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THE 6π THEOREM ABOUT MINIMAL SURFACES

MICHAEL BEESON

We prove that if Γ is a real-analytic Jordan curve in R3 whose total
curvature does not exceed 6π, then Γ cannot bound infinitely many
minimal surfaces of the topological type of the disk. This generalizes an
earlier theorem of J. C. C. Nitsche, who proved the same conclusion
under the additional hypothesis that Γ does not bound any minimal
surface with a branch point. It should be emphasized that the theorem
refers to arbitrary minimal surfaces, stable or unstable. This is the only
known theorem which asserts that all members of a geometrically defined
class of curves cannot bound infinitely many minimal surfaces, stable or
unstable.

A result of Bδhme [5] shows that for each integer w, there are curves
meeting the hypotheses of our theorem which bound more than n minimal
surfaces. Hence it will not be possible to improve the theorem by giving a
fixed bound on the number of minimal surfaces bounded by Γ. The
possibility remains open, however, to give such a bound (perhaps even 3)
on the number of immersed minimal surfaces bounded by Γ.

In [2] and [3], an attack is begun on the "finiteness problem" for
minimal surfaces which furnish relative minima for the area functional.
This problem soon comes down to the study of one-parameter families of
minimal surfaces terminating in a minimal surface with a branch point.
The partial results obtained in those two papers form half the basis for the
result of this paper. The other half is a calculation presented here, also
concerning branch points. These two results enable us to remove the
hypothesis about branch points from Nitsche's proof.

1. Introduction and notation. P is the unit disk, P its closure. A
minimal surface is a map u: P -> i?3 such that Δw = 0 and

(du/dz) -(du/dz) = (du/dz)2 = 0.

We say u is bounded by the Jordan curve Γ in case u restricted to the circle
S1 is a reparametrization of Γ. A branch point of u is a zero of the analytic
function du/dz. It is an interior branch point or a boundary branch point
according as it lies in P or on S1. The order of a branch point is the order
of the zero of du/dz. We shall assume u is real-analytic in P and Γ is
real-analytic. Sometimes, for convenience, we may allow other parameter
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domains than P, in which case the above definitions undergo obvious
modifications.

The Dirichlet functional or Dirichlet integral E( ύ) is defined by E( ύ) =
\jjP\Vu\2 dx dy. On a suitable space of surfaces, E is Frechet differentia-
ble, and its critical points are exactly the minimal surfaces bounded by Γ.
At a minimal surface w, E is twice Frechet differentiate, and the second
Frechet derivative D2E(u) is a bilinear operator on the space of "tangent
vectors" k: P = -> R3 such that Δk = 0 and k(eiθ) is tangent to Γ at
u{eιθ). This is the modern way of looking at the "second variation" of
Dirichlet's integral. The kernel of the second variation is the kernel of this
bilinear operator. The members of the kernel are characterized by the
"kernel equation"

dk/dz - du/dz = 0.
For a proof, see [2].

If u is a minimal surface, there is always a three-dimensional family of
kernel directions due to the action of the conformal group. These have the
form k = Re(Adu/dz) where A is analytic. The condition that A: be a
tangent vector restricts the choice of A to a three-dimensional family. (See
[13].)

If u is a minimal surface with branch points, there are in addition
some kernel directions called "forced Jacobi fields" or "forced Jacobi
directions". These have the form Re(A du/dz), where A is now meromor-
phic, but with poles located among the branch points of u and of low
enough orders so that A du/dz is analtyic. Again the condition that k be a
tangent vector restricts the possible choices of A to a finite-dimensional
family. For each interior branch point of order m, or boundary branch
point of order 2m, there are 2m forced Jacobi fields; this calculation is
made explicitly in the appendix to [6]. Note that a boundary branch point
must have even order, in order that the boundary be taken on monotoni-
cally.

By a one-parameter family of minimal surfaces u* (we prefer this
notation to u{t)), we mean a real-analytic function of two variables t and
z, defined for (t, z) in some set / X P, where / is a real interval of the
form [0, t0] for some t0 > 0, such that for each t, u* = u(t, •) is a minimal
surface. The work of Bόhme, Tomi, and Tromba has reduced the question,
whether a (real-analytic) Jordan curve can bound infinitely many minimal
surfaces, to the study of the possible existence of one-parameter families
of minimal surfaces, all with the same boundary. The strongest of these
theorems, which produces analytic one-parameter families as defined
above, is due to Bόhme [4].
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We do not want to consider one-parameter families which are trivial
in the sense of being induced by the conformal group. We therefore
impose the following additional condition on the meaning of the phrase
"one-parameter family": That ut = du/dt = tah for some tangent vector h
to w°, where h is not a conformal direction.

