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CLASS NUMBERS OF IMAGINARY CYCLIC

QUARTIC FIELDS AND RELATED

QUATERNARY SYSTEMS

RICHARD H. HUDSON

A proof is given of an explicit Dirichlet-type class number formula
for imaginary cyclic quartic fields obtained in 1980 by Hudson and
Williams and, in a slightly different form, by Setzer. The Hudson-
Williams formula is used to study the solvability of the quaternary
quadratic form

I6pk = x2 4- 2qu2 + 2qυ2 + qw2,

xw = av2 — 2 buv — au2, (x, u, v9w, p) = I

for exponents k > 1. Included is a table from which every class number
h{k) of the quartic field k = Q(i]j2q + 2ajq ), q = 5 (mod 8) a prime,
may be determined for q < 10000. Finally, a quartic analog of the
well-known result that the number of quadratic residues in (0, p/2)
exceeds the number in (p/2, p) if p = 3 (mod 4) is proven using one of
Dirichlet's less well-known class number formulas.

1. Introduction. Explicit Dirichlet-type class number formulas for
imaginary cyclic quartic fields were obtained in 1980 by Hudson and
Williams and independently by Setzer. In this paper we sketch in §2 the
proof of the Hudson-Williams formula and show that these two formulas
are easy consequences of one another. However, the Hudson-Williams
formulation is particularly useful for studying the solvability of the
quaternary quadratic form

, I6pk = x2 + 2qu2 + 2qv2 + qw2,

xw = av2 — Ibuv — au2, (x, u, υ, w, p) = 1,

for k > 1. We show in §§3-5 that solvability of this form depends heavily
on the relative class number Λ* = h(k)/h(Q({q)) of the imaginary cyclic
quartic field

(1.2) K = Q(ψq + 2afi) = Q(ψq - 2a{q

where q = 5 (mod8) = a2 + b2 (a odd, b > 0) will denote a prime > 5
throughout and h(Q({q)) the class number of the unique quadratic
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Recall the well-known result that the number of quadratic residues in
the interval (0, p/2) exceeds the number in the interval (p/29 p) if p = 3
(mod 4). Using a class number formula of Dirichlet we prove an analo-
gous result for quartic residues in §6 for primes q = 5 (mod 8).

Finally, in §7, we enclose a table of values of h* for every q < 10000.
These were computed on two different home computers and cross-checked
for accuracy.

2. The Hudson-Williams formula. Let Nθ9 Nl9 N29 N3 denote the

number of quartic residues in the intervals (0, /?/4), (p/49 p/2)9

(p/293/7/4), (3/7/4, /?), respectively. Bennett Setzer [16] proved that

(2.1) A* = h{k)/h(Q({q)) = \({N3 - JV0)
2 +(N2 - N,)2).

Let χx denote the nonprincipal character (mod q) of order 4 such that
χx(2) = + z and let cl9 c29 c3 denote the cosets which may be formed with
respect to the subgroup of fourth powers (mod q) which we denote by c0.
Define the coset sums S09 Sl9 S29 S3 by

(2.2) s7 = s y ( χ i ) = l £ , j = 0,1,2,3.

Hudson and Williams [11] proved that

(2.3) h*=

The formulation (2.3), announced by Hudson at the A.M.S. meeting in
Ann Arbor in 1980, is more convenient to use than (2.1) in investigating
solutions of the quaternary quadratic form

I6pk = x2 + 2qu2 + 2qv2 + qw2,

xw = av2 — 2buυ — au2, (x, w, υ9 w, p) = 1.

The form (2.4) has been studied by, among others, Dickson [6], Lehmer
[12], Whiteman [17], Muskat and Zee [13], and Hudson, Williams, and
Buell [10].

Throughout the paper we let

(2.5) f=mnx{\S0-S3l\Sι-S2\).

Hudson and Williams [10, §4] proved that (2.4) is always solvable when
k = / for primes p = 1 (mod q). Although authors to-date have dealt
exclusively with primes p = 1 (mod q), Hudson and Buell [4] noticed that
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this restriction is artificial, as existence (or non-existence) of solutions of
(2.4) depends only on the condition that/? = qf + r, where r is any quartic
residue of q. It would be highly desirable to have a proof analogous to
that in §4 of [10] when (r/q)4 = -f 1, rΦ\ (see remark following
Theorem 4.1).

