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HEYTING ALGEBRAS WITH DUAL
PSEUDOCOMPLEMENTATION

H. P. SANKAPPANAVAR

Dedicated to the memory of my daughter Saraswati

This paper is a contribution toward developing a theory of (the
variety H+ of) Heyting algebras with dual pseudocomplementation.

1. Introduction. Initially, we set out to give a simple proof that the

variety H+ has CEP — a problem kindly posed to the author by Professor

H. Rasiowa in 1980 while she was visiting with him at the Instituto de

Matematica, Universidade Federal da Bahia, Brasil. Our proof of CEP

eventually led us to the basic result of this paper (Theorem 3.3).

The theory of H+ subsumes a significant part of the theory of double

Heyting algebras and regular double /^-algebras developed (separately) by

Beazer, Katrinak, Kδhler, and others, thus providing a unifying frame-

work. Furthermore, the study of subvarieties of H+ leads us to an infinite

supply of discriminator varieties, and it turns out that all finite simple

members in H+ are quasiprimal algebras. (Other results on the lattice of

subvarieties of H+ will be published elsewhere.)

More specifically, we show in §3 that the congruences on if ^-algebras

are determined by normal filters, and for double Heyting algebras the

i/+-congruences coincide with the double Heyting algebra-congruences. In

§4 the simples, subdirectly irreducibles and directly indecomposables are

characterized. Section 5 deals with characterizations of //^-algebras with

Boolean congruence lattices and Stone congruence lattices. Some of the

results of §§3 and 4 were presented to the 87th Annual Meeting of the

American Mathematical Society in January 1981 and announced in [16].

2. Preliminaries. An algebra L = (L, V , Λ , -» , + ,0, l) is a

Heyting algebra with dual pseudocomplment if (L, V, Λ, -> ,0,1) is a

Heyting algebra and + is the dual pseudocomplement (b > a+ iff b V a

= 1). H+ denotes the class of all Heyting algebras with dual pseudocom-

plement, and we refer to members of H+ as /f+-algebras. The class H + is

an equational class defined by the following identities (see [2]):

(1) The identities defining lattices with 0 and 1

(2) x A (x -» y) « x A y

(3) x A (y -> z) * x A [(x A y) -> (x A z)]
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(4) z A [(x A y) -» x] « z
(5) x V (x V y) + ~ x V y +

(6)x V l + ~ x
( 7 ) l + + ~ 1.
If L e i ί + then α -» 0 is the pseudocomplement of a e L, denoted

by α*, and thus L gives rise to a distributive double /?-algebra
(L, V , Λ , * , + , 0 , l ) . Hence, following [11], we define αn<+*>, n e ω, in
L recursively as follows: (2o ( +* } = α, and β(«+1X+*) = &+*? where & =

L is of finite range if, for a ^ L, there exists « e co such that

fined dually. The center of L, Cen L, is the Boolean sublattice of comple-
mented elements of L. We introduce the notion of normal filter in L which
plays a crucial role for the theory of i/+-algebras. A lattice filter F [ideal
/] of L is normal iff fl+*Gfμ* + G/] whenever a e F [a e / ] . We
denote the (algebraic) lattice of normal filters in L by NF(L) and the set
of its compact elements by Comp(NF(L)). For a, b e L we write β T & if
0«( + *) < £ for s o m e n G ω.

An algebra A = (^4,V,Λ,-> , <- ,0,1) is a double Heyting algebra
if {A, V , Λ , -> , 0, l ) is a Heyting algebra and (A, V , Λ , <- , 0, l ) is a
dual Heyting algebra. If A is a double Heyting algebra, then (A, V,
Λ, -> , +, 0,1) is an i/+-algebra with a+= a <- 1. A double /^-algebra is
regular if <?* = 6* and α + = b+ imply a = bίoτ its elements <z, Z?. A regular
doubles-algebra can be regarded (see [11]) as a double Heyting algebra,
where a —> b is defined as

a -+ b = (a* V />**)** Λ[(α V α*)+V a* V b V 6*],

and α <- ό is defined dually — this remark will be used frequently without
mention in the sequel.

Unless otherwise stated, L denotes an arbitrary H+-algebra
throughout. If A c L and A Φ 0, then N(A) denotes the normal filter of
L generated by A (where N(a) denotes 7V({ α}), and A1 denotes the set of
lower bounds of A in L, while D(L) = {x e L: x* = 0}).