2. One-parameter families of branched minimal surfaces. We define
a one-parameter family u* of minimal surfaces to be a forced Jacobi family
if for every / (in some interval which is the domain of definition of w'), ut

is a forced Jacobi vector of u*. Thus necessarily each u* is a branched
minimal surface.

2.1. THEOREM. Let u* be a one-parameter family of minimal surfaces
bounded by the same real-analytic Jordan curve. Then u* is not a forced
Jacobi family.

Proof. A forced Jacobi vector has the form Re(Adu/dz) for some
meromorphic function A. Our first objective, preliminary to the main
computation, is to show that if a forced Jacobi family exists, we may
assume that for / in some interval [0, /0] each uι has a branch point of the
same order m at 0, or else that each u* has a branch point of order m at 1,
such that A has a pole at this branch point.

Suppose 0 is a branch point of u°. Then for small t, and for some
neighborhood U of 0, the set of branch points of u* in ί7 is given by
finitely many functions qt{t) which are analytic in some rational power of
t; this follows from the theorems on the structure of analytic varieties
discussed in §3 of [2], since the branch points are the simultaneous zeroes
of the three analytic functions which are the coordinates of du/dz. We
may bring any specified branch point of uι to origin by a conformal
transformation depending on t. This process does not change the property
that ut is forced Jacobi, but only adds a conformal direction to uv i.e.
adds an analytic function to A. In the case of a boundary branch point of
w°, we first note that for some branch point of u° and some one of the
branch points qt{t) which converge to that branch point as t -> 0, we have
that ct{t) is in the closed disk P for t > 0 and A has a pole at qt{t)\ if one
of these qt(t) lies in the open disk P for / > 0, we can simply restrict the
allowed interval of /-values and assume we are dealing with an interior
branch point. Otherwise, we may assume that qt(t) remains a boundary
branch point for positive /; then we can bring it to 1 by a rotation.

It will be convenient to treat the boundary branch point case and the
interior branch point case simultaneously. This can be arranged by
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supposing that the branch point is at z = 0; in the boundary branch point
case that means that the parameter domain is the circle of radius 1
centered at z = — 1.

After the conformal transformation to bring the branch point to
origin, u is analytic not in t but in the new parameter s = tΊ for some
positive rational number γ. We have ut = Re(Adu/dz) = usytΎ~ι, so
us = tι~yy~1Re(Adu/dz). Restricting the range of values of t to avoid
the problematic point / = 0, we see that us is still a forced Jacobi
direction. We now drop the letter s, using t instead for the new parameter.
We have shown that we can assume that 0 is a branch point for all small t,
that A has a pole at 0, and that either 0 is an interior branch point for all
small t or a boundary branch point for all small t. Let m be the order of
the branch point for t = 0. For each i < m, consider the set of simulta-
neous zeroes of zι and the three components of the vector function du/dz.
This consists, by the structure theorems for analytic varieties discussed in
[2], §3, locally of finitely many analytic arcs in (t, z) space. But these arcs
must he on z = 0, since they are zeroes of z'. Hence either this set consists
of the isolated point z = / = 0, or of (a portion of) the ί-axis. Let m be the
greatest value for which it consists of the ί-axis. Then for t positive, the
order of the branch point at 0 is exactly m. Again choosing a slightly
different origin of t, we see that we can assume the order of the branch
point is m for t > 0. We next wish to show that we can assume the
order of the pole of A is independent of t also. Let U be an analytic
function with u = Re(Z7); all such differ by an imaginary constant. If
the constant is suitably chosen, we have Ut = A du/dz, so Utdu/dz =
A(du/dz)(du/dz) = \ WA, where H îs the area element of u. Thus A can
be written as a quotient of functions, each of which is real-analytic in z
and t, say A = F/W. The zero of W at origin we have just seen has order
2m, independent of /. Hence the order / of the pole of A at origin is 2m
minus the order of the zero of F at origin. This order is certainly constant
on t > 0 for sufficiently small t; again changing the origin of t, we may
assume it is constant on t > 0. We have now achieved our first objective:
we have shown that we can assume 0 is a branch point for all small t,
either an interior branch point for all small t or a boundary branch point
for all small /; that the order m of this branch point is independent of t;
and that A has a pole of order / at the origin, with / independent of t.

As above let U be analytic with u = Re(ί/); let K = Ut and k =
Re(K) = ur We have K = A du/dz for a certain meromorphic A.

We now give the main argument. We distinguish two cases. Case 1, A
has a pole at origin of order J < m. Case 2, / = m. In case 1, we have
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some power zJ with 1 <j < m in the expansion of K, hence dk/dz =
dk/dz has a power of zJ'~~ι. On the other hand, since du/dz = 0(z m ),
upon differentiating with respect to t we obtain dk/dz = 0(z m ), con-
tradiction.