We now sketch the proof of (2.3). Since the degree of K over the
rational field Q is 4, K is an Abelian extension of Q. Hence the class
number h(K) is given by (see, e.g. [14, p. 372]),

Appealing to Edgar and Peterson [8] it is easy to see that all the units
of K are given by ±εk (k = 0,1,...) where ε is the fundamental unit
(> 1) of Q({q) and, consequently, to deduce that w(K) = 2 (as q > 5)

Appealing to the work of Adrian Albert [1] we obtain that d(K) = q3

(see, in particular, equations 9, 34-37 and Theorem 10 of [1]).
Let ζq = e2ini/q. It is not difficult to show (see Hasse [9]) that the

nonprincipal characters χ (mod q) which are trivial on the subgroup c0

(the fourth powers (mod q)) are precisely χλ and χ3, the two nonprincipal
characters (mod q) of order 4, and the Legendre symbol (n/q). For
convenience we distinguish χx from χ 3 by choosing χx(2) = /, χ3(2) = -i
so that 2 belongs to cx throughout the paper.

Let χ r be the primitive character induced by χ and note that χ' = χ
since q is prime. Hence

,X') = L(l,Xι)L(l,χ2)L(l,χ3).
X

Appealing to Berndt [2, Th. 3.2] we obtain (as χλ is an odd character)
that

Σ xi(Ό Σ xM
/-» π\ T (A \ T (A \ 2 0<n<q/2 0<n<q/2

(2.7) L(l,χ 1)L(l,χ 3) = τr2 ] —^7—--—-y
-G(χ1)G(χ3)(χ1(2) - 2)(χ3(2) - 2)

where

G(X) = Σ
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Since G(χ 3) = — G(χ!) we have — G!(x1)G;(x3) = q and, moreover,
(Xi(2) - 2)(χ3(2) - 2) = 5 so (2.7) becomes

(2.8) L ( l , χ i ) L ( l , χ 3 ) = ^ Σ Xi(π) Σ X 3(Ό
J ί * 0<n<^/2 0<n<q/2

From Dirichlet's class number formula [7] we have

(2.9)

and using an easy generalization of an identity of Cauchy [5] given in [11]
we obtain

Σ X(n) = (2 + χ(2))((S2 - So) +(S3 - Sji).
0<n<q/2

It now follows at once from (2.1)-(2.4) that

proving (2.3).

REMARK. The above proof is given here both for completeness and in
the hope that this proof will be helpful to a future author in deriving an
analogous formula for real cyclic quartic fields.

3. Solutions of (1.1) when h* is a perfect square. As mentioned in
the introduction, the author and Kenneth Williams opted not to publish
the class number formula (2.3) after jointly deriving the following for-
mulas relating the coset sums Sj to the numbers of quartic residues Ni9

i = 0,1,2,3, in subintervals of/?. Such formulas are easily derivable in the
quadratic and quartic cases and may well have higher power ana-
logues.

THEOREM 3.1. For Sj defined as in (2.2), j = 0,1,2,3, we have the
following formulas.

-I / -I O "J

0 = = ~^ I ~λ ^F V 0 3 / ^

c _ _L i i _ —( AT" _ λM 4- — (AT _ Λ M |

( 3 J > * - I ' - ' - J
2 \ 4 ^ v o 3 / c v i τ i i τ :

I_ +. J l ( KΓ _ AT \ — Z - ( AT _ Λ / - \ |



CLASS NUMBERS OF QUARTIC FIELDS 133

Proof. Since (3.1) may be reformulated as

- i ( Λ i - N2) = S0-

JQ(N0 - N3) + ^(N, - N2) = S2 -

(N0 - N3) + A(Λί - N2) - S, -

- ^(N, - N2) = S3 -

we have, after subtracting the second equation from the first and the
fourth from the third above, and squaring, that

^ ( i V 0 - JV3)
2 + ^(N, - N2f = (So - S2)

2

and

^ 2 J L ί - N2f = (SιNo Λ̂ 3) +

Upon adding we obtain

| ( K - N3)
2 +(N1 - N2f) - | ( ( 5 0 - S2f +(St - S,)2).

These are equal by the formula of Setzer (2.1) and the formula of
Hudson-Williams (2.3), completing the proof of Theorem 3.1.

