterpreting the natural transforma-
tion y. which is significant both conceptually and computationally, as we
illustrate by application to examples.

For a complex quasi-projective variety X of complex dimension &, the
natural transformation y. leads to a new topological invariant v,, ,{ X'}
which generalizes the first Chern class of a non-singular variety. Those
varieties for which this invariant vanishes constitute a class of examples of
singular spaces which are KQ-orientable.

1. K-theory and KO-theory. Let X be a closed subspace of a locally
compact topological space Y, such that the pair (Y*, X™) of one-point
compactifications is a pair of compact polyhedra. In [BFM,], the relative
group K Y is defined as follows. Consider complexes

O__>En—)’°' —9E1_)E0__)O

of complex vector bundles on Y which are exact off X. K,Y is the
quotient of the free abelian group on the isomorphism classes of such
complexes modulo the following relations:

(aif E.=E!® E!”, then[E.]=[E!]]+[E"];

(b)if E.is exacton Y, then[E.] = 0;

(c) if E. is a complex on Y X [0,1], and E.(¢) denotes the restriction
of this complexto Y X {¢} = Y, then [E.(0)] = [E.(1)].
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If C is a closed subpolyhedron of Y\ X, such that the inclusion is a
deformation retract, then K, Y is isomorphic to K°(Y*/C). If f: Y' > Y
is a continuous map, such that f~!}( X) C X’, then there is a functorial
homomorphism

5 KyY = K, Y.

If U is an open neighborhood of X in Y, and i: U — Y is the inclusion,
then

i*: K, Y » KU

is an isomorphism. The tensor product of complexes induces the exterior
product

X: Ky ¥y @7 Ky Y, > Ky 3,1 X T,

and the cup product
oo KX1Y®ZKX2YQ le"\XZY'

Let #: V- Y be a real vector bundle of fibre dimension n = 2k
which has a particular Spin‘-structure. M. F. Atiyah, R. Bott, and A.
Shapiro [ABS] construct a Thom class uj, € K,V as follows. Let P > Y
be a principal Spin‘(n)-bundle, such that V' = P Xg., R". Let M, be an
irreducible Z /2-graded module over the Clifford algebra C, ® g C of the
quadratic form Q(xy,...,x,) = —Xx? on R”, such that the element
e, - e, acts on M, as the complex scalar i*. Let E' = P X g,y M’ for
i = 0, 1. Clifford multiplication is a bilinear map

VegE®—> E.
The canonical section of 7*V — V thus determines a complex
0 - 7*E° > 7*E' > 0

on V which is exact off the zero-section Y. The element of K,V corre-
sponding to this complex is —uj,. (The negative sign must be introduced
to correct for the discrepancy between this complex, which has ascending
indices, and the complexes in the definition of KV, which have descend-
ing indices. In the definition, the rightmost non-zero bundle in a complex
is regarded as being in the zeroth position.)

If #: V — Y is a complex vector bundle of complex fibre dimension
k, then pS$, is also represented by the complex

0 - 7*A°V > 7*ANV - - > a*AV >0
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determined by exterior multiplication with the canonical section of 7*V
— V. Dual to this complex is the complex

0= 7*ATV* > - - g*AIV* - 7*A°P* > 0

which represents the Koszul-Thom class A, € K V. Thus for a complex
vector bundle,

Ay = (-1) kpfll/’
where the bar denotes the automorphism of K,V induced by complex
conjugation. For a real vector bundle of fibre dimension n = 2k, given a

Spin‘-structure, this equation may be taken as the definition of A,. The
Thom isomorphism

¢: K, Y- K,V
is then defined by
oa=m7*a o \,.
Graded relative groups are defined by
Ky"Y = K,(Y XR")
for n > 0. The Thom isomorphism corresponds to Bott periodicity
B " K'Y - Ky Y,

Thus K ;Y may be regarded as a Z/2-graded theory.
If X is embedded as a closed subpolyhedron of R”, the Alexander
duality isomorphism
K,R"=K, X
may be taken as the definition of K, X for n > 0. The Thom isomorphism
again corresponds to Bott periodicity
Bn+2: KnX - Kn+2X

which, together with the fact that any two embeddings are isotopic if # is
sufficiently large, implies that K, X is independent of the particular
embedding. K. X is also regarded as a Z /2-graded theory.