LEMMA 2.1. 7/̂ 4 c L and A Φ 0, ίÂ Λ

iV(^) = {JC e L: * ;> (*! Λ Λ ^ J w ( + * }

/or 5Όme aέ e 4̂ α«J m e ω}

α e LthenN(a) = V m e ω [α w ( + * } ) .

COROLLARY 2.2. /// w α/z/ίer o/Cen L then

N(J) = ( J C G L ; X > a for some a e / } .
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LEMMA 2.3. Let a e Cen L. Then
(1) (a] e i/+,
(2) The function x ^ x A a is an H+-homomorphism of L onto (a\.

Proof. It is well known (see [2]) that (a] is a Heyting algebra. For
x e (a] we let jc+α = x+A a. Then it is easy to see that x+a is the dual
pseudocomplement of x in (a], since α e Cen L.

COROLLARY 2.4//α e Cen L, /ACT L = (a] X (a'].

3. Congruence lattices as normal filter lattices. In this section we
prove our basic results namely that the congruences on an H+-algebra are
determined by normal filters, and //^-congruences (preserving Λ, V, -> ,
4-) coincide with the congruences (preserving Λ, V ,->,<-) on a double
Heyting algebra, and we give several applications of these results, which
include some recent results of Katrinak, Kόhler and Beazer on double
Heyting algebras and regular doubles-algebras.

LEMMA 3.1. Let θ e Con L. Then 1/0 is a normal filter in L.

Proof. Observe 1 + * = 1.

LEMMA 3.2. Let F e NF(L) and define a relation Θ(F) by x = yθ{F)
iffx A f = y A f for some f ^ F. Then Θ(F) is a congruence on L such that
l/θ(F) = F.

Proof. It is well known that Θ(F) is a Heyting algebra-congruence
(e.g., see [1]) such that 1/Θ(F) = F. Now let (a, b) e Θ(F); then a A f =
b A /for some/ e i^and so a + V f+= b+v / + using the identity (x A y) +

« x+v y+. Hence, (a+V f+) Λ/+* = (6+V /+) Λ/+*, from which it fol-
lows that 0 + Λ/+* = Z>+Λ/+*. Since F is normal, / + * e F so that
(a+, b+) e JF, proving the lemma.

The following theorem is basic to what follows and will be frequently
used without explicit reference to it.

THEOREM 3.3. Con L = NF(L).

Proof. We claim that the function θ: NF(L) -> Con L, i 7 -» 0(F), is
an isomorphism. If a e Con L then, in view of Lemma 3.2 it suffices to
prove a = θ(l/a). lί (a, b) e α, usingy -» 7 « 1 we have
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so that

/ = (a -» b) Λ(b -> a) e 1/α.

Use the identity x A (x -^> y) ~ x A y to conclude that a A f = b A f.

COROLLARY 3.4. The variety H+ has CEP.

DEFINITION 3.5. Let H+n denote the sub variety of H+ defined by the

identity (n e ω)

χn(+*) β χ(n+ !)(+*)

Note that H+0 is the (sub)variety of Boolean algebras.

COROLLARY 3.6. For each n e ω the variety H+n has equationally

definable principal congruences.

The following (surprising) result will enable us to show that a signifi-

cant part of the theories of double Heyting algebras and regular double

/^-algebras can be subsumed in the theory of i/+-algebras.

THEOREM 3.7. Let A be a double Heyting algebra. Then every H^-con-

gruence on A is a congruence on A.

Proof. Let θ be an i/+-congruence on A and (x, y) e θ and (u9w)

e θ. Then x A f = y A f and u A g = w A g for some / , g ε 1/0; hence,

* v / + = = J7 v / + a n d w v 8+= w v g + N o w

(JC +- u) V/+V g+= f+V g+V [(/ + V g+V x) +- (/+V g+V ι/)]

by the dual of (3)

= /+v g+v[(/+v g+v^) ̂  (/+v g+v w)]

= /+Vg+v(>;^ιv).

It is now immediate that (x<-w,j<-w) G 9 , since (/+ V g+, 0) e θ.

COROLLARY 3.8. (K'όhler [13].) TjM w α Jowό/e Heyting algebra then
Con A s NF(L).

