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ZERO SETS OF INTERPOLATING BLASCHKE
PRODUCTS

KEn1 IzucHi

For a function 4 in H®, Z(h) denotes the zero set of / in the
maximal ideal space of H* + C. It is well known that if ¢ is an
interpolating Blaschke product then Z(g) is an interpolation set for H>.
The purpose of this paper is to study the converse of the above result.
Our theorem is: If a function £ is in H* and Z(h) is an interpolation set
for H*, then there is an interpolating Blaschke product ¢ such that
Z(q) = Z(h). As applications, we will study that for a given interpolat-
ing Blaschke product ¢, which closed subsets of Z(q) are zero sets for
some functions in H*. We will also give a characterization of a pair of
interpolating Blaschke products g, and g, such that Z(g,) U Z(qg,) is an
interpolation set for H>.

Let H* be the space of bounded analytic functions on the open unit
disk D in the complex number plane. Identifying a function 4 in H* with
its boundary function, H* becomes the (essentially) uniformly closed
subalgebra of L*, the space of bounded measurable functions on the unit
circle 0D. A uniformly closed subalgebra B between H® and L* is called
a Douglas algebra. We denote by M(B) the maximal ideal space of B.
Identifying a function 4 in B with its Gelfand transform, we regard % as a
continuous function on M(B). Sarason [10] proved that H*® + C is a
Douglas algebra, where C is the space of continuous functions on 9D, and
M(H*) = M(H* + C) U D. For a function 4 in H*, we denote by Z(h)
the zero set in M(H*® + C) for A, that is,

Z(h) = {x € M(H>® + C); h(x) = 0}.
For a subset E of M(H*), we denote by cl( E) the weak*-closure of E in
M(H*). A closed subset E of M(H*) is called an interpolation set for

H® if the restriction of H* on E, H*|., coincides with C(E), the space
of continuous functions on E. For points x and y in M( H*), we put

p(x, y) = sup{lf(x)l; f € H*,|f| < 1, f(y) = 0}.

We note that if z and w are points in D, p(z, w) = |z — w|/|1 — wz|, which
is called the pseudo-hyperbolic distance on D. For a point x in M(H%),
we put

P(x)={ye€ M(H”);p(x,y) <1},
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which is called a Gleason part containing x. If P(x) = {x}, P(x) is called
trivial. For a distinct sequence {z,}%_; in D satisfying ['15_, (1 — |z,]) <

h b - I 2272

n=1 lznl 1- Z"n

is called a Blaschke product with zeros { z,}%°_;. A sequence {z,}5_, in D
is called an interpolating sequence if for every bounded sequence {a, }_,
there exists a function A in H® such that h(z,) =a, for every
n. By Carleson’s interpolation theorem [1], it is characterized by
inf, I1,. ,.,p(z,, z,) > 0. A Blaschke product is called interpolating if
its zero sequence is interpolating,.

It is well known that if ¢ is an interpolating Blaschke product, then
Z(q) is an interpolation set for H* (see [6, p. 205]). Our problem in this
paper is to study the converse of the above assertion.

THEOREM 1. Let h be a function in H* and let h = 10 be an inner-outer
factorization of h. If Z(h) is an interpolation set for H®, then

(1) O is invertible in H*, and

(i1) there is an interpolating Blaschke product b such that Z(b) = Z(h)
and 1b € H*.

We will give some applications of our theorem. The first question is;
for a given interpolating Blaschke product, g, which closed subsets of
Z(q) are zero sets for some functions in H*. We will give the complete
answer in Corollary 1. In [8], we proved that a union set of two interpola-
tion sets of M(L*) for H* is also an interpolation set, but there are two
interpolating Blaschke products ¢, and ¢, such that Z(gq,) U Z(g,) is not
an interpolation set. The second question is; for which pair of interpolat-
ing Blaschke products ¢; and g,, Z(g,) U Z(q,) is an interpolation set for
H>. The answer will be given in Corollary 4.

To prove Theorem 1, we need some lemmas.

LEMMA 1 [6, p. 205]). If b is an interpolating Blaschke product with zeros
{z,}_, then Z(b) = cl({z,}_1)\{z,}*_1 and Z(b) is an interpolation

set for H®.
The following lemma follows from Carleson’s theorem [1].