Now consider case 2. We have A = αz~m 4- O(z~m+1) where a Φ 0.
We have du/dz = bzm + O(zm+ι), where ό is a vector. We may assume
that the normal to u° is directed along the Z-axis, and that the image of
the x-axis in the parameter domain is directed along the X-axis in
XYZ-space. In that case b is a scalar multiple of (1, —ι,0). Changing the
parameter domain by a scale factor, we may assume b = (1, —1',0). Then
JSΓ = Λί 9w/9z = α(l, —i,0) -f O(z). Since .if is real-analytic in z and /,
this equation is true for all sufficiently small t. We have ut(0) = Re( K(0))
= Re[α(l, -ι,0)] # 0. The fact that κ,(0) * 0 is the only use we will
make of the fact that A has a pole of order m.

Away from branch points, and for small t, we may represent u* in the
"normal bundle" of u°. That is, for each z0 which is not a branch point of
w°, we can find a neighborhood Δ X / of (zo,O) in (z, t) space and
real-analytic functions Φ and ψ defined on Δ X / such that

(1) « ί oφ = Mo + ψjv i n Δ x J

where N = u® X uo

y/\uo

x XMJ| is the unit normal to u°. Differentiating
with respect to /, and remembering k = un we have

koφ +(w ; coφ)R e(φ /) + ( w y o φ ) i m ( φ / ) = ψ ^ .

Remembering A: = Re(̂ 4 du/dz) we have

Reί .4 o φ ^ o φ j + (Uχ o Φ)Re(Φ,) + (uy o Φ)lm(Φ,) = ψ ^ in Δ X /.

The left-hand side is a vector tangent to uι at Φ(z). The right-hand side is
normal to u° at z. Since Φ(z) = z when t = 0, the only possibility is that
both vectors are 0. Thus ψf is identically zero. Integrating with respect to /
we find that ψ is constant. The constant is zero if Δ touches the boundary,
since all the u* have the same boundary curve. Analytic continuation along
a chain of neighborhoods avoiding the branch points shows that in any
case the constant is zero; so ψ is identically zero and (1) simplifies to

Mίoφ = M° i n Δ x / .

In particular all the u* occupy the same two-dimensional subset of i?3,
and locally away from branch points, u* is a reparametrization of u°.
However, the argument is far from finished, because we haven't yet used
the hypothesis that the branch point is a true one.
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An example is instructive at this point, even though not strictly
needed for the proof. Consider the minimal surfaces

w' = Re[(l, -z ,0)(z w + 1 - 0/(1 - tzm+1)\

which form an example of a forced Jacobi family, but with non-Jordan
boundary, namely the circle S1 traced out m + 1 times. In that example,
Φ may be constructed as above—it turns out to be

Φ(z) = [(z™+1 + 0/(1 + tzm+ι)]1/(m+1\

which is not analytic in the whole unit disk, but has "branches" like
(z2 - 0 1 / 2

This kind of behavior depends on the non-Jordan nature of the
boundary. According to [7], since the boundary is a Jordan curve, the
branch point is a true branch point. (See especially Remark 6.22.2 of this
reference for the case of a boundary branch point.) Also according to [7],
in the vicinity of a true interior branch point there is an arc of transversal
self-intersection. That is, there are two analytic arcs in the parameter
domain terminating at the origin whose images are the same, and along
which the self-intersection is transversal. According to [8], the same is true
of a boundary branch point.

Since ut(0) Φ 0, the branch point does not remain fixed in space as t
changes. Since the surfaces u* occupy the same two-dimensional subset of
i?3, the point w'(0) (which is the image of the branch point) lies on u°.
However, w'(0) is distinguished from all the points of u° near the branch
point by the facts that (a) it lies on a line of self-intersection of the surface
and (b) the self-intersection at that point is not transversal, since the
normals at a branch point all point the same direction. This is a contradic-
tion and completes the proof of the theorem.

3. The 6 77 theorem.

3.1. THEOREM. Let Γ be α reαl-αnαlytic Jordan curve in R3 with total

curvature < 6π. Then Γ cannot bound infinitely many minimal surfaces.

REMARK. J. C. C. Nitsche has proved a similar theorem, with the same
conclusion, but with the additional hypothesis that Γ does not bound any
minimal surface with a branch point.

Proof. Let u be a minimal surface bounded by Γ. By the work of
Bδhme [4] (see also [2], §3), either u is isolated (in Ck topology for every
large k) or there is an analytic one-parameter family of minimal surfaces
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u* defined for 0 < / < t0 for some t0 > 0, such that ut is not a conformal
direction. If every minimal surface bounded by Γ is isolated, then by the
compactness of the set of minimal surf aces bounded by Γ in Ck topology
[9], there are finitely many minimal surfaces bounded by Γ. Hence, if the
theorem is false, there is a one-parameter family u* of minimal surfaces
bounded by Γ. According to Theorem 2.1, it cannot be the case that for all
/, ut is a forced Jacobi vector. Let Φ = ut N. By differentiating (du/dz)2

with respect to t, we find (3λ:/3z)(3w/3z) = 0, where k = ur This is the
kernel equation of D2E(u). Hence ut is in KerD2E(u). It follows from
Theorem 1.2 of [2] that Φ satisfies ΔΦ — 2KWΦ = 0, so 2 is an eigenvalue
of ΔΦ — λKWΦ = 0; here we have chosen the origin of / so that u? is not
forced Jacobi, hence Φ is not identically zero, by Theorem 1.2 of [2].

