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FINITE GROUP ACTION AND EQUIVARIANT
BORDISM

S. S. KHARE

Conner and Floyd proved that if ZX acts on a closed manifold M
differentiably and without any fixed point, then M is a boundary. Stong
gave a stronger result proving that if (M, 0) is a closed ZX-differential
manifold with no stationary point, then (M, 6) is a Z%-boundary. In the
present note, we discuss this problem for a finite group in detail. Let G
be a finite group. By the 2-central component G, (C) of G, we will mean
the subgroup of G consisting of the identity element and all the elements
of order 2 in the center of G. We prove in this note that the fixed data of
the 2-central component G, (C) of G determines G-bordism.

1. Preliminaries. Throughout the note we will take G to be a finite
group. By a G-manifold we will mean a differential compact manifold
with a differential action of G on it. A family #in G is a collection of
subgroups of G such that if H € %, then all the subgroups of H and all
the conjugates of H are in #. Let #’ C % be families in G such that 3 a
central element a in G of order 2 such that

(i)a¢ HVHeE F—-F'

()HeF =[HU {a}]eF’

(ii1)) The intersection S of all members of #— %' is in #— F'. We
call such a pair (&, #’) of families an admissible pair of families in G
with respect to a € G.

ExampLE 2.1. Let G be a finite group. We can write the 2-central
component G,(C) as Z] = [¢,,...,t,], where #;,...,t, are generators of Z/
with 77 = the identity element and 7,¢; = 1 ¢,. Let %, be the family of all
subgroups of G not containing Z%, 0 < k < r, where Z% denotes the
subgroup of G generated by the first k generators f,...,z,. Then
(&1, %) is an admissible pair with respectto ¢, ., 0 <k <r.

2. Stationary point free action of G,(C) and G-bordism. The object of
this section is to show that if (M, @) is a G-manifold with the stationary
point free action of G,(C) then (M, #) is G-boundary. Following the
notation of Stong [2], let N(G; F, F’) denote the (%, F')-free G-
bordism group for a pair (%, %) of families in G. For a given family %
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in G and an element g in G, let &, denote the smallest family in G
consisting of all subgroups [H U {g}], H € #.

THEOREM 3.1. If (¥, ') is an admissible pair of families in G with
respect to a in G, then an (¥, F')-free element in R (G, F, F') is zero in
R G: F,, F)).

Proof. Let [M, 8] be in N (G, F, F'). Let F denote the fixed points
set of S in M, S being the intersection of all the members of #— F#".
Since # — ' is invariant under conjugation, S is normal in G and hence
the action § on M induces an action on F which we denote once again by
0. Let v be the normal bundle of the imbedding of F in the interior of M
and D(») be its disc bundle with the action 8* of G on D(») induced by
the real vector bundle maps covering the action 8 on F. Since F is fixed
point set of S, a & H, VH € % — %"’ and no point of F is fixed by the
subgroup [S U {a}] generated by S U {a}, a will act freely on F and
hence on D(v). Let F' = F/[a] and D’'(v) = D(v)/[a]. Since a is central
the actions # and 6* on F and D(») induce actions 6’ and 8* on F’ and
D’(v) respectively. Let C; and C, be the mapping cylinders of the
equivariant double covers ¢,: F — F’ and g,: D(v) — D’(v) respectively
and ¥, and ¢, be the induced actions on C; and C, respectively. We have
the following commutative diagram

¢, - D(»)

J,a l'V, s
¢ - F

where a: C, — C, is the map induced from »: D'(») — F’ by going to
mapping cylinders. Clearly dC, is homeomorphic to F, a (3C,) is homeo-
morphic to D(») and the action ¥/, on a }(3C,) is isomorphic to the action
0* on D(»). Consider

W= (Mx[0,1])uC,/~,

where ~ is the equivalence relation in W obtained by identifying D(») X
{1} with a”'(dC;). Let the action ¢ of G on W be given by ¢ | M X [0,1]
=0X1 and ¢|C,=4,. Take V to be (0M X [0,1])) U (M X {1} —
(D(v) X {1})°) U (3C, — (a™}(3C,))°), where ° denotes the interior oper-
ator. Since S is the intersection of all the members of #— %', V will be
(%, #/)-free. Also W is (%], #,)-free and oW is homeomorphic to
M U V by identifying 0V with dM. This shows that [ M, 8] is zero in
N(G; Z#,, Z)). a
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Let A denote the family of all subgroups of G and %, denote the
empty family. Then following the notations of Example 2.1 and using the
above Theorem, one immediately gets the following.

COROLLARY 3.2. For every k, 0 < k < r, the homomorphism
N (G Fri1r Fr) = NW(G; A, F,) induced from the inclusion map
(ZFri1, Fr) = (U, F) is zero.

Proof. Since (&, ,, %) is admissible pair of families with respect to
t,., for 0 <k <r and no point of the submanifold V in the above
construction is fixed by Z%. Theorem 3.1 gives the Corollary immediate-
ly. O

COROLLARY 3.3. Let P be the family of all subgroups of G which do not
contain G,(C). Then the homomorphism N ,(G;P) > N (G; N) induced
from the inclusion map P — 9 is the zero homomorphism.

