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POINT SPECTRUM OF ERGODIC ABELIAN

GROUP ACTIONS AND THE CORRESPONDING

GROUP-MEASURE FACTORS

JUDITH A. PACKER

In this paper a study of certain conjugacy invariants of ergodic
actions of countable discrete groups which appear in the analysis of the
associated group measure factors is begun. In particular a certain maxi-
mal abelian subalgebra S of the factor associated to the free ergodic
measure-preserving action of a countable abelian group on a compact
Lebesgue space is studied. The structure of the normalizer of this
subalgebra is completely determined, and is shown to depend entirely on
the point spectrum of the group action. We examine cocycles of the
group action with values in a compact abelian group, the corresponding
skew product actions and the related von Neumann algebras. Conditions
that such an extension be ergodic, and the point spectrum distinct from
the original action are obtained by examining the corresponding factors.
For actions with pure point spectrum we examine cocycles with values in
S1 and the corresponding ^-automorphism of the factor and determine
necessary and sufficient conditions for the related Cartan subalgebra S
to be inner conjugate to its image under the cocycle automorphism.
Applying our results to a particular group action with pure point spec-
trum, we are able to exhibit (modulo choice of an orbit equivalence) an
uncountable family of Cartan subalgebras in the hyperfinite II γ factor, no
two of which are inner conjugate.

Introduction. One of the original methods of constructing non-type I
factors is the so-called "group-measure" construction due to Murray and
von Neumann. This construction associates to any free ergodic action of a
countable discrete group G on a Lebesgue measure space (X9 μ) a factor
F( X, G) acting on the Hubert space L2(X X G). To a large extent, the
study of the relationship between the factor F(X, G) and the ergodic
action (X, μ, G) has emphasized the concept of orbit equivalence. Clearly
a sufficient condition that free ergodic actions (Xl9 μl9 Gλ) and (X29 μ2, G2)
give rise to *-isomorphic factors F(Xl9Gλ) and F(X2,G2) is that the
actions be orbit equivalent [4] (it has recently been shown in [2] that the
reverse implication is not true in general). For example, if Gλ and G2 are
countable abelian groups acting freely and ergodically on the compact
Lebesgue spaces (Xl9 μx) and (X2, μ2) so as to preserve the finite mea-
sures μx and μ2, F(Xv &i) a n ^ ^(^ G2) will be *-isomorphic; both will
be hyperfinite IIX factors.
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In this paper we attempt to move beyond the notion of orbit equiva-
lence to initiate a study of how certain stronger invariants of the free
ergodic action (X, μ, G) exhibit themselves in the inner structure of the
factor F(X,G). We shall mainly be restricting ourselves to the case where
G is abelian and preserves the finite measure μ. The factor F(X,G)
contains as a subalgebra a copy of the left regular representation algebra
of G. We denote this subalgebra by S( X, G). Since the abelian group G
acts ergodically on (X, μ), S(X, G) is maximal abelian in F(X, G). One
naturally desires to know which unitary elements in F(X,G) normalize
S(X, G); i.e., for which IΛe <%{F{X, G)) does US(X, G)U* = S(X, G).

This question is a special case of the following problem: if (Y, v, G) is
a quotient action of (X, μ, G), i.e., if there exists a G-equivariant surjective
Borel map φ: X -> Y with φ * μ = j>, then F(Y, G) injects naturally as a
subalgebra of F(X9 G). Which unitary elements in F{X,G) normalize
F{ X, G)? We intend to investigate this more general problem in a subse-
quent paper. If Y = pt., with G acting on it trivially, then F(X9G) =
S( X, G). For this situation we have the following result:

THEOREM 2.3. Let G be a countable abelian group acting freely and
ergodically on the compact Lebesgue space (X, μ) so as preserve the finite
measure μ. Then the normalizer of S(X,G) in F(X,G) which we define to
be the subalgebra of F(X,G) generated by the unitary elements which
normalize S(X, G), is equal to F(Yd9 G), where (Yd9 v, G) is the maximal
quotient action of(X, μ, G) having pure point spectrum.

This result is closely related to a result of P. Hahn [8], and was
motivated by work of Nielsen [16] who considered the case where (X9 μ, G)
has continuous spectrum. We will elaborate on our debt to [8], [16] and
[22] in the course of the proof.

In particular, we note that under the conditions of the theorem,
S(X9 G) will be regular in F(X9 G), in the sense that the normalizing
unitaries generate F(X,G), if and only if (X9 μ, G) has pure point
spectrum. Since any von Neumann subalgebra of a IIX factor is the image
of a faithful, normal conditional expectation, we see that under the
conditions of the theorem S(X9 G) is a Cartain subalgebra (in the sense of
[6]) if and only if (X, μ, G) has pure point spectrum.

We can use this fact to exhibit an uncountable family of Cartan
subalgebras in the hyperfinite Πx factor, no two of which are inner
conjugate. Our construction relies on the method of *-automorphisms of
F(X9 G) associated to one-cocycles of (X, μ, G) with values in Sι: a Borel
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map a: X X G -+ Sι which satisfies the cocycle identity:

«(*> gi)«(*£i> gi) = «(^» gig2) /* a e > v£i> £2 e G
will give rise to a * -automorphism of F(X, G), which we denote by Aa.
Then we have the following:

THEOREM 3.8. Let the countable abelian group G act on the compact
Lebesgue space (X, μ) so as to preserve the finite measure μ, and suppose
that (X9 μ, G) has pure point spectrum. Let a be a one-cocycle a: X X G ->
S1. Then S(X, G) is inner conjugate to Aa(S(X9 G)) if and only if there
exists a Borel function f\ X -> S1 and a character χ £ G satisfying

« ( * , g) = f(xg)x(g)f(x)~l M- a.e.Vg e G.

The proof involves studying the point spectrum of certain skew-prod-
uct extension of (X9 μ, G); we thus have related results in these areas.

The uncountable family of pairwise non-inner conjugate Cartan sub-
algebras of the hyperfinite Πx factor will be of the form

{Aaι{S{X,G))\iel}

for a particular G-space (X, μ, G) having pure point spectrum, and some
uncountable index set /.

The organization of our paper runs as follows. For the convenience of
the reader we have tried to make the paper as self-contained as possible.
Thus the first section contains definitions and general background in-
formation on ergodic actions of countable groups and the corresponding
von Neumann algebras, and may be skipped by the knowledgeable reader.
The second section contains the results on the normalizer of S(X9 G) and
discusses the Takesaki equivalence relation for the pair (S(X, G), F(X9 G)).
Section 3 discusses the problem of ergodicity and point-spectrum for
abelian skew product extensions, emphasizing the relationship between
the corresponding von Neumann algebras and crossed product von Neu-
mann algebras by countable abelian automorphism groups. The final
section uses the results of §3 and orbit equivalence to exhibit the uncoun-
table family by pairwise non-inner conjugate Cartan subalgebras of the
hyperfinite IIx factor.

1 1. Ergodic actions of countable groups and the corresponding von
Neumann algebras. Let (X, μ) be a compact Lebesgue space; i.e. (X9 μ)
is a standard Borel measure space where μ is non-atomic, positive,
countably additive and μ(X) = 1. Let G be a countable discrete group
acting on (^ ? μ) as a group of Borel isomorphisms so as to leave μ
quasi-invariant; the triple (X, μ, G) is termed a G-space. Throughout the
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following we will be mainly concerned with the case where G acts freely
and properly ergodically on (X, μ) so as to leave the measure μ invariant.