Solutions to the Diophantine system (1.1) fall into two distinct cases
(Cases A and B in [10]). Throughout this section we assume we are in the
former case so that

(3.2) / H S 0 - S 2 | = |Si-S2|.
It follows from (2.3) that Λ* is a perfect square. The converse is not true as
evidenced by the data (see Tables in §7) for q = 181 (SQ = 26, Sx = 22,
S2 = 19, S3 = 23; h* = 25). We therefore begin by noting a simple
condition that (3.2) holds for all q when h* is a perfect square.

LEMMA 3.1. Let h* be a perfect square. Then f = \S0 - S2\ = \Sλ - 5 3 |

for all q provided h* has no prime factor = 1 (mod 4).

Proof. In view of (2.3) it is an immediate consequence of elementary
number theory that 5Λ* can be expressed as the sum of two squares in
exactly one way since Λ* has no prime factor of form 4n + 1 by assump-
tion. Thus
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We note in passing that if 5A* contains S more prime factors of form
An + 1 than of form 4n + 3 so that 5Λ* can be expressed as the sum of
two squares in S ways, then there generally exist q for which each of the S
possibilities occurs. For example, for 5/z* = 5 289 = 5 17 17 = 222 +
312 = 342 + 172 = 382 + I 2 , we have

q \N0 - N3\ \Nλ - N2\

2797 22 31
3581 34 17
9293 38 1

In order to understand how these S possibilities arise in terms of the
Ni9 i = 0,..., 3, we need to prove the following theorem.

THEOREM 3.2. Let q be a prime withf = \S0 - S2\ = \Sλ - S3\. Then we

have

h*=\N3-NQ\=f, \Nλ-N2\ = 2f,

or

Λ* = | ^ i - ^ 2 l = / , \NO-N3\ = 2f.

Proof. We need only prove, in view of Lemma 3.1, that

To do this we use (3.1) assuming, w.l.o.g., that (h*)1/2 = S2 - So. Then
from (3.1) we have

5(S2-S0) = 3NO + Nι-N2-3N3,

5(S3 - Sx) = -Λ ô + 3NX - 3N2 + 7V3,

so that 4N0 - 2Nλ + 2N2 - 4N3 = 0 since |5 2 - So\ = \S3 - Sλ\ by hy-
pothesis. Upon addition we obtain

-57VO + 5NX - 5N2 + 5N3 = 5(S3 - Sλ)9

so that

\(N3 - No) -(N2 - N1)\=\S3 - S λ \ = f.

If (Λ*)1/2 = So - S29 S3 - Sv or Sλ - S3 the proof is obtained simi-
larly and may be omitted.

It follows from (4.20) of [10] that (1.1) is solvable for the exponent
k = / in view of (3.2). It may also be solvable for k = 1 depending on how
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p splits as a prime ideal but this is rarely the case for small p unless, of
course, / = 1. Data suggests that Theorem 3.2 has the consequence that
(1.1) is solvable only for exponents k which are multiples of/with exactly
a solutions for each multiple af unless p is an "exceptional" prime such
that (1.1) is solvable when k = 1 even though / > 1. If q < 61 there are
exactly k solutions for each exponent k (see [10, §6], [4], [16]).

EXAMPLE. Let q = 149. Using the generating techniques developed in
[4] one can illustrate the above remarks for p = 1193 = 1 (mod q).
However one can find and check solutions if p is small without using vast
amounts of computer time, so we choose to illustrate the above (see
Remark in §4) for/? = 5 noting (5/101)4 = + 1 . Direct computation for
(#> P) = (101> 5) gives the following solutions (x, u, v, w) of (1.1):

Exponent Solution(s)

k Φ 3a, a < 11
k = 3
k = 6
k = 9

NONE
(19,1,2,1)
(53,3,20,29), (245,4,21,19)
(289,14,115,427), (3287,43,254,67),
(4032,120,168,124).

4. Solvability of (1.1) when h* = 5, 13, and 17. For q = 109 with
h* = 17 and/? = 3, 5, and 7, the system (1.1) is solvable for the seemingly
random sequence of exponents 5, 8, 10, 11, 13, 14, 15, In this section
we show exactly which exponent (1.1) is solvable for when it is not
solvable for k = 1, h* < 17 and \S0 - S3\ Φ \SX - S2\.