We remarked in §2 that a regular double /?-algebra is a double

Heyting algebra, so we have the following corollary.

COROLLARY 3.9. (Katrihάk [1], Beazer [3].) If A is a regular double

p-algebra then Con A =
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Thus, on a regular double /^-algebra double /7-algebracongruences,
//^.-congruences and double Hey ting algebracongruences all coincide.

We conclude this section by noting that there are easy examples of
H+algebras (e.g., 4-element chain) such that not every lattice-congruence
compatible with 4- and * is an //^-congruence.

4. Simples, (finitely) subdirectly irreducibles and indecomposables.
In this section we characterize directly indecomposables (see [7] for
definition), finitely subdirectly irreducibles, subdirectly irreducibles and
simples in //+, influenced by the works of Beazer, Katriήak and Kόhler.

THEOREM 4.1. Let \L\ > 1. Then TFAE:
(1) L is directly indecomposable
(2)CenL = {0,1}.

Proof, We may assume \L\ > 2. If a e C e n L - { 0 , l } then L
= (*] X (*']> showing that (1) => (2). For (2) =* (1) let 0, 0 be a pair of
factor congruences different from Δ and v (see [7]). Then 0 Λ 0 = Δ and
0 o θ = v. Let Fλ = 1/0 and F2 = 1/0; then FλΛ F2 = {1} and there
exists flGL-{0,l) such that 0 0 a 01. Hence, a e F2 and a* e Fλ so
that a V β* e Fλ Λ F2 = {1}; thus a G Cen L, which shows that (2) =>
(1).

Using Theorem 3.7 we now have

COROLLARY 4.2. The equivalence of (I) and (2) in Theorem 4.1 holds for
double Hey ting algebras and regular double p-algebras.

THEOREM 4.3. Let \L\ > 2. Then TFAE:
(1) L is simple
(2) Cen L = (0,1), and for every x e D(L) — {1} there exists n e ω

such thatxn(+:¥) = 0.

Proof. Suppose L is simple. Then it follows from Theorem 4.1 that
Cen L = {0,1). Let x e D(L) — {1}, and since L is simple, N(x) = L so
that 0 e 7V(x). Thus there exists « e ω such that JC W ( + * } = 0. Conversely,
if « G L - {1} then it suffices to show that N(a) = L. Now JC = a V a*
G /)(L). Since Cen(L) = {0,1} we see that JC Φ 1. Then from the hy-
pothesis we conclude that 0 G N(JC) < A^(^), so that N(α) = L.

Theorems 4.3 and 3.7 together yield the following.
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COROLLARY 4.4. (K'όhler [13], Beazer [5].) The equivalence of (1) and

(2) is also true of double Heyting algebras and of regular double p-algebras.

COROLLARY 4.5. Let L be of finite range and \L\ > 1. Then TFAE:

(1) L is simple

(2) L is subdirectly irreducible

(3) L is finitely subdirectly irreducible

(4) L is directly indecomposable

( 5 ) C e n L = (0,1).

Proof. The implications (1) => (2) => (3) => (4) are well known and

(4) => (5) follows from Theorem 4.1, while (5) => (1) by Theorem 4.3.

The above corollary is an extension, and an improvement, of corre-

sponding results for double Heyting algebras and regular double /?-alge-

bras due to Beazer, Katrinak and Kδhler. The corollary also implies that

every simple algebra is hereditarily simple.

LEMMA 4.6. Let a & L. Then thepseudocomplement of N(a) in NF(L)

is given by

N(a)* = {x G L: x + < an{+ * } for every n G ω}.

THEOREM 4.7. Let \L\ > 1. Then TFAE:

(1) L is finitely subdirectly irrecducible {see [7] for definition)

(2) Λ w e ω an( + * } = Ofor every a e L - {1}

(3)ΛM€Ξω0«<+*> = Ofor every a e Λ(L) - {1}

(4) iV(α) w Je«5e zw NF(L)/or every U G L - { 1 ) .

Proof. (1) <=> (4) is clear from Theorem 3.3 and the fact that NF(L) is

a pseudocomplemented lattice.

(4) =̂> (2). Let a e L - {1} and let m < ^"<+*> for every n e ω. Then

m* + < α w ( + * ) for every « E ω b y using the implication JC < y + * => x* + <

j ; hence, by Lemma 4.6, m * e i V ( α ) * = {l}; thus m = 0, implying (2).