By the hypothesis on the total curvature of Γ, together with the
Gauss-Bonnet-Sasaki-Nitsche formula (see [2], §2), we have

(1) 6π > 2π + 2τrM + φ - KWdx dy

where M is the sum of orders of interior branch points, plus half the
orders of the boundary branch points, and the integral is over the
parameter domain. Note that strict inequality holds in (1) even if the total
curvature of Γ is exactly όπ, since the geodesic curvature (which occurs in
the Gauss-Bonnet-Sasaki-Nitsche formula) can equal the total curvature
of Γ, for u a, minimal surface, only if Γ hes in a plane [11], and in this case
the theorem is known. If there is a boundary branch point, its order is
necessarily even; hence M is an integer.

We shall now prove that either Φ° is identically zero or λ^ ίw 0 ) , the
least eigenvalue of ΔΦ — λKWΦ = 0, is 2. Since u° is not isolated, we
have λirήn < 2, assuming Φ° is not identically zero. Since Φ is an eigen-
function for eigenvalue 2, Φ is orthogonal to the first eigenfunction. (For
eigenfunctions, orthogonality in Hi inner product and orthogonality in
inner product // — KWΦψ dx dy are equivalent.) Hence, Φ cannot have
just one sign, since the first eigenfunction does have only one sign (as
discussed in [2], §2). It is not difficult to verify the well-known fact that
D + = [z e D: Φ(z) > 0}, where D is the parameter domain, and simi-
larly D~ are composed of finitely many connected domains bounded by
finitely many analytic arcs. Since by (1) we have // — KWdx dy < 4π,
there must exist one of these connected domains Q for which // —
KWdx dy < 2π. In this domain, Φ has only one sign and vanishes on the
boundary. Hence λ m i n (β) = 2, where λnήn(Q) is the least eigenvalue of
ΔΦ - λKWΦ = 0 in β, Φ = 0 on 3β. But this contradicts the theorem of
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Barbosa and do Carmo, according to which jjQ — KWdx dy < 2π implies
λmin(δ) > 2. See [2], §2 for discussion of Barbosa-do Carmo's theorem,
and [1] for proof. (It is easy to check that the theorem holds for domains
with corners, provided it holds for domains with smooth boundaries.)

Now suppose u* is an arbitrary one-parameter family of minimal
surfaces bounded by Γ. Let k = ut = tah, Φ = ut N. It is impossible that
Φ is identically zero in both z and t, for then, by Theorem 1.2 of [2], k is
forced Jacobi, which contradicts Theorem 2.1. Hence for / small but
positive, ut is not a forced Jacobi direction, and Φ is not identically zero.
We claim that u* is immersed for t positive. If not, then M > 1 in (1), so
// — KWdxdy < 2π. Hence, by Barbosa-do Carmo's theorem, λ^^w')
> 2. But since Φt is not identically zero, 2 is an eigenvalue, contradiction.
Hence u* is immersed for t positive. Then u° cannot have an interior
branch point, by Theorem 5.1 of [2]. Now there are three possibilities: u°
is immersed, or it has a boundary branch point and h° is forced Jacobi, or
it has a boundary branch point and A0 is not forced Jacobi. The last
possibility contradicts Theorem 7.2 of [3]. Suppose the second possibility
holds. Then by Theorem 8.1 of [3], the boundary branch point of u° has
order > 4, so M in (1) satisfies M > 2, contradiction. Hence u° is
immersed.

We have now shown the following: Every one-parameter family of
minimal surfaces bounded by Γ consists, for small t, of immersed surfaces
with λmin = 2 for t positive. It is also true that λmin = 2 for t = 0, as we
now prove: Since h° is not forced Jacobi, we have Φ = /"ψ for some
integer w, where ψ° is not identically zero. Since for t positive, Φ has only
one sign (since λ ^ = 2), it follows that ψ has only one sign, even for
t = 0; since ψ is an eigenfunction for the eigenvalue 2, it follows that
λm i n = 2 when / = 0. Thus every one-parameter family of minimal surfaces
bounded by Γ consists entirely of immersed surfaces with λmin = 2. We
may now employ Tomi's argument [12] (see also the proof of Theorem 5.1
of [2]) to reach a contradiction. That completes the proof of Theorem 3.1.
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