It is easy to see that h* = I (mod 4) since So + S2 = S1 + S3 =
(q - l)/4 = 1 (mod2) as q = 5 (mod 8) so that

It may be worth noting from Table 1, §7, the values of q < 10,000 for
which h* = 1, 5, 9,13, and 17:

h* = 1 :q = 5,13,29,37, 53,61,

h* = 5 : q = 101,157,173,197, 349, 373,

h* = 9 : q = 149, 293, 661,

h* = 13 : q = 269,317,397,509,557,1789,

h* = 17 : q = 109, 229, 227, 821, 853.
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Quartic class numbers grow rapidly so that it is unlikely that the
above list does not include all such q. Setzer [16] has proved that q < 61
when h* = 1 and it should be possible to modify his elegant argument to
obtain upper bounds for q for larger values of h*.

For q = 101, p = 607, we have / = 3 and (1.1) is solvable for k = 3
with (x, w, v,w) = (-8185, -966, 1971, -5013). One would anticipate
from §3 that (1.1) would be solvable for the exponent k = 6 and have two
solutions. However, determination of exponents for which (1.1) is solvable
is far more complicated when \S0 — S2\ Φ \SX — S3|. For reasons devel-
oped in §4 the "missing" second solution for k = 6 is, in fact, a solution
for the exponent k = 4, namely (x, w, υ, w) = (1017773, —11298, 72615,
21177). This is obtained by generating an imprimitive "solution" of (1.1)
for k = 6 (that is, one which fails to be a solution only since
(x, w, v, w, p) Φ 1) and then dividing each of x, w, υ9 and w by p. The
legitimacy of this procedure is rooted in Theorem 4.1 of [4] and the deep
properties (5.41)-(5.43) of [10] which show that

(4.1) p^'^\\(x2 - qw2), p^-s^\\(bxw + quo),

where *Sm is the smallest and Sn the next smallest coset sum.
We consider now the typical case of a pair (#, p) with Λ* > 1 and

Sn — Sm = 1 for which (1.1) is not solvable for any exponent k less than

(4.2) /

but is solvable for k = 2/ — 2. Given these conditions we now show that
(1.1) is solvable for every k > 3 if /z* = 5 and for the exponents 5, 8, 10,
11, and every exponent greater than 12 if A* = 13 or 17.

THEOREM 4.1. J/Λ* = 1 then (1.1) is solvable for every k > 1. Ifh* = 1
then (1.1) is solvable for every k > 1 iff it is solvable for k = 1. // /z* = 5
and (1.1) is not solvable for k < f then it is insolvable for at most 2 values of
k (k = 1,2). // Λ* = 13 or 17 and (1.1) is not solvable for k < f then it is
insolvable for at most 8 values ofk (k = 1,2,3,4,5,7,9, am/12).

Proof. The Theorem follows immediately from [10] and [4, Th. 4.1]
noting simply that solutions for k = m where m < f and for k = 2 m — 2
(which exist in view of [10]) yield solutions (see Example below) for
k = 2m, 3m — 4, 3m — 2, 3m, Am — 6, Am — 4, Am — 2, Am, etc., and
am — (2a — 2) < (α — \)m for α > 3 if h* = 5 as we then have / = 3
and for a > A if Λ* = 13 or 17 as then/ = 5.
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REMARK. Since the proof of solvability of (1.1) for k = /rests on the

assumption that p = 1 (mod q) the above argument is not valid for p =

qf + r, (r/q)4 = + 1 ; however, data proved by Duncan A. Buell favors

the truth of all theorems presented in §§3-5 for all such quartic residues r.

We now show how to use Theorem 4.1 to actually generate the

explicit solutions of (1.1) for (q, p) = (109,3).

EXAMPLE. Let q = 109 and let/? = 3. With the signs of a and b chosen

so that a = — 3, b = 10, it is easy to see that (x, w, υ9 w) = (10, — 2,2,4) is

a solution of (1.5) for k = 5. Computer data shows that there are no

solutions for k = 1,2,3,4,5,7,9 and 12. The solution for k = 8 arises as

follows.