(2) => (4). Suppose there is an a e L — {1} such that N(α) is not

dense. Then there exists m e L — {1} such that m e N(a)* so that

0 < m + < tfn<+*> for every n G ω, hence, Λ w e ω α n ( + * } > m + > 0.

Finally, for (3) => (2) it suffices to note that if « G L - {1}, then

α*<+*) = α

+ + - ( + * > a n d α + + e B(L) - {1}.

In view of 3.7 we obtain

COROLLARY 4.8. (Beazer [6].) 77ze equivalences in the above theorem

also hold for double Heyting algebras (and for regular double p-algebras).
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Beazer's proof of the above corollary, however, made essential use of
the existence of the dual Heyting implication <- .

LEMMA 4.9. //Λneω an(+ •> = Ofor all a e B(L) - {1}, then Cen L =
{0,1}.

. The hypothesis implies by 4.7 that Λ r t e ω β" ( + * ) = 0 for all
a e L — {1}, and the rest of the proof is the same as that of Theorem 2 in

[1].

THEOREM 4.10. Let \L\ > 2.

(1) L is subdirectly irreducible but not simple,
(2) (i) ΛΛe«ΛΛ<+*> = 0/or a//* e 5(L) - {1}, and

(ii) /Aere exists d e D(L) - {1} swcA /Λ̂ ί x\ d }0 for all x

(3)(i) C e n L = {0,1}
(ii) (2)(ii) holds.

Proof. (1) => (2). Now (2)(i) follows from (1) by Theorem 4.7, and (1)
implies that there exists a principal normal filter N(a) such that {1} c
N(a) c L and N(a) is contained in every normal filter N(x) of L for
x ¥= 1, implying that χ"<+*> < a. Now let J = a V α* e D(L), and d Φ 1
since, otherwise, # e Cen L = {0,1}, whence a = 0 which is a contradic-
tion. If J TO then for some w e ω, Jw<+*> = 0, so that 0 e iV(α), which is
impossible since ^(α) # L. Finally, if x E Z)(L) - {1}, then N(a) c
JV(JC), so χ"<+*) < ^ < d, proving (1) => (2). Next, (2) => (3) follows im-
mediately from Lemma 4.9.

(3) =» (i). Observe that N(d) Φ {1} and N(d) Φ L, since d JO. Let
F G NF(L) be such that ( l ) c F c L, and let x=fvf* for some
/ e F \ {1}. Then, j c E f a n d i E 2>(L). Since Cen L = {0,1}, we have
x Φ 1. Thus, by hypothesis, xM(+* ) < J for some « e ω, implying that
d ^ F, so N(d) Q F. This shows that L is subdirectly irreducible but not
simple.

Theorems 4.10 and 3.7 yield the following

COROLLARY 4.11. (Katrihάk [12], Beazer [5].) The equivalence of (I),
(2), and (3) holds for double Heyting algebras and regular double p-algebras.

It is shown in [1] that the converse of Lemma 4.9 is not true. We
conclude this section by pointing out another proof of this fact: Suppose
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the converse of Lemma 4.9 holds. In view of Theorems 4.1 and 4.7 it

follows that every directly indecomposable algebra in H+ is finitely

subdirectly irreducible. Then by the proof of Theorem 12.5 in [7], H+ is

semisimple, which is impossible, since there are known to exist non-simple

subdirectly irreducible doubly Heyting algebras, and such algebras are

non-simple subdirectly irreducibles in i/ + , as well in view of 3.7.

5. H +-algebras with Boolean congruence lattices. There are many

results in the literature characterizing algebras with Boolean congruence

lattices in a given variety. For example, pseudocomplemented semilattices

with Boolean congruence lattices are characterized in [15]. (See references

in [15] for more such results.)

In this section we characterize those members of H+ whose join-semi-

lattice of compact congruences is actually a Boolean lattice as well as

those L G H+ for which Con L is a Boolean lattice.

LEMMA 5.1. If a, b^L then N(a) V N(b) = N(a A b).

LEMMA 5.2. F G NF(L) is compact iffF = N(a) for some a G L.