Let (X, μ, G) be a space, and let H be a locally compact group. We
denote by Z1((X, G); H) the one cocycles of (X, μ, G) with values in H9

i.e. those Borel maps a: X X G -> H such that for all gv g2 e G,
«(*> £i#2) = «(*> £i)«(*Si> £2) /* a.e. Two cocycles a, β (= Z\(X, G); H)
are termed cohomologous, written a ~ /?, if there is a Borel function Z>:
X -* H such that Vg e G, α(x, g) = fe(x)'1i8(jc, g)b(xg) μ a.e. The set of
cohomology classes of Z\(X, G); H) is denoted by H\(X, G); # ) . We
refer to those elements of Zλ(( X, G); 7/) which are cohomologous to the
constant identity cocycle as coboundaries: denote this set by Bx(( X, G); H).

A G-space (7, v, G) is said to be a quotient G-space of (X, μ, G) is
there exists a G-equivariant surjective Borel map φ: X -> y with φ*μ = *>.
Alternatively (X, μ, G) is called an extension G-space of (Y, v,G). Let
(AT, vκ) be a separable compact group, and suppose that a ^
Z\(X9 G); ΛΓ). Define an action of G on {YX K,vXvk) by setting
(J ? k)g = (yg, ka(y, g)). It we define φ: X -> Y by φ(> ,̂ /:) = j>, then
(y, ^, G) is a quotient G-space of (X, μ, G) with respect to the map φ.
Call (X, μ, G) a skew-product extension of (y, J>, G) by the compact group
K. Such actions have been extensively studied by Zimmer in [16].

Given a G-space (X, μ, G), there is a natural way of associating to
it a von Neumann algebra of operators on a Hubert space. We follow
here the description given in [23, V. 7]. Let Jf be the Hubert space
L2(X X G,μX vG) and r: X X G -* R+ be the Radon-Nikodym deriva-
tive for the action of G on (X, μ). Construct a unitary representation of G
on Jίf by defining

t/gl(/)(*> g) = r(x, gl)
1/2f{xgl9 g-λ

ιg), x e X, g l , g e G.
Construct a representation of L°°( JQ on ^fby defining Ty(f)(x, g) =
γ(jc)/(x, g), γ e L°°(JT), ^ e Jί, g e G. Let F(X, G) be the von Neu-
mann algebra generated by {Ug\g e G} and {Γγ|γ e L°°(X)}, the so-
called group measure von Neumann algebra corresponding to the G-space
(X, μ, G). Every element of F(X,G) has a unique Hubert algebra rep-
resentation in the form ΣgGGTyUg, yg e L°°(Z). Denote by S(X, G) the
von Neumann subalgebra of F(X,G) generated by {Ug\g ^ G), and by
R(X,G) the von Neumann subalgebra generated by {Γγ|γ e L°°(X)}. If
(X, μ, G) is a free ergodic G-space, F(X,G) will be a factor, and when μ is
G-invariant, this factor will be of type II l e

The "crossed-product" construction gives a slightly different con-
struction of a von Neumann algebra corresponding to (X, μ, G). We
briefly discuss this construction here, since dealing with subalgebras
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corresponding to quotient G-spaces becomes easier in this context. Let si
be a von Neumann algebra with faithful representation on a Hubert space
3tifλ9 and let G be a locally compact group with Haar measure γG. Suppose
that g •-> <xg is a strongly continuous homomorphism of G into the group
of *-automorphisms of J / . Define a representation of Π of J / on the
Hubert space L2(G) ^Jίfι = L2(G, Jίfλ) by

Define a unitary representation of G on L2(G, Jί^) by

u(gMg) = ξ(ggi)9 g,gι^G,t;<Ξ L2(G, Jίfλ).

The von Neumann algebra generated by ( Π ( / ) | / e s / } and [u(g)\g G
G} is defined to be the crossed-product of'sέ'by the action a of G, written
s?XaG. If G is countable and discrete, every element in s/XaG has a
unique "Fourier" expansion in the form Σ g G GΠ(/ g)w(g), / g G i . Let
j ^ = L^(X) acting on L2(X) by pointwise multiplication and let the
action of G on L°°(X) be defined by ag(f)(x) = /(xg). Then L°°(X) X β G
is precisely the commutant of F(X9G) [23, V. 7], and thus is spatially
*-isomorphic to F(X,G) via the unitary involution Jx: L2(X X G) -»
L 2 ( X X G ) defined by Jx(f)(x, g) = r(x9 g)1/2u(xg, g~ι). Indeed
^ ( φ ^ = u(g) Vg^G and JxTyJx = Π(γ) Vγ e L°°(X).

Using the above constructions we are able to prove the following
proposition, which no doubt has been noticed by others:

PROPOSITION 1.1. Let (Y, v, G), be an ergodic G-space, where G is a
countable discrete group and (Y, v) is a compact Lebesgue space, and let
(X, μ, G) be an extension G-space where φ: X —> Y is the quotient G-map.
Then associated to the map φ there is a natural injection φ* of F(Y, G) into
F(x, G). D

Proof. Let m e F( Y, G) and suppose that m has the unique represen-
tation m = Σg(ΞGTy Ug9 yg e L°°(Y), Vg e G, where m is an operator on
the Hubert space L2(Y X G). There is an obvious injection of L°°( Y) into
L°°( X) obtained by lifting functions on Y to functions on X via φ. A
natural candidate for φ*(m) is therefore the formal sum Σ g € Ξ CΓγ oφUg9 and
indeed as defined on the generators φ* preserves all the arithmetic
operations, and is clearly one-to-one. One needs only to check that
ΣgGGTΎ oφUg is well defined as an element of B(L2(X X G)). To do this, it
is easier to examine L°°(X) XaG = JXF(X9 G)JX. Since (Y,r,G) is
ergodic, we can decompose (X, μ) as a product space (Y X D,v X p),
where D is a standard Borel space and p is a finite measure on Z>, in such
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a fashion that if ψ: Y X D -> X is the Borel isomorphism, then φ*(μ) =
v X p and φ(ψ(>>, </)) = j> *> a.e. [20]. Thus L2(X X G) may naturally be
regarded as L2(D) 9 L 2 (7 X G). The von Neumann algebra acting on
L2(D) ® L2(Y X G) generated by {Π(γ o φ ) | γ e L°°(Y)} and {κ(g)|
g e G), which we denote by ^ , is just the tensor product von Neumann
algebra CId 9 JγF{γG)Jγ and hence is clearly *-isomorphic to F(Y9 G).
Indeed for m = ΣTyUg e JF(Y, G), IdL2(jD) ® JΎmJΎ can clearly be
identified with Σ g G GΠ(γ goφ)w(g) E / ^ ^ c ) / ^ This implies that
Jχ(ΣgGGΐl(yg o φ)u(g))Jx = Σg€ΞG

τ

ΎgoψUgis well defined as an element of
F(X, G). Therefore the map φ* defined on F(Y, G) by φ * ( Σ g e G ^ t / g ) =
Σg(=GTy ΰφUg makes sense, and since

φ*(m) = Ad{Jx){ldL2(D) 9 Ad Jγ(mj)

is the composition of two *-monomorphisms, φ* is itself a *-mono-
morphism of F(Y, G) into F(X, G), as desired. The image of φ* under
this injection is equal to the von Neumann subalgebra generated by
{Ty.φ\y e L">(Y)} and {Ug\g e G}. D

We conclude this section with two examples:

EXAMPLE 1.2. Let (X, μ, G) be a G space, and let (pt., 1, G) be the
trivial ergodic action of G on a point. Proposition 1.1 shows that the von
Neumann algebra generated by the left regular representation of G, oS?(G),
injects into F(X,G). The image of «S?(G) under this injection is just
S(X,G). If G is abelian S(X,G) is *-isomorphic to L°°(G, vG) via the
Fourier transform. D

EXAMPLE 1.3. Let (Y, v, G) be an ergodic G space and let β: Y X G
-> v4 be an element of Z\(Y9 G), ̂ 4) where A is a separable compact
abelian group. Form the skew product G-space (Y XβA9 v X PA, G). By
the proposition F(Y,G) injects naturally into F(Y XβA,G). Indeed,
F(Y XβA,G) is naturally *-isomorphic to a certain crossed product
F( Y, G) X fi A, as will be detailed in §3. D

2. The normalizer of S( X, G) in F( X, G). Throughout this section
we assume that G is a countable abelian group acting freely and ergodi-
cally on the compact Lebesgue space (X, μ) so as to preserve the finite
measure μ. As first noticed in [9], in this case both the subalgebras
S(X, G) and R(X,G) are maximal abelian in F(X,G). The following
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invariants for maximal abelian subalgebras of factors were first intro-
duced by Dixmier:

DEFINITION 2.1 ([3]). Let j / b e a maximal abelian subalgebra in a
factor Jί. Then J / is termed (regular, semi-regular, singular) in Jί if the
unitaries in Jί which normalize J/generate (Jt, a proper subfactor of Jί,
onlyj/) respectively.

It is clear that R( X, G) is always regular maximal abelian in F( X, G).
The well-known theorem of Connes, Weiss and Feldman [1] has shown
that all regular maximal abelian subalgebras of the hyperfinite IIX factor 0t
are conjugate by some element of Aut(^). Therefore, under conditions
stated at the beginning of this section, in no sense is the position of the
subalgebra R(X,G) in F(X,G) an invariant of the measure-theoretic
isomorphism class of the system (X, μ, G). However, the situation of the
maximal abelian subalgebra S(X, G) in F(X,G) has been much less
studied. O. Nielsen proved in [16] that if (X9 μ, G) has no non-trivial
eigenfunctions, (i.e. has continuous spectrum) then S(X, G) is simple in
F(X,G). His result motivated us to study the general case.

Before proceeding to an arbitrary G-space, it is illuminating to
examine the case where (X, μ, G) has pure point spectrum, so that up to
measure-theoretic isomorphism (X, μ) is a separable compact abelian
group with G embedded as a dense subgroup. Denote this embedding by
p: G -> X, It is an easy calculation that Vχ e X, the unitary T normalizes
S(X, G); in fact T*UgTχ = χ(p(g))Ug Vg e G. AS {Tχ\χ e X) and {Ug\
g & G) generate F(X,G), the maximal abelian subalgebra S(X, G) is
regular in F(X,G).

Indeed, given the embedding p: G -» X there is a dual embedding p:
X -* G9 whose image is dense since p is one-to-one, and which is one-to-one
since Im p is dense. Therefore one obtains a natural action of the
countable abelian group X on the compact abelian group G given by
γ χ = γp(χ), X e X> Y e G; this action gives rise to a group measure
factor F(G, X). There is a natural *-isomorphism between F(X, G) and
F(G, X) which carries S(X, G) onto R(G, X) and R(X, G) onto S(G, X).
To see this, let JF: L2(X) β L2(G) -• L2(X) ® L2(G) be given by
^x ® ̂ G> where J ^ is the Fourier transform carrying δχ -* χ(x), χ e ί ,
x e X and J ^ is the Fourier transform sending δg -> g(γ), g G G , γ e G.
Let /<* be the unitary involution on L2(G) ® ̂ 2 ( ^ ) associated to the
group measure factor F(G, X). Then Ad(J^) is the desired *-ίsomor-
phism; a version of this fact was first noted by P. Hahn in [8]. Ίn fact
Ad(Jό&-)(T) = Uχ9 Vχ e 1, and Ad(J6&XUg) = Γ,, Vg e G, thus
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maps S(X, G) and R(X, G) and S(G, X), respectively. Now if

v μv Gx) is an arbitrary free ergodic G-space, a result of Singer ([21],
extended to the case μ quasi-invariant by Zeller-Meier [25]) gives a general
formula for all unitary elements of F(Xλ, Gλ) which normalize R(Xχ9 G±).
Using Singer's formula, we can compute the unitaries in F(G, X) which
normalize R(G, X) and then pull them back via Ad(^F*J^) to find those
unitaries in F(X,G) which normalize S( X, G). To be specific, we have
proved the following generalization of Hahn's remarks in [8]:

PROPOSITION 2.2. Let G be a countable abelian group acting ergodically
on the compact Lebesgue space (X, μ) so as to preserve the finite measure μ,
and suppose that the system (X,μ,G) has pure point spectrum. Then
S(X,G) is regular maximal abelian in F(X,G), and any unitary in F(X,G)
which normalizes S(X,G) must have the form

where the sets [£ χ i | χ 1 G X) are measurable subset of G satisfying (w.r.t.
the action of X on (G, v$))

Jό- U E

(2) vά{EχinEj = 0, XιΦχ2,

0, XlΦχ2,

and f: G -> S1 is any measurable function. Conversely any unitary element
in F(X,G) of this form normalizes S(X,G). D

In the course of calculating the unitaries in F(X,G) which normalize
S(X, G) for more general G-spaces (X, μ, G) we shall need some technical
devices of direct integral decomposition due to Takesaki [22]. To be in a
positive to use this machinery it is first necessary to represent the pair
(F(X,G), S(X,G)) on the direct integral Hubert space j^{L\X))ydv
(where Γ = G, v = Haar measure on Γ) in such a fashion that S{ X, G) is
represented as the diagonizable operators 3> = L°°(Γ, v). We give here a
representation constructed by Nielsen [16]. Identify L2(X) 0 L2(G) with
j®{L2{X))ydv by corresponding to u(x) 0 8g the square integrable vec-
tor field (γ -> g~\y)u(x)) Vg G G , V M E L2(X). Denote this identifica-
tion operator by IF. Let Kbe the unitary operator mapping L2( X) ® L2{G)
to itself defined by K(u(x) <8> 8g) = u(xg) ® δg. Then Ad(^K*) is the
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desired representation of (F(X, G), S(X, G)) on j^(L2(X))γdv. In par-
ticular Vg G G, Ad(J*X*)([/G) is the diagonal operator Dg\ y -* g'\y).
Let Π denote the representation of F(X, G)' = JXF(X, G)JX (regarded as
an abstract W*-algebra) on j^(L2(X))ydv given by Aά(&K*). Then
operators in Φ(F(X, G)') will be decomposable elements of
3S{ /Γ

θ( L2( X)) y dv) since F{ X,G)' c S( X, G)'. Indeed a calculation shows

that if / G L°°( X), g E G , then 11(^7}^/^) is given by the Borel field of
operators (γ >-> y(g)fU8\ where for g ^ G, U8: L2(X) -» L^Jf) is the
unitary operator defined by U8(u)(x) = u(xg), u G L2(X), and where for
/ G L°°(X) f: L2(X) -> L2(X) is defined by pointwise multipUcation.
Now let L°°(X)0 be a norm-separable C*-algebra weakly dense in L°°(X).
Let ^ be the C*-algebra acting on L2(X X G) generated by the TfU

gwhere / G L ° ° ( X ) O and g ^ G. Then ^ is a norm-separable C*-algebra
weakly dense in /"(X, G) and JX^JX is a norm-separable C*-algebra
weakly dense in F{ X, G)f. Using results from [22], the representation Π
restricted to JX^JX can be decomposed as a direct integral of representa-
tions Π = f®ΐlydv, where each Π γ represents JX°UJX on L2(X)y. The
Takesaki equivalence relation for the pair (F(X9 G), S(X, G)) will be the
subset {(γl9 γ2) G Γ X Γ|Π γ i is unitarily equivalent to Π γ 2}. We refer the
reader to [2] for the definition of the Takesaki equivalence relation for a
general von Neumann algebra-maximal abelian subalgebra pair (Jί, s/).