Using Theorem 4.1 of [4], noting that Sn — Sm = 1 (see Table 2), so

that by (5.4.1)-(5.4.3) of [10] the imprimitive "solution" of (1.5) for

k = 10 has each of x, u,v,w divisible by p (and s o * 2 + 2q(u2 + v2) + #w2

divisible by p2) we obtain, applying (4.2) and (4.3) of [4], that

X2

Xo =
__ x - qw _ _ xw — αww 4- αί w + xv _

— xw + tow — buw — auw + αiw +xu + tow buw auw + aυw + xί; _Λ

n = = 20,
8 4/7

w8 = — \{bυ2 + 2αwί; — Z?w2) = —4.

It is easily checked that (x 8, w8, υs, w8) = ( — 112, —4, +20, —4) is indeed

a solution of (1.1) for k = 8. The solution for k = 10 is obtained from the

solutions for exponents 5 and 8 by applying (4.2) and (4.3) of [4] and

dividing by p as for k = 8. In this way the author has generated solutions

for exponents up to 17 and checked these against direct computer data.

5. Solvability of (1.1) in the general case. We begin this section by

proving the following theorem.

THEOREM 5.1. The system (1.1) is solvable for every sufficiently large

exponent kprovided h* = 1 or \SQ — S3\ Φ \Sτ — S2\ and the smallest expo-

nent m that (1.1) is solvable for is odd.

Proof. It follows from [10, §6] and Theorem 4.1 of [4] that (1.1) is

solvable for every k if Λ* = 1. If on the other hand |SΌ - S3\ Φ \Sλ — S 2 |

and m is the smallest exponent that (1.1) is solvable for, then by Theorem
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4.1 of [4], (1.1) is solvable for the exponents k = m, 2m - 2(Sn - SJ,
2m, 3m - 4(Sn - SJ, 3m - 2(Sn - S J , 3m, 4m - 6(Sn - SJ, etc.,
that is for each a > 1 for the exponents k = am - (2a - 2)(Sn - SJ,
am - (2a - 4)(Sn - SJ, am - (2a - 6)(Sn - SJ,. . . ,am -
2(Sn — SJ, am, where the products in parentheses are interpreted to be
zero if they are not positive. Each of these expressions is congruent to m
modulo 2(Sn — SJ. Since m is assumed odd and 2(Sn — SJ is even the
terms am run through a complete residue class modulo 2(Sn — SJ as a
runs through any 2(Sn — SJ consecutive integers. Thus an upper bound
(although not best possible) for the exponent b such that (1.1) is solvable
for all k > b is provided by determining the value of a such that

(5.1) am -(a - l)(2Sn - 2Sj < {a - 2(5, - Sj)(m).

Since (5.1) clearly holds for a > m + 1, (1.1) is solvable for every expo-
nent k > m2 - (Sn - SJ(m).

EXAMPLE. Let q = 181, p = 7, so that h* = 25. For p = 1 (mod q)
Hudson and Williams [10] have proved that (1.1) is solvable for/ = 7 (see
Table 2) and direct computation shows that this is the smallest exponent
for which (1.1) is solvable for the pair (181,7). Since Sm = 22 and Sn = 23,
Theorem 5.1 asserts that (1.1) is solvable for every k > 42. This is, we
note, not a best possible bound although we also note that there is an
exponent greater than (m — I)2 — 2(Sn — SJ(m — 1) = 30 for which a
solution to (1.1) cannot be generated via Theorem 4.1 of [4] so it may not
be possible to improve the bound greatly.

COROLLARY. If for a pair (q, p) the system (1.1) is solvable for
k < 2(Sn - SJ + 1 then it is solvable for every k > A(Sn - SJ + 2.

Proof. The theorem is immediate from the last sentence of the proof
of Theorem 5.1.

EXAMPLE. Let q = 181, p = 5. Computer data provided by Duncan
Buell shows that (1.1) is solvable for (q, p) = (181,5) when k = 3. (The
solution is (x, u, v, w) = (3,0,1,3)). Since Sn - Sm = 23 - 22 = 1, 3 =
2(Sn - SJ + 1, and it follows from the above corollary that (1.1) is
solvable for this pair for every k < 4(Sn — SJ + 2 = 6 (in contrast to the
previous example). In fact as it is easily seen to be solvable for k = 4 and
5 with (x, u, v, w) = (81,0,3,1) in the former case and (15,4,9,9) in the
latter so that k = 1 and 2 are the only exponents for which (1.5) is



CLASS NUMBERS OF QUARTIC FIELDS 139

insolvable. In general if (1.1) is solvable for k < / = max{|50 - S2\9

l^i ~~ ̂ 1} Λe system is solvable for exponents one would expect for a
smaller value of Λ* (in this case the exponents one would expect when
A* = 5: see §4).