If f: X — X’ is a closed embedding, then

f«: K, X > K, X
corresponds to the homomorphism
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induced by the identity map on R”. If f: X — X’ is a proper continuous
map, then f, may be described as follows. Let f= hog, where g:
X > X’ X D** is a closed embedding and h: X’ X D** - X’ is the
projection. If X” is embedded in R”, then there is an isomorphism

i*: KXerH—Zk N KX’X Dszn+2k.
Composition with the Thom isomorphism yields an isomorphism
i* o ¢: leRn = lexDZkRn+2k

whose inverseis h,. Then f4 = hyo g4.

The definition of relative groups KO, Y from complexes of real vector
bundles on Y is identical to that of K,Y. For a real vector bundle =:
V' — Y of fibre dimension n = 8k, the description of the Thom class
p, € KOyV 1s similar to that of uj, except that one uses an irreducible
Z/2-graded module M over C,, such that e; --- e, acts on M° as the
identity. The definition of the Thom isomorphism and of graded groups
KOx"Y and KO, X is parallel to that of K"Y and K, X, except that
Z /8-graded theories are obtained.

2. Orientations of manifolds. Let M be a Spin‘manifold, that is, a
smooth manifold whose tangent bundle 7M — M is given a particular
Spin‘-structure, of dimension n. Let f: M — R"*?* be a smooth embed-
ding. Then the Spin‘-structures on TM and R"*?* together determine a
unique Spin‘“-structure on N,, the normal bundle of the embedding (see
Milnor [M]). Let U be a tubular neighborhood of M in R"*2* which we
identify with a neighborhood of the zero-section in N,. The class in K, M
corresponding to the Thom class Ay € K, N, under the isomorphisms

KyN, = KU < K, R = K. M

is denoted by { M }¢, and is called the K-orientation of the Spin‘-manifold
M.

Similarly, if M is a Spin-manifold of dimension n, then, letting f:
M — R""®  one obtains the KO-orientation { M } € KO, M.

There is an exact sequence

- = KOy"Y - K3"Y - KOy"**Y - KOx""'Y — - --

due to R. Bott [Bo]. The natural transformations which appear in this
sequence are described by M. Karoubi [K] as follows.

e ": KO3"Y — K3"Y
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is the homomorphism induced by complexification of a real vector bun-
dle.

.Y—n+2:K)—(ny__) KO;'H'ZY

is the composite of the inverse of the complex periodicity isomorphism
and the homomorphism p induced by regarding a complex vector bundle
as a real vector bundle

Ky & kv & Koy,

Finally
o "t KOy"?Y - KOx"t'Y
is the homomorphism defined by
oa=aX¢

where ¢ € KOP‘tl(pt) = Z/2 is the generator.
If M is a smooth manifold of dimension n, embedded in R"*® then
the exact sequence above becomes the homology exact sequence

Yn-2

> KOM 3 K,M"5' KO, ;M > KO, \M - ---
From the short exact sequence of groups [ABS]
d
1 — Spin(n) — Spin‘(n) - U(1) - 1

it follows that

(a) if M 1s a Spin-manifold, then M can also be regarded as a
Spin‘-manifold,

(c) if M is a Spin‘-manifold, then M is given a complex line bundle
L > M, and

(c) if M is a Spin“-manifold, then M admits a Spin-structure inducing
the given Spin‘-structure if and only if the complex line bundle L =
M x C.

PROPOSITION. If M is a Spin-manifold, then e, { M} = { M }°.
Proof. The construction of p$, € K,,N requires an irreducible Z/2-

graded module M, over Cy, X g C such that e; - - - e, acts on M? as the
scalar i* = 1. If M is the module required in the construction of p, then
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M, = M Xz C. It follows that e’y = p$, € K,,N. Complex conjugation
leaves invariant the image of ¢, thus

¢ ke
py = py = ("1)4 By = Ay

Under the isomorphisms KON = KO,M and K, N = K, M, this equa-
tion corresponds to e, { M} = { M }°.