With the above representation Ad(^K*) of F(X,G), S(X,G) in
hand we are prepared to prove

THEOREM 2.3. Let (X, μ, G) be a free ergodic action of the countable
discrete abelian group G on the compact Lebesgue space (X, μ) which
preserves the finite measure μ. Then the normalizer of S(X, G) in F(X,G) is
the subalgebra F(Yd> G), where (Yd9 η, G) is the maximal quotient action of
(X, μ, G) having pure point spectrum. D

Here by 'normalizer' of S(X, G) we mean the von Neumann subalge-
bra of F(X,G) generated by the unitary elements in F(X9G) normalizing
S( X, G). Before proving the theorem we state this immediate

COROLLARY 2.4. Let(X, μ, G) be as in Theorem 2.5. Then the maximal
abelian subalgebra S(X, G) of F(X, G) is

(1) regular if and only if(X, μ, G) has pure point spectrum
(2) semi-regular if and only if the maximal quotient action of '(X, μ, G)

having pure point spectum is a free action
(3) singular if and only if (X, μ, G) has no non-trivial point spectrum,

i.e. is weak-mixing. Π
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Statement (3) was first proved by Nielsen using methods which we
have extended to the general case. We remark that Theorem 2.4 is very
much related to the work of P. Hahn [8], who determined the Takesaki
equivalence relation for (F(X, G), S(X, G)). However the above formula-
tion, emphasizing the normalizer subalgebra corresponding to the maxi-
mal quotient action with pure point spectrum, is new. Since in our proof
the structure of the unitaries normalizing S(X, G) is deduced, and the
relationship to the results of Singer mentioned in Proposition 2.2 is
emphasized, we believe our version is worth repeating.

Proof of Theorem 2.3. Suppose that we are given the representation of
F(X, G) = Jίon j®(L2(X))ydv described in the previous paragraphs so
that S(X, G) = L°°(Γ, v) is represented as the diagonizable operators 2).
Let ί/be a unitary in Jt with

U*(S(X,G))U= S(X,G).

Then using a decomposition due to Guichardet [7], there must exist a
decomposable unitary operator T given by the Borel field of unitary
operators γ -> Ty and a ^-measurable map θ: Γ' -> Γ' where Γ' is a conull
Borel set of Γ, such that

U= TV,

where V is the operator

(Here (γ -> w(γ)) represents an arbitrary vector field in jγL2(X)ydv, θ
is the map associated to the adjoint action of U on S( X, G) = L°°(Γ) by
Mackey's point realization theorem, and r(θ,y) is the Radon-Nikodym
derivative dv(θ~ι)/dv.)

Since F(X, G) is a IIX factor, it has a trace; hence for every m e
S(X, G), tr(ί/*mί/) = tr(m). This implies r(0, v) = 1.

We now let Π be the representation of Jx°llJχ c F(X, G)' on
jγ(L2(X))γdv described above. Recall that Π may be decomposed as a
direct integral representation j®Iiydv, where the representation Π γ of
JXVJX onL\X)y = L2(X) is given by Πy(JxtfUgJx) = γ(g)/t/g, V/e
L°°( X)09 Vg G G. Then note that for almost γ e Γ , Π γ is unitarily
equivalent to Π r i ( γ ) . For ease of notation also denote this conull subset
of Γ by Γ'. Indeed

UyTy = Tyπθ-ι(y) for every γ e Γ',
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where γ -» Ty is the decomposition of T into unitary operators mentioned
above (see Thm. 1.2 of [22]). Therefore for every γ G Γ'5 Vg e G and

Taking g = e we obtain

/Γγ=Γγ/ V/eΓ(4

Hence Γγ e (L°°(X)0Y = L°°(X). Therefore suppose that Ty = /γ(x) <=
L°°(X). Since Γis unitary |/ γ | = 1. Now setting/(x) = 1 in equation (*),
we obtain

y(g)U*JΎ(x) = Jy(x)θ

= θ-ι(y)(g)Jy(x)Us Vg

Therefore /γ is an eigenfunction for the action of G on X with
eigencharacter ^~1(γ)γ~1. Since the action of G on Xis free, ergodic, and
preserves the finite measure μ9 there exists an at most countable collection
of eigenfunctions for (X, μ, G) which are orthonormal, and which form a
multiplicative group. Call this collection {fp(x)\p e Γo c Γ}, where Γo is
the countable subgroup of Γ = G corresponding to the eigencharacters.

Set Ep = {γ e Γ|β- 1 (γ)γ- 1 = P} Then Γ = U p e Γ / p ? and

v{EpiΠEp2) = 0 f o r P l # p 2 i n Γ 0 >

and since ^ - 1 is an invariable transformation, with

the Ep must satisfy

v(Epι Pi Π £p 2 p2) = 0 for px # p2 in Γo.

In addition, note that for γ G £ p , /γ(x) and fp(x) have the same ei-
gencharacters, thus there must exist λ γ e S1 satisfying

JΎ(X) = λ γ/p(x)

Let λ be the Borel function defined a.e. onΓ / byλ(γ) = λγ.
The above remarks have shown that any unitary U e JF( X, G) having

the property that U*(X, G)U = S(X, G) has with respect to the proper
representation the form

U = T - F,
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where T is a decomposable operator whose decomposition is given by

T = (γ -> λ(γ) Σ XEp(y)fP) (/p G L"(x) witheigencharacterp)
V p e Γ 0 /

and V(y -> w(γ)) = (γ -> ^(fl^γ))* where fl'^γ) = γ p for γ e isp.
One may decompose U even further and note that T is the product

A Γ', where 4̂ is the unitary diagonalizable operator γ -> λ(γ), and T7' is
the decomposable operator

Y "* Σ XEP(Y)

Since A e L°°(Γ, *>) = S(X, G), the operator ί/' = T F is also in
F(X,G) and normalizes ^(X, G), so without loss of generality we ex-
amine U'. Our aim is to show that U' as an element of F(X,G) is
contained in the natural embedding of F{Yd,G) in F(X, G), where
(Y ,̂ η, G) is the maximal quotient action of (X, μ, G) having pure point
spectrum. We do this by actually constructing an element of F(Yd, G)
which maps onto £/' under AdίΛ^*), where recall that Ad(^K*) gives
the Takesaki representation of (F(X, G), S( JT, G)) on J^(L2(X))γdv.

Let {/P(Λ:)|P e Γo} be the eigenfunctions for (X, μ, G) chosen as
above. Then Tf e F(Yd9 G) for p e Γo, and a calculation shows that the
operator Ad(K^*)(T f) sends the vector field γ -> y(y) to the vector field
γ -> /P(JC) j(γp) Now let Ĵ "Γ* be the inverse Fourier transform mapping
L2(G) -* L2(Γ) ^ven by ^ Γ *(δ g ) = g'ι(y)9 g e G, γ e Γ. For every set
£ p , p G Γo, associated to the decomposition of the normalizing unitary
operator U\ let

ep(g)=^r(xEp(y))> 8 * G, γ e Γ.

