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Let w(x) be a positive locally integrable weight on [0, 1]. Discussed
are conditions on w necessary and sufficient for the (dyadic) Hardy-
Littlewood maximal function to map L log L(wdx) into L'(w dx) or
into weak L'

1. Introduction. Let Mf denote the (dyadic) Hardy-Littlewood
maximal function of f, for flocally integrable on R”. That is,

1
Mf(x) = sup —- :
) = 598 17,

the sup being taken over all dyadic cubes in R” containing x. It is
well-known that M is a bounded operator from L?(R") to L?(R") when
p > 1, takes L' to weak L', and for functions f supported in a dyadic cube
Q, satisfies

| Mf<cf Iflog* ||+ ClQ.
Qo Qo

More recently, Muckenhoupt and others have studied the behaviour of M
when the L7 spaces with respect to Lebesgue measure are replaced by
those with respect to the measure w(x)dx, w € L' . A nonnegative
locally integrable function w is said to be in Muckenhoupt’s (dyadic) 4,
classforl < p < o0 if

(5]
Q

1.1) sup =4 (w)=A4, < 0.
( Q dyadic w(x) L9(w dx/w(Q)) i i
Here 1/p + 1/q=1, w, is the average (1/19D fo @ of w over Q and
w(Q) = [, w. (More generally, if E is a measurable set in R” we denote
[z @ by w(E).) In [3], Muckenhoupt proved that given w € L} . there
exists a constant C = C,  , such that

p,w,n

(12) J Mo <cfiffe

if and only if w is in the 4, class, and that w{ Mf > A} < (C/A)[ |f|w if
and only if w is in the A4, class. It would therefore seem reasonable to

33



34 A. CARBERY, S.-Y. A. CHANG AND J. GARNETT

expect that a necessary and sufficient condition on w € L} for the
existence of a C such that

(1.3) fQ Mfo<C fQ |f|log* |fle + Cw(Q,)

should hold whenever supp f C Q, would be obtained by taking the
“exponential limit” as ¢ — oo in (1.1). That is, w should satisfy what we
shall call the 4* condition:

(A4*) There exists an ¢ > 0 and a C > 1 such that

o [l 0] ey = ©

Unfortunately, while 4* is necessary for (1.3) to hold, it is not
sufficient (as we shall see in §4). In §3 we give a necessary and sufficient
condition A** that (1.3) hold. This condition may be realized as the
“exponential limit” as g — oo of certain other expressions, which, for
each p > 1 are equivalent with the 4, condition. The equivalence breaks
down in the limit, however, and A* turns out to be necessary and
sufficient only for M to take L log L(w dx) to weak L'(w dx). In §4 we
prove this fact, and we compare our rather complicated condition A** to
growth conditions on 4 ,(w) as p | 1, and see that none of these conditions
is adequate to describe A**. It would be of interest to find a more concise,
easy-to-verify form of A**.

Central to our proof of the equivalence of 4** with (1.3) is a new
proof of the weighted L? theorem which does not rely upon interpolation
or upon the step “w € 4, = w € 4,_, for some & > 07, used both by
Muckenhoupt and Coifman and C. Fefferman, [2]. E. Sawyer [4] and M.
Christ and R. Fefferman [1] have recently given other such proofs, but
neither proof has a counterpart in the L log L setting. Section 2 is devoted
to this new proof.

For simplicity, we choose to work with the dyadic Hardy-Littlewood
maximal operator in this note. However, our results can easily be ex-
tended to those for the full maximal operator by standard techniques.
Finally, C denotes a constant depending only possibly on the dimension
(but not necessarily the same at each occurrence), and dependence of
constants upon other quantities is indicated by subscripts.

2. The weighted L? theorem. In this section we give a new proof of
the weighted L? theorem of Muckenhoupt. We shall need the insights it
provides when we treat the case of L log L in §3.
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We first prove the elementary fact that if w € 4, then (1 Jw)d 1
satisfies the doubling condition.