LEMMA 2. Let {z,}%_, and { w,}_, be disjoint interpolating sequences.

Then {z,,w, n=12,...} is an interpolating sequence if and only if
infﬂ.m p(zn’ wm) > O
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The following lemma follows from [7, Theorem 6.2].

LEMMA 3. Let {z,};_, and {w,}x_, be sequences in D and o be a
positive constant with 0 <o < 1. If |z,| > 1 (n — ) and p(z,,w,) <o
for every n, then for each point x in cl({w, }5_,)\ {w, }X_,, there is a point y
incl({z,}2 )\ {z,}5-1 such that p(x, y) < o.

Proof of Theorem 1. Since Z(h) is an interpolation set for H*, by the
open mapping theorem there is a constant o, 0 < 0 < 1, such that if
f€ C(Z(h)) there is f; € H® with f; = f on Z(h) and ||fi]| <||f||/o.
Then we have

(1) p(x,y) >0 foreveryx,ye Z(h),x # y.

Consequently, there are no nontrivial Gleason part P such that Z(k) O P.
By the proof of [5, Corollary 1], O is invertible in H* and I is a finitely
many product of interpolating Blaschke products b, i = 1,2,...,n. We
note that the above proof depends deeply on Kerr-Lawson’s lemmas in
[9].

To prove (ii), it is sufficient to show the case I = b,b, and Z(b,) #
Z(I). Let {z,}>_, and {w,}_, be interpolating zero sequences of b,
and b,. Let {w; ,}_; be a subsequence of {w,};>_; whose pseudo-hyper-
bolic distances from {z,}%_; are less than o, and put {w,, }7., =
{w, Yoo\ { w1, }o-1- We denote by ¢, and g, the interpolating Blaschke
products whose zero sequences are {w; ,}7_; and {w, ,}_; Tespectively.
By Lemma 2, b,q, is an interpolating Blaschke product. By Lemma 1 and
3, for each point x in Z(q,), there is a point y in Z(b;) such that
p(x, y) < 6. Since Z(q,) U Z(b,) C Z(h), by (1) we have Z(q,) € Z(b,).

Then we obtain
Z(h) = Z(I)=Z(b) Vv Z(‘h) v Z(Qz) = Z(b,q,)-

Thus b = b,g, satisfies (ii).

Let g be a non-continuous interpolating Blaschke product. By Theo-
rem 1, if h € H* satisfies Z(h) C Z(q), then there is an interpolating
Blaschke product b with Z(b) = Z(h) and hb € H*. It only shows that
the zero sequence of b can be found in the zero sequence of 4. But the
following corollary shows that there is an interpolating Blaschke product
b, such that Z(b,) = Z(h) and qu € H>. This fact means that the zero
sequence of b, can be found in the zero sequence of g.

COROLLARY 1. Let q be an interpolating Blaschke product and let E be a
closed subset of Z(q). Then the following assertions are equivalent.
(i) E is an open-closed subset of Z(q).
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(i) There is an interpolating Blaschke product b with E = Z(b) and
gb € H™.
(iii) There is a function h in H* with E = Z(h).

Proof. Let { z,,}_, be an interpolating zero sequence of q.

(i) = (ii) Suppose that E is an open-closed subset of Z(q). Then there
are disjoint open subsets U and V of M(H®) such that U D E and
VD> Z(g)\E. We may assume that {z,}>, Cc UU V. Let b be an
interpolating Blaschke product with zeros U N {z,}_,. Then gb € H™.

By Lemma 1, we get Z(b) C UN Z(q) = E and Z(gb) C V. Thus we
obtain

E=En Z(q)=En(Z(b) U Z(gb)) = EN Z(b) = Z(b).

(ii) = (iii) is trivial.

(ili) = (i) By Lemma 1, Z(h) is an interpolation set for H*. By
Theorem 1, we may assume that 4 is an interpolating Blaschke product
and Z(h) ¢ Z(q). We note that Z(h) # Z(hq) = Z(q). By the proof of
Theorem 1 (we put b, = h and b, = q), there are interpolating Blaschke
products g, and g, such that ¢ = ¢,9,, hq, is an interpolating Blaschke

product and Z(hq) = Z(hg,). Since Z(h) N Z(q,) = & and Z(h) U (q,)
= Z(hq) = Z(q), Z(h) is an open-closed subset of Z(q).