Since χ^(γ) e L°°(Γ, ^), the function ep(g) corresponds to a projection
in S(X, G), which we denote by Pe, and thus Pe has the Hubert algebra
expansion

The {cpg |g e G} are in fact the coefficients in the Fourier expansion of

One calculates

y(y)) = (γ - χ £ p (γ)/ p (x) y(yp))

where (γ -> j'(γ)) is an arbitrary vector field in f®L2(X)Ίdv. Now since

= ( γ - Σ



ERGODIC ABELIAN GROUP ACTIONS 393

it is clear that Ad K3?\W) = Ad(tf F*)(Σp e Γ oPe p7^), where P6p is a
projection in S(X, G) Vp G γ0, and Tf^F(Yd9G) corresponds to an
eigenfunction with eigencharacter p,\/ρ e Γo.

Hence U' ^ F(Yd, G) as desired, and the decomposition

v = Σ Peτfp

is just the Hubert algebra decomposition corresponding to the "pullback"
of the corresponding element in F(G, Ϋd) obtained in Proposition 2.2.

Since it is clear that F(Yd,G) is contained in the von Neumann
algebra generated by those unitaries normalizing S(X, G), this completes
the proof of the theorem. D

REMARK 2.5. The proof of the theorem shows that the Takesaki
equivalence relation given by the representation Ad(K^*) of
(F( X, G), S(X, G)) on j*(L\X))ydv is equal to {(γ, pγ)|γ E Γ , P G

Γo }. This was one of Hahn's results in [8]. The equivalence relation will be
ergodic in the sense of [11], [5] if and only if Γo is dense in Γ, hence if and
only if the action of G on (Yd9 v) is free. D

Under the suppositions of the Theorem F{ X, G) will be a 1^ factor
(in fact the hyperfinite IIX factor). Hence F(X, G) has normal faithful
conditional expectations onto all of its von Neumann subalgebras. In
particular S(X9 G) is the image of a normal faithful conditional expecta-
tion. Recall that Feldman and Moore in [6] term a maximal abelian
subalgebra si of a factor Jί Cartan if it is regular and is the image of a
normal faithful conditional expectation. We thus have shown

COROLLARY 2.6. Let (X, μ, G) be as in the statement of Theorem 2.4.
Then S(X, G) is a Cartan subalgebra of F(X, G) if and only if the system
(X, μ, G) has pure point spectrum.

EXAMPLES. Let the action of Z on the circle (S\ v) with Haar measure
be given by z n = λ"z, where λ = e2w/ΰ£, a irrational. Then S{Sι, Z) λ is a
Cartain subalgebra of F(S\ Z) λ.

Let the action of Z on the torus (S1 X Sι

9 v X v) be generated by the
transformation

T: SιX Sι -> Sι X Sι; T(z9 w) = (λz, zw),

where λ is as above. Then this action is free and ergodic, and the maximal
quotient action of (S1 X S1, v X v, Z) with pure point spectrum is just the
system (S\ v,Z) of the previous paragraph. Therefore S(Sι X Sι,Z) is
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semiregular in F(Sλ X Sι

9Z)9 with its normalizer equal to the natural
injection of F(S\ Z) λ into F(Sλ X S\ Z).

Let the action of Z on (Π^JO, l } z , Π ! V ( i 2)) = (Xμ) be generated
by the shift; then {X, μ,Z) has continuous spectrum so that S(X9Z) is
singular in F(X9Z).

Let (X, μ,Z) be as in the above paragraph and let Z act on the
product space (X X Z/2Z, μ X v{\9 \)) by

(x, [i])n = (xn,[i + w]),

where [/] denotes the image of / E Z in Z/2Z. Then the maximal quotient
action of (X X Z/2Z, μ X μ,Z) having pure point spectrum is given by
the transitive action of Z on Z/2Z. Thus the normalizer of S(S X Z/2Z, Z)
in F(Jf X Z/2Z, Z) is equal to F(Z/2Z, Z), which is not a factor, but can
be decomposed as a direct integral /s?(Λf2(C)) dz.

3. Abelian skew product extensions of ergodic actions and the corre-
sponding crossed product von Neumann algebras. In this section we use
the interconnection between compact abelian skew product extensions
and crossed products of finite factors by countable automorphism groups
to prove results concerning the point spectrum of compact abelian skew
product extensions, when the acting group G is abelian and measure-pre-
serving. These results allow us to solve the inner conjugacy problem for
S(Y, G) and Aa(S(Y, G)) when (Y, v, G) has pure point spectrum and Aa

is the *-automorphism of F(Y9G) corresponding to a one-cocycle a e
Z\(Y,G);Sι).

We begin by examining the group-measure von Neumann algebras
associated to comapct abelian skew product extensions. Let (Y, v, G) be
an ergodic G-space and suppose that β ^ Zι{(Y,G)\ A) where A is
a separable compact abelian group. Form the skew-product G-space
(YxβA9v X vA,G). By Proposition 1, F(Y,G) injects naturally into
F(Y XβA, G). Indeed we state the following proposition, which is no
doubt known to others (for the transformation group C*-algebra case, see
[19, Theorem 1.5.7]. We keep the notation of §1 concerning crossed
products.

PROPOSITION 3.1. Let (Y9v9G) be an ergodic G-space, and let β:
Y X G -* A be a cocycle of{Y9 v, G) into a separable compact abelian group
A. Then there exists an action β: A -> Aut(F(Y, G)) such that F(Y9G) XβA
is *-isomorphic to F(Y XβA9 G), and under this ^-isomorphism Π ( J F ( Y, G))
is carried onto φ*(F(Y, G)), where φ: Y X A —> Y is projection in the first
variable.
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We leave it to the reader to verify that the action β of A on F( Y, G) is
given by

β(*)[ Σ ΓU\ = £ Tχ(β(y,g))yUg, x e A.

For any a e Z\(Y, G); S1), let Aa denote the *-isomorphism of F(Y, G)
defined by

then clearly β(χ) = Λχo/?, Vχ e i . Note that for a e Z ^ Γ , G); S1), Λα

is inner if and only if a e £((7, G); S1) ([21]).
Thus when A is a separable compact abelian group, the von Neumann

algebra F(Y XβA,G) can be regarded in a natural way as the crossed
product of F(Y, G) by a countable group (isomorphic to A) of *-isomor-
phisms each of the form Aa for some a e Zx((7, G); S1). It is very useful
to have this decomposition, since crossed products of finite factors by
countable automorphism groups have been extensively studied by
Nakumura and Takeda in [14], [15]; several of their results will prove very
important to us.

For the remainder of this section, let (Y, J>, G) be a free ergodic G
space, where G preserves the finite meausre v. We want to restrict our
study to compact abelian skew product extensions corresponding to
minimal cocycyles. If a e Zx((7, G); K) for some separable compact
group K, denote by Ka the closed subgroup of K generated by {α(y, g)\
j E 7 , g G G ) . Recall from [26] that a is said to be minimal if there is no
β e Z\{Y, G); K), β - a, with Kβ c Ka. The following proposition pro-
vides a test for minimality of a given cocycle with values in a compact
abelian group:

PROPOSITION 3.2. Let (7, *>, G) be a free ergodic G space, where G
preserves the finite measure v. Let a e Z1((7, G); A) where A is a separable
compact abelian group. Let Ba be the subgroup of A defined by Ba= {χ e
A |χ o a e 51((7, G); S1)}. Then if β is any minimal cocycle cohomologous
to α, Aβ = B£={a e A\χ(a) = 1V X G Ba}. Π

Proof. By a result of Zimmer [26, Cor. 3.8], there exists a closed
subgroup Am of A and a minimal cocycle β - a with yiw = Aβ. The same
proof shows that Am is independent of the minimal cocycle /? chosen,
since A is abelian. It is easily checked that Ba as defined in the statement
of the proposition is a subgroup. We prove that Ba = (A^1-, where
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(Am)±= { χ E A\χ(a) = lVαE Am). As(A^)± = Am9 the desired result
will follow.