REMARKS. The results in this section are unsatisfactory in two major
aspects. First, the results (4.20) and (5.41)-(5.43) of [10] have only been
proved for p = 1 (mod q) although they appear to hold for p = qf + r,
(r/q)4 = + 1 . The generating technique given in Theorem 4.1 of [4] does
not depend on the assumption that r = 1. It would be highly desirable to
have a proof in the general case (such a proof would require Brewer sums
and Stickelberger's theorem). Second, the bound in Theorem 5.1 is not
best possible and a more precise bound (holding for all q) would be
desirable.

6. A consequence of a class number formula of Dirichlet. I close
this paper with a theorem on the distribution of quartic residues in the
subintervals (0, #/4), (#/4, q/2), {q/2,3g/4), (3#/4, q) (see the last two
columns of Table 2).

For every prime q = 5 (mod 8) it is the case that

(6.1) #0 + ^3 ># i +^2

Proof. Let c09 cl9 c29 c3 be defined as before, let Rλ and Tx denote the
numbers of quadratic residues and quadratic nonresidues respectively in
(0, q/4), and let R2 and T2 denote the numbers of quadratic residues and
quadratic nonresidues respectively in (#/4, q/2). Then No + N3 is the
number of elements of c0 in (0, q/Λ) plus the number in (3#/4, q). But N3

is clearly also the number of elements of c2 in (0, q/4) as q = 5 (mod 8)
rather than = 1 (mod 8). Thus No + N3 = Rv Similarly Nx + N2 = R2.

As q = 1 (mod 4) we have trivially

0 < n < q/2

so that

Σ
q/A<n<q/2

in view of (1.2) of [2] (proved first by Dirichlet). It follows that R2< T2.
Assume now that No + N3 < Nx + N2, that is Rλ < R2. As T2 = Rλ we
must have Rλ < R2 < T2 = Rl9 an obvious contradiction. This completes
the proof.
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REMARK. Let u09 uv u2, u3 denote the numbers of integers in the
subintervals (09q/4)9 (q/49q/2)9 (q/293q/4)9 (3q/49q)9 respectively,
which are quadratic residues but not quartic residues (mod q). It is clear
from the proof of Theorem 6.1 that we have, in addition, that for all q = 5
(mod 8),