LEMMA 2.1. Suppose w € A,. Then there exists an a <1 such that
whenever E is a measurable subset of a cube Q and |E| < 1|Q|, we have

‘*’Q)qwdx < (wg)qwdx
— <a — .
fE ( w /) w(Q) fQ @) «(Q)
Proof. By Holder’s inequality we have

w(Q)'—QTé-IE—I = fQ_E"’QS (fQ_E(%g)qde)l/q(widx)l/p,

that is,

w(Q)l/ql—Q—I—é—‘lﬂ < (‘/;2—E (-Q—Q)qw dx)l/q.

Thus if w € 4, and |E| < 3|Q| we obtain

E‘;lzgfg (%)qwdx < (%)qw(Q) < fQ~E (%)qwdx.

Hence

witha =1 — (24,)7% O

THEOREM 2.2. Let p > 1. Then w € A, if and only if there exists a
constant C, , such that

f IMf[ o < Cp,wf If @ forallfe L?(w).

Proof. As in [3], setting f = x 50~ /77!, we see that (1.2) implies that
w &€ A, To see that 4, is sufficient for (1.2), we apply a Calderéon-
Zygmund decomposition to Mf, and choosing R, = 2¥"*D  we write
D, = {Mf> R,} =U,Q¥% where the Q% are the maximal dyadic cubes
satisfying
1

2R, > — [ |f| > R,.
“T 04 ok g
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Notice that |Qf N D, ,,| < 3|Q%| by our choice of R,. Let E, = D, —
D, .. Then

(1 =27 ] ERpa(D) < [ M0 < 2077 L REw (D))
k

2(n+1)p Rpl
< 2VEA ?lQlf fla

= 2(n+1)pZRP 1y Zf |f|wQ}c

Jj =0 HabV

< 2(n+1)pZRp IZ Z

j 1= 0( QFNE,,

Wok \ 4 /9
(/ ( Q’) wdx) .
QknE,,, b

J

By repeated application of Lemma 2.1, we see that

f —l—wdxsa’f iwdx.
QkN Dy, w? kWl

» 1/p
lf] w dx

Consequently,

™ 1/
f |Mf|pw < 2(n+1)PZR£_IZ (/ |f|pw dx) p(a’A,‘ﬂw(q]"‘))l/q
k =0

j OiNE .,

- 1/q
< 20+VPY R2-1 Y (alAg) (f
k

=0 Eyyy

» 1/p 1
i) (oD
o 1/p
- 2(n+1)pAp Z aI/qZ(f Iflpw) (sz(Dk))l/q
1=0 k E

s » 1/p 1/q
<2000, oo [ ) (ERE(D,)
1=0 R’ k
We therefore obtain
P 4
[Mffo<c,.[Iffe
with
C.o= CPA{,’(I —a’) ? < CPAI’,’("“). m]
3. The L log L theorem. In this section we give a necessary and
sufficient condition on w for the maximal function to be bounded from L

log L(w) to LY(w) locally. By a Calderén-Zygmund decomposition of a
dyadic cube Q we shall mean a collection of dyadic subcubes { 0%}, , of
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Q such that (a) in Q% N int Qf = @ if j # [, (b) each Q¥*! is contained in
some QF, k > 0, and (c) the 0-th generation of cubes consists of the single
cube Q. In such a situation, we write D, = U;Q%and E, = D, — D, ,,.

THEOREM 3.1. The following conditions on a locally integrable w are
equivalent:
(i) There exists a constant C, such that whenever f is supported in a
dyadic cube Q, then

fQMfw < cwa f|log* |f|e + C,0(Q).

(ii) (A**) There exists an € > 0 and a C_ such that whenever Q is a
dyadic cube and { Q f} is a Calderon-Zygmund decomposition of Q, then

w(Qj.‘ﬂEk) }
erxP{SE,- w(x)|Q% xQ’( *) (Q) < Cor

(iii) There exists an € > 0 and a C,_ such that whenever T is a positive
linear operator satisfying |Tf(x)| < Mf(x), and Q is a dyadic cube, then

erxp{eT*(wa)(x)} wdx <C.

w(x) w(Q) ~
(Here, T* is the adjoint of T with respect to L*(dx), i.e. [(Tf)gdx =
[f(T*g) dx.)