COROLLARY 2. Let q be an interpolating Blaschke product. Then there
exists h € H*® such that Z(q) N Z(h) # Z(g) for every g € H*.

Proof. By Corollary 1, it is sufficient to show the existence of # in H*®
such that Z(gq) N Z(h) is not open in Z(q). Let {z,}>_, be the zero
sequence of g. Let { E, }%_, be a sequence of subsets of { z,}5_; such that

(2) E is an infinite subset,

(3) ENE, =@ if n#m, and
[e e}

(4) U En = {zn}n=1'
n=1

Then there exists a function 4 in H* such that

=1/nonE, foreveryn=1,2,....
We obtain Z(gq) N Z(h) # &. By (2), there exists x,, € Z(q) such that
h(x,) = 1/n. Thus Z(q) N Z(h) is not an open subset of Z(q).

The following corollary shows that the assertion of Corollary 2 is also
true if Z(h) is replaced by M( B) for some Douglas algebra B.
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COROLLARY 3. Let q be an interpolating Blaschke product. Then there is
a Douglas algebra B such that Z(q) N\ M(B) # Z(g) for every g € H®.

Proof. For a subset J of L*, we denote by [J] the uniformly closed
subalgebra generated by J. By [8, Proposition 6.3], there exists a maximal
Douglas algebra B contained in [ H*, g] properly. Then we have g ¢ B.
So we get Z(q) N M(B) # &. We shall show that B satisfies our asser-
tion. To show this, suppose not. By Corollary 1, there exists an interpolat-
ing Blaschke product b such that

(5) gb€ H® and Z(b)= Z(gq) N M(B).

Then we have b € [H*, 7). By [3, Theorem 1], there is an interpolating
Blaschke product ¢ such that

(6) by € H* and H*+ Cg [H™ §]| g [H> b] c [H, 3]
This implies that there exists x,in M( H* + C) such that
(7) W(xo)|=1 and b(x,) = 0.
By (5), g¢(x,) = 0 and Xo & M(H*, q]). By (5) and (7), we have x, €
Jll(B) and x, € M([B, y]), consequently [ H*, g] # [B, ¢]. By (6), we get
Y € [H*, g]. Since B is maximal in [ H*, 7], we get ¢ € B. But by (5) and
(6), we have

@ + Z(y)c Z(b) c M(B),

so we obtain ¢ & B. This is a contradiction.

COROLLARY 4. Let g, and q, be interpolating Blaschke products. Then
the following conditions are equivalent.
(1) Z(g¢,) Y Z(q,) is an interpolation set for H*.
(i) Z(q,) N Z(4q,) is an open-closed subset of Z(q,).
(iii) There exists an interpolating Blaschke product q, such that Z(q;) =

Z(q1) N Z(q5)-

Proof. (1) = (i) We put ¢ = ¢:9,. By (1), Z(q) = Z(¢,) Y Z(g,) is an
interpolation set for H*. By Theorem 1, we may assume that ¢ is an
interpolating Blaschke product. By Corollary 1, Z(g,) is an open-closed
subset of Z(q;) U Z(q,). Then Z(q,) N Z(q,) is an open-closed subset of
Z(qy)-

(i1) = (iii) follows from Corollary 1.

(iii) = (i) By Corollary 1, (iii) implies that Z(g¢;) N Z(g,) and
Z(q,)\ Z(q,) are open-closed subsets of Z(gq,), and Z(g,)\ Z(g,) is an
open-closed subset of Z(¢g,). Again by Corollary 1, there are interpolating
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Blaschke products b,, b, and b, such that Z(b;) = Z(q,) N Z(q,), Z(b,)
= Z(q;)\ Z(q,) and Z(b;) = Z(q,)\ Z(q,). By Lemmas 1, 2 and 3, we
may assume that b;b,b, is an interpolating Blaschke product. Conse-
quently, Z(q,) U Z(q,) = Z(b,b,b,) is an interpolation set for H*.

The author would like to thank the referee and Y. Izuchi for shorten-

ing the proof of Theorem 1.
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