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QUASI-NORMAL STRUCTURES
FOR CERTAIN SPACES OF OPERATORS
ON A HILBERT SPACE

ANTHONY To-MING LAU AND PETER F. MAH

Let E be a dual Banach space. E is said to have quasi-weak*-normal
structure if for each weak* compact convex subset K of E there exists
x € K such that ||x — y|| < diam(K) for all y € K. E is said to satisfy
Lim’s condition if whenever { x_} is a bounded net in E converging to 0
in the weak* topology and lim ||x || = s then lim_ ||x, + y|| = s + |||l
for any y € E. Lim’s condition implies (quasi) weak*-normal structure.
Let H be a Hilbert space. In this paper, we prove that .7 (H), the space
of trace class operators on H, always has quasi-weak*-normal structure
for any H; J (H) satisfies Lim’s condition if and only if H is finite
dimensional. We also prove that the space of bounded linear operator on
H has quasi-weak*-normal structure if and only if H is finite dimen-
sional; the space of compact operators on H has quasi-weak-normal
structure if and only if H is separable. Finally we prove that if X is a
locally compact Hausdorff space, then C,( X)* satisfies Lim’s condition
if and only if Cy(X)* is isometrically isomorphic to /,(T') for some
non-empty set I'.

1. Introduction. Let E be a Banach space. A bounded convex
subset K of E has normal structure if every non-trivial convex subset H of
K contains a point x, such that

sup{llx0 —yl:y € H} < diam(H).

Here diam( H) = sup{||x — y||: x, y € H} denotes the diameter of H. The
Banach space E is said to have normal structure if every bounded closed
convex subset of E has normal structure. If E is a dual space then E is
said to have weak* normal structure if every weak* compact convex
subset of £ has normal structure. In [6] Lim introduced the notion of
weak* normal structure and proved that /; has this property. It also
follows from the proof of Theorem 3 in [4] that /;,(I') has the same
property for any non-empty set I'. Furthermore, an application of Pro-
position 2 in [9] shows that /_(I') has weak* normal structure if and only
if I' is a finite set.

Let H be a Hilbert space. Let Z( H) be the space of bounded linear
operators from H into itself with the operator norm. Let ¢(H) be the
closed ideal of compact operators in #(H). Then, as is well known,

109



110 ANTHONY TO-MING LAU AND PETER F. MAH

C(H)** = #(H) and €(H)* can be identified with 7 ( H), the trace-class
operators on H with the trace norm (see [12, pp. 63-64]). When H is
infinite dimensional, it is known that €( H) and 7 ( H) contain isometric
copies of ¢, and /,, respectively [12, Proposition 1.4 and Theorem 1.6 p.
62]. It follows, then, that the Banach spaces ¢(H), 7 (H) and #(H) do
not have normal structure unless H is finite dimensional [1].

A concept weaker than that of normal structure was introduced by
Soardi in [11]. A bounded convex subset K of a Banach space has
quasi-normal structure (or close-to-normal structure [13]) if for every
non-trivial closed convex subset H of K, there exists x € H such that
|x = y|l < diam(H) for all y € H. A Banach space has quasi-normal
structure (quasi-weak-normal structure) if every bounded (weakly com-
pact) closed convex subset has quasi-normal structure. If, in addition , it is
a dual Banach space then it has quasi-weak*-normal structure if every
weak* compact convex subset has quasi-normal structure.

In §2 of this paper, we prove, among other things, three theorems on
quasi-normal structure and its generalizations for certain spaces of opera-
tors on a Hilbert space H. First, we prove that #(H) has quasi-weak*-
normal structure if and only if H is finite dimensional (Theorem 1).
Secondly, we prove that 7 ( H) has quasi-weak*-normal structure for any
H (Theorem 2). Finally, we prove that ¥(H) has quasi-weak-normal
structure if and only if H is separable (Theorem 3). A table summarizing
our results is provided at the end.

Let E be a Banach space. Then E * is said to satisfy Lim’s condition if
whenever {¢,} is a bounded net in E*, ¢, converges to 0 in the weak*
topology and lim ||¢,|| = s, then lim ||¢, + || = s + ||¢|| for any ¢ € E*.
In [6], Lim showed that /; satisfies this condition for sequences. Also a
simple modification of the proof of Theorem 3 [4] shows that Lim’s
condition implies weak* normal structure (see Lemma 4). We prove in
section 4 that (Theorem 4) if X is a locally compact Hausdorff space, then
the dual Banach space Cy(X)* satisfy Lim’s condition if and only if
Co(X)* is isometric isomorphic to /;(I') for some non-empty set I. We
also prove that (Theorem 5) if H is a Hilbert space, then  ( H) satisfy
Lim’s condition if and only if A is finite dimensional.

As known [6, Theorem 1], if £ is dual Banach space with weak*
normal structure, then every nonexpansive mapping 7 of a non-empty
weak* compact convex subset K of E (i.e. ||Tx — Ty|| < ||x — y|| for any
x, y € K) into itself has a fixed point. Also [13, Theorem 1] if E is a
Banach space with quasi-weak-normal structure if and only if every
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Kannan map T of a non-empty weakly compact convex subset K of E (i.e.
|1 Tx — Ty|| < (|x — Tx|| + ||y — Ty|))/2, for any x, y € K) into itself has
a fixed point.