Proof. We shall show (i) = (iii) = (ii) = (i).

(i) = (ii1). Suppose Q is a dyadic cube and T is a positive linear
operator with |Tf(x)| < Mf(x). Let E = {x € Q|T*(xow)(x) > w(x)}.

Let
w

T*(x oW )
for a small & to be determined later. Then

/; exp{e-j—w*(wﬂo-)-}wdx

=fg—]:(xi)wdx=fQTgdeSfQMg‘“’dx

g = es(T" (xgw)/®) . X £»

w

<C,| glog" gwdx + C,w(Q) (by (i)

m\'

T*(x9) | e+ C.0(0).

IA

C / M xoo)/___© o
“Jg T*(XQ‘*’)
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If we now choose & such that C_e < 1 we obtain (iii).

(iii) = (ii). If Q is a dyadic cube and {Q%} is a Calder6én-Zygmund
decomposition of Q, let

Tf(x)_§2,:|gl

Then clearly |Tf(x)| < Mf(x) and

[ 1(0) di xgr o5 (x)-

T*(xgw)(x) = iQJC—Ek—)fo(x).
k,j IQ,'

Thus (ii) is a special case of (iii).

(i) = (i). We assume that f is supported inside a dyadic cube Q and
proceed as in the positive part of Theorem 2.2 with the same Calderon-
Zygmund decomposition used there. Then the collection {Q}‘ N Q}ist
together with Q forms a Calderon-Zygmund decomposition of Q in the
sense above. So we have

[ Mfwdx < C f Rw(E, N Q) + Cw(Q)
o k=1

|/\

2 IQIf fle(@4n @ N E) + Ca(Q)

IA

CfQ |f()€)|{,§1 Z w(Qlerij; Qk)XQ}‘nQ(x)} dx + Cw(Q)

U joe+ 1
__C_/(;) elog swdx

w(Q¥N Q0 NE)
w(x)1QF N Q|

+Cf exp{ez

XanQ(x)} wdx + Cw(Q)

<cC, fQ |f|log* |f|w dx + C,0(Q),

by Young’s inequality and (ii). We have finished the proof of the theo-
rem. O

REMARK. We may re-work the above proof in the case of L” to obtain
a condition similar to A** (involving Calder6n-Zygmund decompositions
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of cubes, but with the exponential replaced by an L?%norm) which would
necessarily be equivalent to 4,. As noted in the introduction, the equiva-
lence fails in the L log L case and A** turns out to be strictly stronger
than 4*. See the following section.

4. A comparison of 4** with A* and related conditions. While it is
clear that 4, = A** = A*, we give in this section some examples to show
that the reverse implications do not hold. We show the equivalence
between A* and the growth condition 4, = O(1/( p — 1)), and show that
no growth condition 4, = O((1/(p — 1))#) with B > 0 is sufficient to
imply A4**. Finally, although an inequality of the form [ Mf|| s, <
(C/(p — D)IIfllLr(w) is sufficient for w to be in 4** by Yano’s theorem
[S], we give an example to show that such an inequality is not necessary.

If 0 < a < oo and any of the equivalent conditions of Proposition 4.1
below is satisfied, we say that w belongs to A*.

PROPOSITION 4.1. Let 0 < a < oo. Then the following conditions on a
locally integrable w are equivalent:
(i) There exists an € > 0, and a C_ such that

L) ) “ wdx
sup exp( =C, < .
Q dyadic fQ "*’(Q)

(ii) There exists a C,, such that

w{Mf>A} < wa l%[l + log+(%)]l/aw.

(iii) 4,(w) = O((1/(p — 1)) asp L 1.

Proof. We show the implications (i) = (ii) = (iii)) = (i), and, for
simplicity, treat only the case a = 1.