We first note that (A^c Ba, for suppose that χ e {Amy . Then
χ(β(y, g)) = 1. Since β - α, there exists a Borel /: Y^^4 with
f(yg)β(y, g)f(y)~ι = « (^ g) Therefore,

= x(/(^g))8(^,g)/(j)r1

= x(/(jg))x(i8(j ?

=> X α is a coboundary,

Now suppose that χ e Ba, so that χ a is a coboundary. Then
choosing a minimal cocycle /? with β ~ α, χ ° jβ will be a coboundary as
well, since χ is a homomorphism. Hence there exists a Borel function Z>:
Y -> S1 satisfying

6(^g)6(j;)"1 = χ(iβ(j;?g)) *> a.e., V g e G .

Examine the following function defined on Y X Am; h(y, z) = b(y)χ(z).
Note that h is G-invariant with respect to the skew product action of G on

But since β was chosen minimal with Am = Λ ,̂ by ([26, Cor. 3.8])
(Y X Am, v X γ^, G) is ergodic, thus h(y, z) must be v X i^ a.e. con-
stant. Therefore b(y) is v a.e. constant and χ is a constant function on A
which implies that χ G ( ^ J 1 , a s desired. Dm

Proposition 3.2 has several corollaries, the first of which is immediate
upon taking A = S1.

COROLLARY 3.3. Let (7, *>, G) be as in the statement of 3.2, and let
a e Z x ((y, G)\ Sι). Let n be the least positive integer such that an{y, g) =
a{y, g))n is a coboundary or oo is no such n exists. Then a is cohomologous
to a minimal cocycle β taking on values in Dn, where Dn represents the nth
roots of unity for n finite and D^ = Sι. Furthermore (Y X βDn, v X vD, G)
is ergodic. D

COROLLARY 3.4. Let (7, v, G) be as in 3.2 and let a e Z\(Y, G); A),

where A is compact separable abelian. Then F(Y XaA,G) is a factor if and
only if Ba is equal to the identity subgroup.
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Proof. By Zimmer's results quoted above, (Y XaA,v X PA,G) is

ergodic if and only if α is minimal and Aa = A. Thus by Proposition 3.2

(Y XaA, v X vA, G) is ergodic iff Ba = {e). The result then follows from

([23], Cor. V. 7.8). D

We thus may restrict ourselves to minimal cocycles when examining

ergodic compact abelian skew product extensions. We now investigate the

conditions under which such an ergodic extension (Y XβA,v X vA,G) has

point structure distinct from that of the quotient action (Y, v9 G). By

using von Neumann algebra techniques, we can prove the following

theorem, which in the case where A = S1 and G = Z was first proved by

Anzai [27]:

THEOREM 3.5. Let G be a countable discrete abelian group acting freely

and ergodically on the compact Lebesgue space (Y, v) so as to preserve the

finite measure v. Let β e Zι((Y, G); A) be minimal, where A is a separable

compact abelian group and Kβ ~ A. Then the skew product ergodic G-space

(Y XβA, v X vA,G) has point spectrum distinct from the quotient G-space

(Y, p9 G) if and only if there exist non-trivial γ e G, χ e A, and a Borel

function m: Y ~» Sι such that

(*) y(g)m(yg)m(yY1 = χ(β(y, g)) v a.e., Vg <Ξ G

i.e. if and only if 3χ <Ξ A such that χ°β is cohomologous to a cocycle

"restricted" from G.

Proof. The proof of the theorem uses the interplay between crossed-

product von Neumann algebras and their corresponding generating

skew-product dynamical systems. Let F(Y XβA, G) be the group measure

von Neumann algebra corresponding to the system (Y XβA9 v X PA, G).

Then recall that the finite factor F(Y XβA,G) is naturally *-isomorphic

to the crossed product von Neumann algebra F(F, G) X$A. Let ey(y, z)

be an eigenfunction for (Y XβA, v X vA,G) with a eigencharacter γ. Then

note that

TeUgT*=γ(g)Ug V g e G

and

TeTmT* = Tm f o r m E φ * ( r ( 7 ) ) .

Hence Te is a unitary element which normalizes φ*(F(Y, G)) in

F(Y xβA
Ύ,G). By a result of Nakamura and Takeda [15], if Jίis a finite

factor and D is a countable group of outer automorphisms of Jΐ, then any
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unitary element W in Jί X D which normalizes H(Jί) must be of the
form U(U)u(d) form some d e D and some unitary U e Ji'. By applying
Proposition 3.1 and using this result, we see that Te must be of the form
Te = φ*(U)Tf for some χ E J and unitary U e F(Y9 G) where fχ(y, z)
= χ(z). Then φ*(U) = TeTfχ, so that φ*(U) e i?(7 X^Λ, G) Π
φ*(F(y,G)) = φ*(Λ(Γ,G)). So* there must exist m(y) e L°°(y), |m(>OI
= 1 a.e. with eγ(y9 z) = m(y)fχ(y9 z)9 for some χ e A. It follows that

M - ^ 0(.y> g) z ) = w(^g)/χ(^g, z^(j^, g)).

But

hence

yί^^γί^ z) = ™{yg)xiz)x(β(y> g))

=> γ(g) = m(y)m(yg)~1χ(β(y, g))

=> γ(g)m(>yg)m-1 = χ(/3(^, g)).

This completes the proof of the theorem. D

REMARK 3.6. Note that {χ e yί|χ satisfies (*) for some y G ( ? and
some Borel m: 7 -> S1} will be a subgroup of A9 which we denote by E.
The proof of the theorem shows that the von Neumann algebra of
F(Y XβA, G) generated by <p*(F(Y9 G)) and {TeJey is an eigenfunction
for (YxβA, vXvA,G)} will be *-isomorphic to the subalgebra of
F{Y9 G) XβA generated by U(F(Y9G)) and {u(χ)\χ e E}9 under the
natural *-isomorphism defined by Proposition 3.1. We denote this subalge-
bra by F(Y9G) XβE. In fact, under this *-isomorphism, F{Y,G)XβE
has a natural group measure-structure, as the following statement shows:

Claim 3.7. Under the ^-isomorphism defined in Proposition 3.1,
F(Y9 G) XβE is naturally *-isomorphic to F(X9 G) where (X, μ9 G) is the
quotient action of {Y XβA,v X vA,G) defined by the skew product
(Y XβA/E1- ,vXvA, G) where the quotient G-map φ': Y X A -> Y X
A/E1- is defined by <p'(y, z) = (y, z). Π

Proof. The proof is nothing more than an application of the result
from the Pontryagin duality theory that (A/C) = C^ for any closed
subgroup C of A. Let φ": Y X A/E± -> Y be the quotient G-map defined
by projection in the first variable. Note that φ" ° φ' = φ. It is clear that
{fx(y, z) = χ{z)\χ e {A/E^)} together with φ"(L°°(Y)) generates
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L°°(7 X A/Ex). Hence F(Y X A/EL , G) is generated by (φ")*(F(Y, G))
and {7} |χ &A/EX}. Consequently ψ'*{F(Y X A/Ex , G)) is genera-
ted by* φ'*φ"*(F(Y, G)) = φ*(F(Y, G)) and {7}χ V |χ e ( ^ / £ x ) } .
But by Pontryagin duality theory

{fx°ψ'\x e (Λ/F)} = {/xlx e ί ^ ) ^ £}.

