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ε-CONTINUITY AND MONOTONE OPERATIONS

WILLIAM JULIAN

We prove constructively in the sense of Bishop that a monotone,
ε-continuous operation from [0,1] into a metric space is 2ε-uniformly
continuous. We derive a suitable version of Brouwer's fan theorem.

1. Introduction. Zaslavskii [ABR, Theorem 7.3] gives an example of
a real valued function on [0,1] which is continuous at each computable
point but which fails to be uniformly continuous. Zaslavskii [ABR,
Theorem 7.14] and Mandelkern [MND1, MND2] show constructively in
the Russian and Bishop sense, respectively, that a monotone, continuous,
real valued function on [0,1] is uniformly continuous. In this paper, we
weaken the hypothesis of continuity to ε-continuity, generalize the defini-
tion of monotone so that the map can be into any metric space, and
consider (non-extensional) operations instead of functions. We prove
constructively [BSH] that a monotone, ε-continuous operation from [0,1]
into a metric space is 2ε-uniformly continuous. Delimiting examples show
that the 2ε in the conclusion is best possible.

2. Valuated fans. The binary fan F consists of all finite or empty
strings from {0,1}. Denote a string a e F by axa2 * an where a( e
(0,1}, and the empty string by 0 . The length \a\ of a is the cardinality n
of the string α. The descendants of string a are strings containing a as an
initial segment. The immediate descendants of a are aO = aλa2 aj) and
a\ = axa2 anl. Note 00 = 0 and 0 1 = 1. A branch B is the set of
initial segments of a countable string BXB2 from {0,1}. We shall write
B ~ BλB2

A υaluatedfan Fis the binary fan together with a function Vmapping
F into the set N of non-negative integers. A valuation is sub-additive if
V(a) > V(aO) + V(al)9 for all a ^ F.

A valuation is branch bounded if for any branch B of F there is an
integer n so that if a e B and \a\> π, then V(a) = 0. A valuation is bounded
if there is an integer m so that if a e Fand \a\> m, then V(a) = 0.

The valuated fan generated by a G F consists all descendents of a but
with their initial segments a deleted; the valuation is the induced valua-
tion.
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We now arrive at a theorem implied by Brouwer's fan theorem [HTG]
but that is valid in the sense of Bishop [BSH].

PROPOSITION 1. Every branch bounded, sub-additive valuation on the

binary fan is bounded.

Proof. We induct on the value V(0). If V(0) = 0 we are done, so let
V( 0) > 0. Construct a branch B starting at 0 by induction. If a e B and
V{άϊ) = F(0), then append a\ to B. Otherwise append aO. Since F is
sub-additive, if a e F and V(a) = F(0) then a <Ξ B. Since i 7 is branch
bounded, there is an integer n so that if |α| > n and α e B, then F( 0) = 0.
Hence if \a\ > n then F(α) < V(0). Construct the 2n fans Ft generated by
those a e F with |α| = n. In each, the induced value Vt(0) is strictly less
than F(0) in i7. By induction, each is bounded: There are integers mr

such that if \b\ > mi and b e Fi9 then the induced value Vt{b) = 0. Hence
if a e Fand |β | > w + maxim,-}, then K(α) = 0. D

3. Assigning valuations. In this section we show how an operation
from [0,1] induces a valuation on the binary fan. To each a = aλa2 an

e F assign the diadic rationals

•a = Σa*2~* = βi^2 *" * *„ (binary),

and the interval I(a) = [.a, .a+]. To each branch B ~ BλB2 * assign the
real number

.B = E ^ 2 " ^ = 5 i^2 * * (binary).

Note that if a e 5, then . J? e /(α).

DEFINITION. We denote two subsets of [0,1] by

B [0, l] = {x e [0, l] |x has an explicit binary representation},

and

D [0, l] = {x G [0, l] I x has a terminating binary representation}.

Note that x ^ B[0Λ] ifΐx>dorx<dfoτ every diadic rational

DEFINITION. Let/be an operation on 5[0,1] into a metric space M, d
and ε > 0. Fix one value of f(x) for each x E ΰ[0,1]. A valuation on the
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binary fan induced by f9 ε is assigned so that

V(a) = P implies P - 2~2^ < p{a) < P + 1 - 2~2^~\

where p(α) = ε-V(/(.α+),/(.a)). D

Note that if p(a) > P - 2~2^~\ then V(a) > P9 and if p(a) < 1 -
2" 2 ' e |, thenF(α) = 0.

4. Monotone operations. In this section we consider what valuation
is induced on the binary fan by a monotone operation into a metric space.
The notion of "between" replaces "order" in the definition of monotone.

DEFINITION. Let M, dbe a metric space. A point x e M i s between a
and δ E M i f

d(a,x) + d{x9b) = d(a,b).

In addition if x is distinct from a and b, then x is strictly between a
and 6. •

The notion of "between" has been discussed by Blumenthal [BLM];
his use of "between" corresponds to our usage of "strictly between". We
distinguish the present notions of "between" and "strictly between" in the
next definition:

DEFINITION. An operation / from a metric space Mλ to a metric space
M2 is monotone if whenever x is strictly between a and b G Ml9 thenf(x)
is between /(a) and /(b). D

LEMMA 1. If x andy are between a and b then d(x, y) < d(a, b).

Proof. Let x andj> be between a and b. Thus, adding

d{a9z) + d(z9b) = d(a9b)

for z equal to x and z equal to y, we obtain

2d(x9 y) < d(a9 x) + rf(α, y) + d(b9 x) + </(&, j ) = 2d(<2, ft). D

The next lemmas and a counterexample stated without proof show
how order and between are related on the real line.