(i) = (ii). Suppose € > 0 is such that

EW
sup/ exp( Q) wXx
o 7o w

By Young’s inequality, we see that

o(0) =

wdx

@) g f V1= [ e

< cf a2} oGy + O VI + 10" 1) 555
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By homogeneity it suffices to show that

o{Mf>No} < [ IfI(1 + log*|f])w dx

for some fixed A,, which we take to be C,C + C,. Now, by (4.1),
{Mf> A} =UQ);, where the O, are disjoint dyadic cubes satisfying
Jo, 111 + log*|f)wdx/w(Q) > 1. Hence

o{Mf> X} =0(UQ)) < [ IfI(1 + log*|f|)w dx.

(ii) = (iii). Using the inequality a(l + log™ a) < (C/(p — 1))a?
(valid when a > 1/2 and p > 1) and combining it with the fact that if
w{Mf> A} < (A/N)[|f|?w, then 4,(w) < CPA"/?, we see the result
immediately.

(iii)) = (i). Expanding out the exponential,
Wy \ W dx ( Ewg ) w dx
erxp( @ ) f Z Yk @ ] w(Q)

<l+e+ Z %Ak,(w)k

<l+e+ Z —-C"k"<C ife < (2¢C,) ", o

We remark here that it can also be shown that the condition A% is
equivalent to the seemingly stronger condition

e fgp{ GM(:XQ)} :(g) <

Forj € Z,let I, = [27/7%,27/), and from now on we consider weights
of the form

o(x) = ¥ wx, (%)

JEZ
We shall restrict ourselves to sequences satisfying w, = wg, k < 0, w; | 0 as
J = o0, and w; < Cw;,, for allj.

LEMMA 4.2. Let w(x) be a weight of the above form.
(@) w € AX < 3 & > 0, C, such that

© w.\) )
Y exp{s(——’-)} Sk Cw&.
Wi

= 2k T e
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(b) w € A** = 3¢ > 0, C_ such that

iexp{ Zwl}—fs o

k=0 Lol )

Proof. (a) We need only check the A* condition on dyadic intervals of
the form [0,2~ ™), m € Z, since w is constant on all others. Also, because
of the form of w, only the positive integers are relevant. On such an
interval I = [0,27"),m > 0, w(]) = w,/2™ and w; = w,,, and the expres-
sion for A* follows.

(b) Since (1/x) 5 1 f(¢)| dt < CMf(x), w € A** implies that

[ volaama= [ ([ 2o

1
< wa Ifllog*|flw + C,
0

whenever supp f C [0, 1]. By duality, we obtain

flexp{ o) flwxx) dx}w(t) dt < C,

which reduces to the above expression. O

PROPOSITION 4.3. Let w; = (j + 1) "# where 0 < B < 0.
(@AQwed*=af <1
bweAd* = B<1
cweAd, = p=0.
Consequently no two of the conditions A,, A**, Af = A* coincide.

Proof. (c) is obvious; so is (a) and the forward implication of (b) once
we have applied the previous lemma. To prove the reverse implication of
(b), we reverse the steps of part (b) of the lemma. Let

Mof(x) = swp 7 [ (0l

11 I<x
and forn > 1,
1
Mf(x)= s f, |£(2)ldt.

xel
2" Ix<|I1<2"x
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(Here, we are assuming that supp f C [0,2 ") for some integer m, w being
constant on all other dyadic cubes ) Then Mf(x) < £_o M, f(x). Now

f0 Mof(x)a(x) dr = ¥ wkf M,f(x) dx

scia ( [ Vitog* e + 2+

<" Ifliog*|flw dx + Col([0,277),

by the unwelghted L log L theorem and the property w;,; < w; < Cw,
of w. Now let Mf(x) = X2_, M, f(x); notice that

M) < o [0 ().
Hence,
f Mf(x)w(x)dx < f ( ) 23 : /2;'1‘ “’_(xfldx)V(t)ldt

<c, /0 |f |log *|f|e dx

+Cef ‘ exp{ 0 = Z = 1f2_m w(xx) dx}w(t) dr.

t/2n+ 1
With a little calculation, the reader may verify that the last term is
dominated by w(0,2" ™) inthe case w; = (j + 1) 72,0 < B < 1. m]

ExaMPLE 44. For each a, 1 < a < o0, there exists w € A* — A**.