Therefore (φ /)*(i7(7 XβA/E-1, G)) is equal to the von Neumann subal-

gebra of F ( 7 X ^ , G) generated by φ*(F(Y, G)) and {7}Jχ e £ } , and

hence is a *-isomorphic to F( Y, G) X ̂  is, as desired. D

We are now in a positive to determine under which conditions

Aa(S(Y, G)) is inner conjugate to S(Y, G) when (Y, v, G) is a free ergodic

G-space with pure point spectrum and a: Y X G -> Sι a 1-cocycle.

Clearly it is sufficient that α be a coboundary, since in this case Aa will

itself be an inner automorphism, but this is not necessary condition.

Indeed choose γ e G such that γ is wo/ an eigencharacter for (Y, J>, G).

Defining γ(> ,̂ g) = γ(g), v4γ will not be an inner automorphism since γ is

not a coboundary. In this case, however, it is clear by inspection that

(*) Aγ(S(Y,G)) = S(Y,G).

Our results show that, modulo multiplication by a coboundary, in order

that Aa(S) be inner conjugate to S, a must be a cocycle of the above

form:

THEOREM 3.8. Let (Γ, J>, G) be a free ergodic action of the countable

abelian group G which preserves the finite measure v and which has pure

point spectrum. Let a: Y X G -> Sι be a Borel l-cocycle. Then Aa(S(Y, G))

is inner conjugate to S(Y,G) if and only if a is cohomologous to a cocycle of

the form y(x, g) = γ(g) for some γ e G.D

Proof. Note that if β is cohomologous to a, Aβ(S(Y,G)) is inner

conjugate to Aa(S(Y, G)), so that without loss of generality we may

assume a minimal taking on values in a closed subgroup Dm c Sι with

Ka = Dm,m<Ξ {1,2,...,00}; r e c a l l ^ = S\

Suppose that Aa(S(Y, G)) is inner conjugate to S(Y, G). Then there

exists W e F(Y,G) with

We now examine the extension action (Y XaDm,v X 1^^^) =

, μ, G), where (>>, <ί)g = (yg, da(y, g)). Since a is minimal with ίCα =

Dm, (X, μ,G) is ergodic. Let φ: X -> 7 be the quotient G-map given by

projection in the first variable. We then can embed F(Y, G) as a subf actor

of F(X,G) via the map φ*. Note that α(φ(x), g) is a coboundary in
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Z\(X9 G); S1), i.e. there exists a Borel map fa: X -> S1 such that
fa(xS)fa(x)~l = <*(<P(x)> gY> t o s e e t h i s just define fa(y9 d) = d. Hence
φ*(S(Y,G)) and φ*(Aa(S(Y,G))) are inner conjugate in F(X,G) by
Ad ί/, where U = 7). Denoting the subalgebra 5(7, G) by S, one obtains

U*φ*(W)φ*(S)φ*(W*)U = t/*

Therefore Ad(U*φ*(W)) normalizes the maximal abelian subalgebra
S(X, G) in F(X9 G). But then by Theorem 2.3, U*φ*(W) is contained in
F(M,G) where (M, G) is the maximal quotient action of (X, μ, G) having
pure point spectrum. Note that (M, G) is an extension action of (Y, P, G),
so that F(Y, G) naturally embeds in F(M, G). Since φ*(W) G
φ*(F( Y, G)) c ,F(M, G), we obtain U e F(M9 G). But t/* = Tfa which
together with F( Y, G) generates F(X, G). Therefore F(M9 G) = /(J?, G),
which implies that (X, μ, G) has pure point spectrum. By Remark 3.7 this
implies that there exists some γ E G with a( y9 g) cohomologous to
Ύ(y> S) = Ύ(S) i*1 Z\(Y9 G); 51). This proves => the other direction is
clear from our remarks preceding the theorem. D

4. An uncountable family of non-inner conjugate cartan subalgebras
in the hyperfinite IIX factor. As mentioned in the introduction, Feldman
and Moore, using Connes' results on the simplicity of Out(^) =
Aut(^)/Inn(^), proved in [6] that the hyperfinite IIX factor 9t must
contain at least two Cartan subalgebras which are not inner conjugate to
one another. (Actually, in [13], G. Muravera had constructed two non-in-
ner conjugate regular (hence Cartan) subalgebras of Si). In a review of
[17], the referee noted that by using Connes', Feldman's and Weiss's
results on the uniqueness up to outer conjugacy of the Cartan subalgebra
in 3ί in conjunction with the methods of [6] one can easily see that the set
of inner conjugacy classes of Cartan subalgebras in 3% is uncountable. In
this section our aim is to apply the methods developed up to this point to
exhibit an uncountable family of Cartan subalgebras in the hyperfinite IIX

factor, no two of which are inner conjugate. This family will be contained
as a sub-family of {Aa(S( 7, G) |a e Z\{ 7, G) S1)} for some free ergodic
G-space (Y, v, G) where G is a countable abelian group, preserves the
finite measure μ, and the system (Y, v, G) has pure point spectrum. We
introduce the following easy

Claim 4.1. Let (Y, v, G) be a free ergodic G space, and let α, β e
Z\(Y,G)\ Sι). Then Aa(S(Y9G)) is inner conjugate to Aβ(S(Y9G)) if
and only if S( Y, G) is inner conjugate to Aa-iβ(S(Y9 G)).
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Proof. Note that for [/unitary in F(Y, G),

U(S(Y9G))U*=Aa-ip(S(Y,G))

« Aa(US(Y, G)U*) = Aa(Aa-ιβ(S(Y9 G)))

~ Aa(U)Aa(S(Y, G))Aa{UY = Aβ(S(Y9 G)).

Since Aa( U) is a unitary element of F( Y9 G), the proof is complete. D

In what follows, results on the structure of H\(Y9G)\ S1) will be
used often, where (Y, v, G) is a free ergodic G-space, G is countable
abelian, and v is finite and G-invariant. These results use the idea of orbit
equivalence; so we briefly review notions that will be used:

DEFINITION 4.3. Let (Xl9 μl9 Gλ) and (X29 μ2, G2) be free ergodic Gλ

and G2 spaces respectively. A Borel map Φ: Xx -> X2 is called an orbit
equivalence of (Xv μl9 Gλ) and (X2, μ2, G2) if Φ is a Borel isomorphism
with Φ*(μ2) equivalent to μλ and if {Φ(xGx)} = {Φ(JC)G 2} for almost
every x e Xv

Any such orbit equivalence defines a cocycle <p: Xx X Gλ -> G2 by

The map Λ: ^ X f f ^ ^ x G2 given by Λ(x, g) = (Φ(x), φ(x, g))
will define an isomorphism of ergodic measure groupoids [see [18] for
definitions and technical results] and Λ*: L2(X2 X G2) -> L2(X1 X Gλ)
gives a spatial isomoφhism of F(X29 G2) and F(Xl9 Gx). Indeed, the map
Λ associated to the orbit equivalence defines a one-to-one correspondence
between Zι((X29 G2); L) and Z1((X1,G1); L) for any locally compact
second countable group L, and this correspondence carries Bι(( X29 G2); L)
onto B\(Xl9 Gx)\ L). One thus obtains an equivalnce between
H\(X29 G2); L) and H\(XV Gλ); L), and when L is abelian this equiva-
lence is an isomorphism of groups. Therefore it makes sense to refer to
Hι(@; L), where 9 represents the orbit equivalence class (or ergodic
equivalence relation—see [5], [18] for this point of view) associated to a
free ergodic group action.