LEMMA. // x is between distinct points a and b and not strictly between
them, then x = a or x = b. D
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LEMMA. A real number x is (strictly) between a and b e R if (a < x <
b) a < x < b,or if (a >x>b)a>x>b. D

LEMMA. // x is strictly between a and b e R, then a < x < b or
b < x < a. D

COUNTEREXAMPLE. If x between a and b e R implies a < x < b or
a > x > b, then for all a e R, either a > 0 or a < 0. D

A real valued function which is monotone in the present sense need
not be increasing or decreasing.

LEMMA. /// is a monotone operation on S c R to a metric space M, d
and a < x < b are in S with d{f(a\ f{x)) + d(f(x)9 f{b)) >
d(f(a)J(b)),thenx = a. D

Next we show that a monotone operation on [0,1] induces a sub-addi-
tive valuation on the binary fan.

PROPOSITION 2. Iff is a monotone operation from B[0,1] to a metric
space M9 d and ε > 0, then the valuation induced by /, ε is sub-additive.

Proof. Now |αθ| = \al\ = \a\ + 1, so

V(aO) - 2~2W-2 < p(a0) and V(al) - l'2^'2 < p(aϊ).

Noting that monotonicity of /implies that ρ(a) = p(aθ) + ρ(tfl), we find

F(αO)+ V(al)-2'2^~ι < p(a).

Hence V(a) > V(aO) + V(al) and the valuation is sub-additive. D

5. f-continuous operations. In this section we turn our attention to
what valuation on the binary fan is induced by an ε-continuous operation.

DEFINITION. An operation / from a metric space Mv dx to a metric
space M29 d2 is ε-continuous if for some ε' < ε then for every x e Mx

there is a 8 > 0 such that whenever y e Mλ and dλ(x, y) < δ, then
d2(f(x)J(y))<e'. •

Note that if ε' < ε" < ε then / is also ε"-continuous. Furthermore if
x=ythend2(f(x)J(y))<ε'.
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PROPOSITION 3. /// is an ε/2-continuous operation from B[0,1] to a
metric space M, d then the valuation induced by /, ε is branch bounded.

Proof. Let B be a branch of the binary fan F. Choose ε' < ε/2 and
δ > 0 such that if y e B[0,1] and \y - .B\ < δ, then d(f(y), f{.B)) < ε'.
Pick n so that 2~n < 8 and 2ε' < ε(l - 2~2n), and let a e 5 with |α| > Λ.
Now.B e J(α)so|.α - . £ | < δand | . t f + - .£ | < δ. Hence

d(f(.a+)J(.a)) < d(f(.a+)J(.B)) + d(f(.B)J(.a))

< 2ε' < ε(l - 2~2^),

and thus V(a) = 0. D

6. ε-uniformly continuous operations. In this section we prove that
a monotone, ε-continuous operation on [0,1] is 2ε-uniformly continuous.

DEFINITION. An operation / is ε-uniformly continuous from a metric
space Ml9 dx to a metric space M2, d2 if there is ε' < ε and δ > 0 such that
whenever x9 y e Mx and ^(x, j ) < δ, then d2(f(x)9f(y)) < ε'.

THEOREM. /// is a monotone operation from [0,1] into a metric space
M, d and ε/2-continuous on 2?[0,1] then f is ε-uniformly continuous on [0,1].

Proof. Choose εr < ε so that/is also εy2-continuous on l?[0,1]. Let
the binary fan F have the valuation induced by /, ε'. By Proposition 3 the
valuation is branch bounded, and by Propositions 1 and 2, the valuation is
bounded. Hence, there is an m so that if a e F and \a\> m, then
V(a) = 0.

Consider the finite set S = {1} U {.a \ a e F and \a\ = m). By ε'/2-
continuity, choose δ in (0, 2~m) such that if x e [0,1], z £ S , and \x — z\
< δ, then d(f(x), f(z)) < ε'/2. Suppose that x, y e [0,1] and \x - y\ <
8/3. Either \x — z\ < 8/2 for some z e 5, or |x — z| > δ/3 for each
z e 5. In the former case \y - z\ < 5δ/6, and

d(f(x)J(y)) < d(f(x)J(z)) + d(f(z)J(y)) < ε' < ε.

In the latter case, pick a e i 7 with \a\ = m, such that x and j^ are strictly
between .α and .α+; then by Lemma 1 and V(a) = 0:

d(f(x)J(y)) < d(f(.a),f(.a + )) < ε' < ε. D

7. Delimiting examples. The theorem is valid with [0,1] replaced
by i?[0,1], The first example shows that the result stated in the theorem is



390 WILLIAM JULIAN

sharp with regard to ε. There is no obvious constructive example, so we
give a classical one.

EXAMPLE 1 (Classical). The classical function

/e'/2, for* > 1/2,

/ ( * ) = 0, for* = 1/2,
\-ε'/2, for c < 1/2

is monotone and ε/2-continuous for all ε > ε' > 0, but is not ε'-uniformly
continuous. D

The next example shows that there are constructive ε-continuous
operations which are neither continuous nor functions.

EXAMPLE 2 (Constructive). Let x = ,xιx2xι e Z?[0,1]. The opera-
tion

g(x) = e'(Xι - 1/2)

is ε-continuous and ε-uniformly continuous on B[0,1] for any ε > ε' > 0.
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