Proof. Let A = 27/%, and let w; = X" when n,_, <j < n,. Here, n, is
an increasing sequence of positive mtegers ng=0;1etA,=n,—n,_, =
#{jlwj=N},sothatn, =A; + --- + A

Let 0 =ry<r,<r --- be an increasing sequence of positive in-
tegers (r, =j will do) and for XiZhr, <r<Xi 7, let A =

2Zn2ntd2natnd2or Thys {A,) is a rearrangement of the geometric
progression {2"}, and clearly any set of j consecutive A,’s must contain
one of size greater than or equal to 2/*1; thus

(4.2) n—ng=A0,+ -+ A =277 V) Vg
On the other hand,

+r
A, =4(2nFn— 1)
Jj=1
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and therefore
n+ ot

Z A = 4(24l+"~+’k+1 _ 1) _ 2r1+"’+’k+1+1
J
Jj=1
JERA e+l
—_— At tr +1 __ — —
o S Ry Ry S

Therefore
nt oo,

(4‘3) A’l+"'+'k+1 2 Z A} Vk.
j¢r1+jf~1+rk+1

Now our sequence w; satisfies the conditions of Lemma 4.2; we shall use
(4.2) to prove that w € A%, and (4.3) to prove that w & A**.

To see that w € 47, we suppose that n,_; < j < n, and compute the
expression in Lemma 4.2.(a):

> w 0§ o B}
> epe ) %/ L- ke D ¥ ek

k k
k=j 2 k=j J p=q+1 k=n,_;+1 2

< 2e®+ 2™ Z es2
p=q+1

o0
< 2ef+ Y 2% Mane? "
Jj=0

<C ife<® §2, by (4.2).

If & were in A**, Lemma 4.2.(b) would give the existence of C,_ and ¢
such that

0 k
L “i
X exp{e )y wk}

k=1 j=1
0 "p Ap p-1
= es(k—np-1) q—p
Y X Pl exp{e > AN
r=1 k—np 1+1 q=1
0 np e(k—n,_q)
_ Z e(Alxl—P+---+Ap_,r1) y &£ “ !
2k—np_l
p=1 k=n, ;+1
<C,.

For e < (log2)/2,

4 ee(k—n,,_l)
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and so if w were in A**, we would have that for all ¢ sufficiently small
e(A,A"P+ e 4+8, AThH
ay(e) = s

satisfies a,(€) < 1 for all but finitely many p. We shall now show that for
arbitrarily small ¢, log a,(€) can be nonnegative for infinitely many p, and
s0 w cannot be in A**. Observe that

log a,(¢) e(Al}\l"” + -0+ Ap_l)\'l)
A+ - +4, A+ -+ 4,

_ log2 — P1oe(/A)

np_l

b

and so if we choosep =r, + r, + --- + r,.; + 1, (4.3) implies that
log a (e gANP+ -+ A _AT!
ay(e) e(A A7)y plog/)

A+ o+ 4, 2Arl+-~-+rk+1 n, 1
> EA"k-«»l —_ log2 — &g(lﬂ > O
2 n,_i
if k = k(¢) is chosen sufficiently large. This completes the example. a

EXAMPLE 4.5. Let w, = (j + 1) 7%, with 0 < B8 < 1. While w € 4** by
Proposition 4.3, w does not satisfy [ |Mf|?w < C?/(p — 1)?[ |f|?w as
pll

Proof. Let g(x) = (log(1/x))#/9(1/p + 1/q = 1). Then || g|| .o, = 1,
and

Mflerco > Csup{| [ (1) @ e gl < 1)

where
Tf(x) = %j:xf(t) dt.
But
[ (@)gwdx = [ f(Tg)wdx
where

Tg(r) = (t)j (x)w(x) (logz)mﬂ,

with our choice of g. Hence

C 1 1/q
(p—1)M, > ?"T*g"uw) > C(/O (1og ) dt) ,
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(where M, = sup{|IMf|| .»(u)| I fll Lr(wy < 1}), and, since log(2/t) & L,
M,isnot O1/(p—1)aspll.
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