When Gλ and G2 are abelian, acting freely and ergodically on the
compact Lebesgue spaces (Xl9 /x1), (X2, μ2) so as to preserve the finite
measures μλ and μ2 respectively, a deep result due to Dye [4] shows that
(Xl9 μl9 Gλ) and (Xl9 μ2, G2) axe orbit equivalent. Indeed the results of
Connes, Feldman and Weiss cited earlier show that any two free ergodic
measure preserving amenable (see [1]) dynamical systems are orbit equiva-
lence (again assuming the groups to be countable discrete), and give rise
to the hyperfinite IIX factor via the group measure construction.
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The above remarks show that there are many different ways to go
about studying 7/1(J^; Sι) where J^*(the hyperfinite IIX ergodic groupoid)
represents the orbit equivalence class of actions corresponding to the
hyperfinite IIλ factor. From this point of view, the results of Westman [24]
that Hι{^\ Sι) contains as a subgroup every countable discrete abelian
group and every compact second countable abelian group, seem very
natural.

EXAMPLE 4.3. We briefly discuss a method of showing that H\&\ Sι)
contains A as a subgroup, where A is any second countable compact
abelian group. Let A = D which is a countable discrete abelian group.
Form the space Ud(ΞD{0,l}d = X, giving X the product measure
^d^ϋi^i/i) = J11' where μ1/2 assigns measure 1/2 to each point in {0,1}.
We write each x e Xas {xd}deD9 xd e (0,1}, and let D act as a group of
automorphisms of (X, μ) by the D-shift:

The reader is referred to [12] where it is shown in a more general
setting that D acts freely, ergodically, and in a measure-preserving fashion
on (X, μ), and that the system (X, μ, D) has continuous spectrum: i.e. if
there exists/e L2(X) and p (Ξ D with f(xd) = ρ(d)f(x) a.e., then/is a
constant function and p = 1.

Therefore the group A = D embeds into Z\{ X, D)\ Sι) = Z\&\ Sι)
via p(x, d) = ρ(d) for p Ξ A, d e d, and x e X, with px(x, d) ~ p2(x, d)
if and only if ρx = p2. This gives the desired embedding of 4̂ into

1 s1). D

Now let Y = Π / e N{0,l} / 9 with product measure v = Π / e N ( ^ 1 / 2 ) / ,
and let G = Θ/eΛr{0,1}7. Both G and Γhave topological group structures
defined by coordinate wise addition mod 2. It is well-known that G
embeds as a dense subgroup of Y, and that the G-space (7, v, G) defined
by this embedding is free, ergodic, measure-preserving, and his pure
spectrum. Therefore F(Y, G) is the hyperfinite IIX factor and S(Y, G) is a
Cartan subalgebra in F(Y, G). Also G is isomorphic to Y so that every
element of G has order at most 2.

Let A 3 be the compact second countable abelian group defined by
Π/eN{0,1,2},. where the group structure is defined by coordinate-wise
addition mod 3. We note that every element of A except the identity has
order 3. By our remarks in Example 4.4 we can embed A3 into
H\(Y9 G)\ S1). Indeed let (X, μ, A3) be as in the example, and let
Φ: (y, v) -> (X, μ) be an orbit equivalence, so that there exists a map
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Λ: ( F x G ) - ^ ( I x i 3 ) given by A(y,g) = (Φ(y)9φ(y, g)) where
φ €= Z\(Y, G); i 3 ) . Then for any p e i 3 = Λ3, p o φ e Z 1 ^ , G); S^
This map of A3 into Z 1 ^ , G)\ Sι) is clearly a group homomorphism, and
by the remarks of the preceding paragraph it is clear that p ° φ is a
coboundary if and only if p Ξ= 1.

THEOREM 4.4. Le/ (7, P, G) and A3 be as above. The family

{ Ap o φ(S( 7, G))\ρ e τ4 3} wαπ uncountable family of Cartan subalgebras of

the hyperfinite \lλ factor, no two of which are inner conjugate.

Proof. By Claim 4.1 it is enough to show that Apoφ(S(Y, G)) is inner

conjugate to S(7, G) if and only if p = 1. By Theorem 3.11, Ap O ( p(S(7, G))

is inner conjugate to 5(7, G) if and only if there exists γ ^ G such that

the cocycle y(y, g) = γ(g) is cohomologous to p « φ. Notice that p ° φ has

order 3 in Hι((Y, G); S1) unless p s 1 in which case p ° φ is obviously

trivial. On the other hand, every element of G has order two, so that for

y G G , the cocycle γ(y 9 g) = γ(g) has order at most two in Hι((Y, G); S1).

In fact γ( y, g) has order one if γ is an eigencharacter for some eigenfunc-

tion of (Y,v,G) and order two if not. Recalling that ρ ° φ will be

cohomologous to γ(y 9 g) if and only if [p ° φ] = [γ] in Hι((Y> G); Sι),

this order argument implies that p ° φ is cohomologous to some γ( y, g) if

and only if p ° φ is a coboundary (hence γ is an eigencharacter for

(7, v, G)). In this case p = I. Therefore Apoφ(S(Y, G)) is inner conjugate

to S( 7, G) if and only if p = 1 which implies by the claim that the family

{Apoφ(S(Y,G))\p<ΞA}

is a family of pairwise non-inner-conjugate Cartan subalgebras of the
hyperfinite II ι factor. Since A has the cardinality of the continuum, this
completes the proof. D

REMARK 4.5. Let the action of Z on (S1, vsi) be generated by
multiplication by λ = e2ηria

9 a irrational. Then (Sι, p,Z)λ has pure point
spectrum. In [17] it was claimed that there exist an uncountable family of
cocycles of 1 c Z1((51,Z)λ; S

1) such that for βl9 β2 e /, Aβϊ(S(S\ Z) λ )
is inner conjugate to Aβ2(S(S1,Z)λ) if and only if βλ = β2. To obtain /
one embeds A2 = 11^^(0,1}, into J^1((51,Z)λ; S

ι) as in Example 4.4.
Then one shows there exists a subgroup L c K2 with [K2:L] < 4 such
that {Aβ(S(Sι,Z)λ)\[β] G L) is the desired family. This proof is some-
what more complicated than the construction given in Theorem 4.4; one
must pass to the subgroup L due to the fact that there are three distinct
abelian skew product ergodic extensions of (S1, v, Z)a by D2 = (1, -1}
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having pure point spectrum, which correspond to the three distinct
subgroups of S1 containing {λn\n e Z} as a subgroup of index 2. These
extensions must be taken into account when applying Theorem 3.8. D

Note added in proof. After the publication of [17] and after writing
this article, the author received a preprint from S. Kawakami, "On the
weak cohomology groups..." to appear in Proc. 3rd Japan U. S. Seminar,
which contained results similar to some of the results in our §§3 and 4,
and an article by V. Jones and S. Popa, Some properties of M.A.S.A.s in
factors, Birk. Verlag Basel, 0T6 (1982), 89-102, in which results related to
the topic of our §4 are proved. Also see another article of G. Muravera,
On regular abelian subalgebras, Sib. Math. J. 13 (1982), 805-816, in which
an uncountable family of elements in the hyperfinite II1 ? factor is con-
structed, no two of which are inner conjugate, and each of which generates
a regular M.A.S.A.
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