THEOREM 5.3. TFAE:

(1) Comp(NF(L)) is a Boolean sublattice o/NF(L)

(2) Comp(NF(L)) is complemented

(3) L is of finite range

Proof. It suffices to prove the implications (2) => (3) => (1), since

(3) => (4) holds for any distributive double/^-algebra (see [3]).

(2) => (3): Let a e L; then by (2) N(a) has a complement in NF(L).

Thus there is an F e NF(L) such that N(a) Λ f = { l ) and N(a) V F =

L. Hence, by Gratzer [10], Lemma 5, p. 60, F is principal, say F =

N(b) for b e L. Since 0 <Ξ N(a) V N(b), there exists n ^ ω such that

(a A &)"<+*) = 0, that is, α / 2 ( + * ) Λ Z>"(+*> = 0. Also an(+^ V bn(+^ e
N(a) A N(b) = {1}, so Z>"(+*) is a complement of ani+*\ and hence

α«( + *)<E C e n L , α Λ ( + * ) = α<Λ + 1X + *> — thus proving that L is of finite

range.

(3) => (1). In view of 5.2 it suffices to show that the principal normal

filters form a Boolean sublattice of NF(L). Let a, b e L ; then ^M<+*> =
α(n + iχ+#) = χ ( s a y ) a n d 6if.(+*) = (̂m + iχ+*) = y ( S a y ) β N o w ^y(α) = [ x )

and N(b) = [y), so 7V(α) Λ iV(fe) = [x V ; ;), and [x V y) is normal since

x V y G C e n L ; thus Comp(NF(L)) is a sublattice of NF(L). Finally,

since N(a) =[x) and x G Cen L, it follows that the complement of N(a)

is the principal normal filter [x').
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COROLLARY 5.4. If L e H+n then the compact congruences on Lform a

Boolean sublattice o/NF(L).

This corollary and a result of S. Burris together imply that the variety

H+n is a discriminator variety for n e ω. However, one can also write a

dicriminator term for H+n. For example, if we let d(x) = xn(+ *\ then the

following term is the ternary discriminator on each of the simple algebras

inH+n:

t(x, y, z)=[z A d((x V y) -> (x Λ y))]

v[xΛ(d((xVy)-+(xΛy)))*].

COROLLARY 5.5. (Epstein and Horn [9].) If A is a P-algebra, then

N F ( L ) = F(Cen L), and also the compact congruences form a Boolean

sublattice. Hence P-algebras form a discriminator variety.

THEOREM 5.6. TFAE:

(1) Con L is a Boolean lattice

(2) L is of finite range and Cen L is finite

(3) Con L is a finite Boolean lattice.

Proof. (1) => (2). Let x e L, then N(x) has a complement F e NF(L)

by (1). Since 0 E iV(x) V F, there exists a n / e i 7 and Λ G CO such that

From JCΛ<+*> e iV( c) and fn{+^ e F it follows that x«(+*> v / " ( + * ) e

iV(jc) Λ F = {1}; thus x " ( + * } G Cen L, and hence L is of finite range.

Then it follows from 5.3 that Cen L is finite. For (2) => (3), we again use

5.3 to get N F ( J L ) = i^Cen L), and since Cen L is finite, it follows that

NF(L), and hence Con L, is a finite Boolean lattice.

COROLLARY 5.7. Theorem 5.6 also holds for double Hey ting algebras.

Theorem 5.6 generalizes a result of Beazer [3].

The following theorem and its corollary were presented by the author

to the 57th Ontario Mathematical Meeting held at London, Ontario,

Canada, on February 7, 1981. The referee of this paper pointed out to the

author that these results also follows from (Theorem 3.3 and) a recent

result proved by R. Beazer, Lattices whose ideal lattice is Stone, Proc.

Edinburgh Math. Soc. (1983), 107-212. We therefore state these results

without proofs.
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THEOREM 5.8. Let L be an H+-algebra or a double Hey ting algebra.
Then TFAE:

(1) NF(L) is a Stone lattice

(2) Λ F exists in Lfor all F e NF(L)

(3) Λ S exists in L for all S c Cen L and An€Ξω an(+*] exists in L for
all a e L

(4) ConL is a Stone lattice.

COROLLARY 5.9. Let L be an H+-algebra or a double Hey ting algebra of

finite range. Then Con L is a Stone lattice iff Cen L is a complete (Boolean)

lattice.
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