Let M be a Spin“-manifold, and let L — M be the associated complex
line bundle. Let s: M — L be a smooth section which is transverse to the
zero-section of L. Let Z = s~!(0). Then Z is a smooth submanifold of M
of dimension n — 2. Let f: Z — M be the inclusion.

PROPOSITION. If M is a Spin‘-manifold, then Z is a Spin-manifold, and
Yn—Z{M}C =f*{Z} € K0n~2M'
Proof. Let e: M — R"*3%~2 be a smooth embedding. The differential

ds: TM — TL, together with the canonical decomposition 7L, = TM, &
L, for x € M, induces an isomorphism

ds: N, = f*L.
Thus there is an isomorphism
N,.;=f*N,® f*L.

Note that if K is the complex line bundle associated with the Spin“-struc-
ture on N,, then K ® L = M X C,so that L = K.
Using the isomorphism [ABS]

Spin‘(n) = Spin(n) X, U(1),
we define a homomorphism
h: Spin‘(n) — Spin(n + 2)
by
h(x,e") = x(cost/2 — e, e,,,51n1/2).
if 1: U(1) — Spin‘(2) is defined as in [ABS] by

1(e") = (cost/2 + eje,sin /2, e"/?)



476 JAMES M. STORMES

then the following diagram commutes

spin(U)  BY spin‘(n) x U(1)

lidx1i
Lh Spin‘(n) X Spin‘(2)
!
Spin(n +2) - Spin‘(n + 2)

It follows that the Spin‘-structure on N, induces a particular Spin-struc-
tureon N, ® L = N, ® K, and thus on N, - Together with the standard
Spin-structure on R"*# 2 this determines a Spin-structure on Z.

Let ¢: V7 — V be the exponential diffeomorphism of a neighborhood
V" of the zero-section in N, onto a tubular neighborhood V of Z in M.
There is a vector bundle map

O: TNV - LIV
over ¢, extending the map
ds: N; = f*L
over the zero-section, such that if
ri V- a*NY
is the canonical section, then the following diagram commutes
TN S LW
Tr Ts
v 5
Explicitly, if #(v) = x, then
@,: (Ny) = Ly,
is defined by
@, (Av) = As(ov)
forAe C,ve V', v+0.Then
lim ®,,(0) = fim 350 6(A0) = b, (v)

so that @ extends to the required map over the zero section.
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More generally, let U and U’ be tubular neighborhoods of M and Z,
respectively, in R"** 2 such that U’ € U. Identifying U and U’ with
neighborhoods of the zero sections in N, and N, ., = [*N, & f*L, there is
a vector bundle map

T*N,,; = 7*N, @ 7*L
over the inclusion U’ € U such that, if ¥': U’ — W*Neofand r: U— 7*N,
are the canonical sections, then the following diagram commutes

T*N,oy — 7*N,® 7*L
T Trea*s
U - U.

Regard U = U X {1} € U X {0, 1], and extend the use of 7 to denote
the projection U X [0,1] — M. Define a section

U x[0,1] > a'N, & 7*L
by
(u, 1) = r(u) @ tats(u).

This section, together with the Spin-structure on N, ® L, determines, as in
the construction of the Thom class, a complex of real vector bundles

0—-7*E® > 7*E' -0

on U X [0, 1] which is exact off Z X [0,1] U M X {0}.
The restricted complex

0 - 7*E°(1) > 7*EY(1) = 0

over U corresponds under the excision isomorphisms

KO,U = KO,U < KO,N, .,

to the class —p Mooyt and thus, under the isomorphism
KO,U < KO,R"*% "2 = KO, _,Z

to the class —{ Z}.
The homomorphism 4: Spin‘(n) — Spin(n + 2) defined earlier ex-
tends to a homomorphism of Clifford algebras

h:C,®gC—- C,,,
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determined by
h(e; ® 1) =,
h(ej ®i)= T €€ 416n+2-
If M is an irreducible Z /2-graded module over Cy,, then via this homo-

morphism M can be regarded as a Z/2-graded module over Cy,_, ® g C.
A dimension count [ABS] shows that M is irreducible over Gy, , ® 3 C.