TABLE 1

Class Numbers ofh*(K) = h{K)/h(ζ)({q)) for 5 < q < 10,000

q

5

13

29

37

53

61

101

109

149

157

173

181

197

229

269

277

293

317

349

373

389

397

421

461

509

541

557

613

653

661

677

701

709

733

757

h*

1

1

1

1

1

1

5

17

9

5

5

25

5

17

13

17

9

13

5

5

41

13

25

25

13

61

13

25

25

9

25

25

61

45

125

q

773

797

821

829

853

877

941

997

1013

1021

1061

1069

1093

1109

1117

1181

1213

1229

1237

1277

1301

1373

1381

1429

1453

1493

1549

1597

1613

1621

1637

1669

1693

1709

1733

h*

29

37

17

145

17

37

41

25

25

41

73

29

185

29

85

37

157

25

125

89

25

45

153

41

221

37

25

89

45

233

85

85

53

25

81

q

1741

1789

1861

1877

1901

1933

1949

1973

1997

2029

2053

2069

2141

2213

2221

2237

2269

2293

2309

2333

2341

2357

2381

2389

2437

2477

2549

2557

2621

2677

2693

2741

2749

2789

2797

h*

65

13

53

53

53

29

125

45

85

169

41

89

61

85

101

97

125

29

109

85

73

121

37

25

53

85

149

205

145

361

89

85

85

181

289

q

2837

2861

2909

2917

2957

3037

3061

3109

3181

3221

3229

3253

3301

3373

3389

3413

3461

3469

3517

3533

3541

3557

3581

3613

3637

3677

3701

3709

3733

3797

3821

3853

3877

3917

3989

h*

157

261

145

61

85

61

65

117

185

85

641

229

49

241

125

153

157

229

73

117

65

121

289

125

405

121

145

145

365

125

365

245

73

73

113

q

4013

4021

4093

4133

4157

4229

4253

4261

4349

4357

4373

4397

4421

4493

4517

4549

4597

4621

4637

4733

4789

4813

4861

4877

4909

4933

4957

4973

5021

5077

5101

5189

5197

5237

5261

h*

221

361

325

205

173

101

181

53

325

85

185

261

85

197

145

65

89

145

145

225

81

145

801

193

325

389

245

137

365

125

565

261

117

125

185

q

5309

5333

5381

5413

5437

5477

5501

5557

5573

5581

5653

5669

5693

5701

5717

5741

5749

5813

5821

5861

5869

5981

6029

6037

6053

6101

6133

6173

6197

6221

6229

6269

6277

6301

6317

h*

257

149

181

481

369

197

149

481

269

53

153

85

229

505

261

233

1105

205

305

265

293

405

313

113

109

305

137

233

325

305

281

257

125

857

233

q

6373

6389

6397

6421

6469

6581

6637

6653

6661

6701

6709

6733

6781

6829

6869

6917

6949

6997

7013

7069

7109

7213

7229

7237

7253

7309

7333

7349

7477

7517

7541

7549

7573

7589

7621

7669

h*

181

197

137

613

677

225

305

229

1165

145

125

625

401

265

233

425

325

601

325

433

369

157

233

909

265

89

425

305

865

317

725

85

841

225

485

1585

q

7717

7741

7757

7789

7829

7853

7877

7901

7933

7949

8053

8069

8093

8101

8117

8221

8237

8269

8293

8317

8389

8429

8461

8501

8573

8581

8597

8629

8669

8677

8693

8741

8821

8837

8861

h*

673

421

401

289

405

173

145

149

245

125

541

157

425

369

221

365

173

481

225

173

313

397

365

241

261

85

521

477

293

657

401

585

449

205

169

q

8893

8933

8941

9013

9029

9109

9133

9157

9173

9181

9221

9277

9293

9341

9349

9397

9413

9421

9437

9461

9533

9613

9629

9661

9677

9733

9749

9781

9829

9901

9941

9949

9973

*
h

173

425

505

637

169

277

625

245

317

169

197

549

289

257

185

169

405

577

261

441

377

641

221

1105

221

205

205

493

625

1429

225

377

1009



CLASS NUMBERS OF QUARTIC FIELDS

TABLE 2

Coset sums and numbers of quartic residues in subinterυals of q

141

q

13

29

37

53

61

101

109

149

157

173

181

197

229

269

277

293

317

349

373

389

397

421

461

509

541

557

613

653

661

677

S
0

1

4

4

7

7

14

11

17

19

23

19

25

27

31

36

35

39

45

45

44

49

52

58

64

62

70

73

79

81

87

S
l

1

3

5

7

8

12

12

17

18

22

22

26

26

34

32

38

37

44

46

48

52

49

61

61

68

72

76

84

84

87

S
2

2

3

5

6

8

11

16

20

20

20

26

24

30

36

33

38

40

42

48

53

50

53

57

63

73

69

80

84

84

82

S
3

2

4

4

6

7

13

15

20

21

21

23

23

31

33

37

35

42

43

47

49

47

56

54

66

67

67

77

79

81

82

N
o

2

2

3

3

5

6

12

14

12

10

18

12

19

23

17

22

23

21

27

34

25

30

30

36

43

35

45

45

45

41

N
l

0

0

3

3

4

3

5

6

7

9

11

13

10

16

12

19

15

20

22

23

28

20

30

24

36

36

38

44

42

41

N
2

1

2

1

2

2

6

7

9

11

9

9

9

16

12

21

13

22

20

22

20

20

30

20

32

29

29

36

34

36

36

N
3

0

3

2

5

4

10

3

8

9

15

7

15

12

16

19

19

19

26

22

20

26

25

35

35

27

39

34

40

42

51

N
O
 + N

3

2

5

5

8

9

16

15

22

21

25

25

27

31

39

36

41

42

47

49

54

51

55

65

71

70

74

79

85

87

92

N
1 +
 K

2

1

2

4

5

6

9

12

15

18

18

20

22

26

28

33

32

37

40

44

43

48

50

50

56

65

65

74

78

78

77
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