Proof. By Corollary 3.2, one gets that
RW(G; Fi1s F) - N.(G; A, #,)

is the zero homomorphism, 0 < k < r. Consider the exact bordism se-
quence for the triple

(U, Frsr, Fi) = - Ru(Gs Frir, Fi) = NW(G A, F)

if’ER*(G; QIwgz.kﬂ) >

where j, is the homomorphism induced from the inclusion j: (%, %,) —
(A, Z,,,)- Since i, is the zero homomorphism, j, will be a monomor-
phism. Therefore the composite

N(G; A, F) > RW(G; A, F) = - > RNW(G A, F)
is a monomorphism and hence by the exact bordism sequence of the triple
(U, #, %,), one get that N (G; £, %) = N(G; A, %) is the zero
homomorphism. This completes the proof since # = Pand %, = g. O

COROLLARY 34. If G,(C) acts on M under 8 without any stationary
point then (M, 8) is a G-boundary.

3. The stationary points set F; ., and the normal bundle. In the
last section we dealt with the case when F;; . is empty. In this section we
consider the case when F; ) # &. For this we introduce the concept of
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equivariant trivial normal bundle and use this concept to settle the case
F5,(cy # @ in the form of Theorem 4.2.

Let (M", 8) be a closed G-manifold. Consider the decomposition of
F = Fg (M") as F = U}_, F', where F' denotes the /-dimensional com-
ponent of F. Let 9(»,) be the normal disc bundle of F'in M" with the
induced action 6, of G on Z(»,).

DEFINITION 4.1. F is said to have an equivariant trivial normal bundle
in M”, if G/G,(C) acts trivially on F and 3 some positive dimensional
G-representations (W), ¢,), 0 < I < n, such thatin N (G; %A, P)

[D(Vz)s 01] = [FI][D(VVz), 4’/],

D(W),) being the unit disc of W,.

Let {V,, ¥, }1<x<m b€ the finite set of all irreducible representations
of G. Let Z™ be the set of all non-negative integers. Then any G-represen-
tation can be written as (V(f), ¢(f)) for some map f: {1,...,m} > Z~
where V(f) = & (Vi, ¥2)'%, (Vi ¥,)/ being the direct sum of
f(k) copies of (V,, ¢,). Let us denote the unit disc and the unit sphere of

V(f) by D(f) and S(f).

THEOREM 4.2. If F has an equivariant trivial normal bundle in M", then
F is a boundary and (M™", 0) is a G-boundary.

Proof. Since F has an equivariant trivial normal bundle in M”, we
have

[2(v), 6] = [F'][D(W,), 6]

for some positive dimensional G-representations (W), ¢,), 0 < / < n. Also
(W, ¢,) = (V(f)), ¥(f,)) for some map f,: {1,...,m} — Z™. Therefore

[9(”1)’01] = [FI][D(fI),‘I’(ﬁ)]-

Let iy : NW(G; A) = N (G; A, P) be the homomorphism induced by
the inclusion map i: (%, ¢) — (A, P). Then

a7, 0) = £ [80).0] = X [P, 9(4)]
Therefore

duis| M", 0] = z LFS(), (/)] = 0
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in N 4(G; P), where 04: N 4(G; A, P) = N ,.(G; P) is the boundary homo-
morphism. Therefore 3 a P-free G-manifold (D, n) such that

) @D, = U (£ x(S(). $(1))).

Since (W), ¢,) is positive dimensional G-representation, V/, 3 a member
k() in the set {1,...,m} such that f,(k(/)) # 0. Consider the irreducible
G-representation (V, ,, ¥, ;). Let (I7k( Iy J x(1) b€ an irreducible compo-
nent of the G,(C)-representation induced by the G-representation
(Ve Yxay)- Then 3 a subgroup H,,, of G isomorphic to Z5~! which
fixes V), G,(C) being Z. Let us fix some 8,0 < B < n.

From the equation (1), we get

Fin (8D, 1) = iy, | U (F(S(5),9(£) ]

Let Fy, (D)= F* and Z, ; = Z, be the complement of H, 4, in G,(C)
= Z5. Then one gets

J(F'x (850971, q)),
=0

(8F*, bl |Z2,B) =
!

where a is the antipodal involution and the integer A(/, B) is the nonnega-
tive integer depending on / and B. Since H, 5, fixed f/k( g and f(k(B)) # 0,
one infers that A(B, B) > 1. Since D is P-free, Z, 4 will act freely on F*
and therefore [0F™, 1|Z, ] is zero in N (Z, ; F,), #, being the family
consisting of only trivial subgroup of Z, 4. This gives

Y [F][s2¢:P1 q] =0
/=0

in N(Z,p F). But N(Z,p F) is free N,-module with a set
{[S", a], n € Z*} of generators. This together with the fact that A(8, 8)
> 1 gives [F#] = 0 in 0. By varying B, one gets [F¥]1=0,V8 =0,...,n.
Hence [ F] = 0 in . Therefore

i[M", 0] = é[F’][D(f,),xP(fl)] =0 inN.(G; UAP).

But from Corollary 3.3, one infers that i,: R (G, A) = N(G; A, P) is
an injection. Therefore [M", 8] is zero in N (G; A). O
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