Moreover, if e, - - - e, acts on M° as the identity, then via this homomor-
1 8k y

phism e; - - eg_, acts on M° as multiplication by the scalar i, rather

than i*~! = —i.

It follows that the restricted complex
0 - 7*E°(0) —» 7*E*(0) — 0,

regarded as a complex of complex vector bundles, represents the image of
the class p3, under the excision isomorphism

K,N, - K,U.
Disregarding the complex structure of this complex, it represents the
common image of py and —Ay = (— 1)4"ﬁﬁve under the composition

KN, » K,,U> KO,U.

Thus this complex corresponds to the imageof —{ M} € K, M =K, M
under the homomorphism
Pn—2: KoM = KO, ) M.
The identity map of U induces the homomorphism
id*: KO, U - KO, U
which corresponds to the homomorphism
f+:KO,_,Z - KO,_,M.

The homotopy of the complexes above shows that they represent the same
class in KO,,U. It follows that

YoM} =f+{Z} € KO, M.

3. Application to complex projective varieties. Let X be a complex
quasi-projective variety of complex dimension k. Denote the image of the
structure sheaf @, under the natural transformation

ay: K38X — Ko X
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by { X}¢. If X is non-singular, then X is a Spin‘-manifold, and it follows
from [ABS] and [BFM,] that this class is identical to the class { X}
constructed in Section 2. The non-singular variety X admits KO-orienta-
tions compatible with its K-orientation { K} if and only if ¢, X =0 €
H?*(X;Z), which is equivalent to the condition that v,, ,{ X} =0 €
KO,,_,X.

If X is singular, then the above results may be used to calculate
Yor—o{ X }¢ by finding a sum of structure sheaves of non-singular varieties
to which the structure sheaf is equivalent in the Grothendieck group.

A simple example is provided by the nodal cubic curve X. To
compute yo{ X} € KO, X = KO,(pt) = Z, we observe that if f: P, > X'is
a resolution of the singularity, and i: pt = X is the inclusion of the
singular point, then

[0x] = 1[G, — [ Oy]
and

(X} =f{P} —ix{pt}".

When computing y,{ X }¢, we must exercise care to find the image of each
component of { X} in KO, X. Thus the above decomposition is not
suitable, but can be replaced by

{X}c=f*{P1}c - g*{Pl}C

where g: P, = X collapses P, onto the singular point.We now apply v, to
find that

'Yo{X}c =f*Y0{P1}C - g*YO{Pl}C
=2-2=0¢€ KO,X.

Thus the nodal cubic admits KO-orientations compatible with its K-orien-
tation.

A more subtle example is provided by the following example [BFM, .
Let C be a non-singular projective curve of genus g > 2, and let d be an
integer between g and 2g. Let L — C be a complex line bundle, such that
¢;L = —d. Let X be the variety obtained from the projective completion
P = P(L @ 1) by blowing the zero-section down to a singular point. Let
f: P — X be the blow-down and i: pt = X the inclusion of the singular
point. Then

(X} =f+{P} + nis{pt}®
where n = dim H°(C; L*).
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An examination of the Atiyah-Hirzebruch spectral sequence shows
that

KO,X=78 Z/2.

Thus Y,{ X }¢ consists of an integer and an integer mod 2. The integer part
is equal to the integer

aXEH,(X:Z)=1

where ¢, X here denotes the component of codimension 2 of the total
Chern class of X defined by R. MacPherson [M]. A calculation shows that

aX=d+2-12g.

The summand Z/2 of KO, X is merely the contribution of KO,(pt),
thus if #: X — pt, then the mod 2 component of y,{ X }“is h,v,{ X} =
Y, h{ X }¢. We see that

Rl X} =hufs{P} +n{pt}*=1-g+neK)pt) =Z,

and that v,: K,(pt) = KO,(pt) = Z/2 is reduction mod 2; thus the mod 2
component of y,{ X }°is the mod 2 residueof 1 — g + n.

In particular, if L is the dual of the canonical bundle K, then
d=2g—2and n = g, thus c;. X = 0 but y,{ X} is equal to the non-zero
element in the Z /2 summand.
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