2. Quasi-normal structures.

THEOREM 1. Let H be a Hilbert space. Then %B( H) has quasi-weak *-
normal structure if and only if H is finite dimensional.

Proof. If H is finite dimensional, then #(H) is finite dimensional.
Hence #( H) has normal structure.

Conversely if H is infinite dimensional, write H = /,(I") where I' is a
complete orthonormal basis of H. Consider the map p: /_(I') —» Z(/,(I'))
defined by

p()()(1) = f()h(r), teT.

Then p is an isometry and algebra isomorphism of /_(T') into #(/,(T))
which is continuous when /_(I') has the weak* topology and #(H) has
the weak operator topology. By Proposition 2 in [9], there exists a weak*
compact convex subset K of /_(I') such that for each f € K, there exists
g € K with ||f — g||,, = diam(K) > 0. Since weak* topology and the
weak operator topology agree on bounded subset of Z(H), o(K) is also a
weak * compact convex subset of Z( H) with positive diameter. In particu-
lar #( H) does not have the quasi-weak*-normal structure.

LEMMA 1. Let E be a dual Banach space. Then E has quasi-weak *-nor-
mal structure if it satisfies

whenever {x,} is a net in E, x, converges to x in the
(%) weak* topology and ||x )| converges to |x|, then x,
converges to x in norm.

Proof. Suppose there exists a weak* compact convex subset K of E,
diam(K) > 0, such that for each x € K, there exists T(x) € K with
lx — T(x)|| = diam(K'). Following an idea of Wong [13, Theorem 2], let
W(K) denote the supremum of {|H|; H is a diametral subset of K } (H is
diametral if ||x, — x,|| = diam(KX) whenever x,, x, € H, x, # X,). As
shown in the proof of Theorem 2 in [13], W(K) is infinite. Let { x, } be a
sequence in K such that ||x, — x, || = diam(K), n # m. Since K is weak*
compact, there exists a subnet {x, } of {x,} such that x, converges to
some z € K in the weak*-topology. Passing to a subnet if necessary, we
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may assume that the net {||x, — 7(z)||} also converges. Then
diam(K) =|z —= T(z)| < lim ||x, — T(z)| < diam(K).

So lim,||x, — T(z)|| = diam(K). Since {x,, — T(z)} converges in the
weak* topology to z — T(z), and lim,||x, — T(z)|l = ||z — T(2)|}, it
follows that {x, — T(z)} converges in norm to z — 7(z). In particular,
the net {x, } converges in norm to z also. This contradicts the choice of
the sequence { x,,}.

The next lemma is due to K. McKennon [7, Lemma, 3.2]. For the sake
of completeness, we give a short proof.

LEMMA 2 (McKennon [T)). Let A be a C*-algebra and {e,} be an
approximate identity of A, e, > 0 and |le,|]| < 1. Let {¢3} be a net in A*
such that ¢pg — ¢ in the weak™ topology and ||¢gll = ||¢|l. Then for any
€ > 0, there exists a, B, such that

(1) IR — o] <e
and
(2) IR, 85 — 05 < ¢

for all B = B,, where R $(x) = ¢(xe).

Proof. Let x € A, ||x|]| < 1. Then using [5, Lemma 3.3] and some
properties of positive linear functionals, we obtain the following estimate

KR.9 — &, %) =6, x - ey — x)" =9, x - (1 = &))"
<lolllol[(x -(1 = e))*(x-(1 — e,))]
= lloll o] [(1 = e)x*x(1 = e,)]

<lell ¢l [(1 = e,)(1 = e,)] <lol p|(1 = e,),

where 1 is the identity in the enveloping von Neumann algebra 4** of 4
and |¢| is the absolute value of ¢. Since the net { e,} converges to 1 in the
weak* topology of A**, (1) follows from the above estimate.

A similar estimate as above shows that

”Re.,od)ﬁ ~ o] < gl [l (1 — es)-

Using [5, Lemma 3.5] and the fact that for each positive form |¢g],
Il gl Il = lldgll = Ippk1), the right side of the above estimate converges to
lloll |91 — e,,). Hence (2) follows.
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THEOREM 2. Let H be a Hilbert space. Then I (H) has the quasi-
weak *-normal structure.

Proof. By Lemma 1, it suffices to show that J(H) = ¢(H)* has
property (*x). Let 2 denote all orthogonal projections of H onto a finite
dimensional subspace of H. Order Zby: P > Q iff QP = PQ = Q. Then
(#, <) is an approximate identity for ¥(H). Since every T € ¥(H) can
be written in the form 7' = T, + iT,, T, self-adjoint, i = 1,2, it suffices to
show that if 7 is self-adjoint, then lim ||7P — T'|| = lim ||PT — T|| = 0.
Indeed, if T € ¥(H) and T is self-adjoint, then by the spectral theorem
T =%\ P, where A\, > 0asi — oo and P, € £. Given ¢ > 0 choose n
such that ||T — X7 AP|<e Let Q€ £ be such that Q > P, i =
1,2,...,n. Then forall P > Q,

I7P = T|| <||TP = S, P|[+[S,P = S,[ +[S, = T]| < 2,
where S, = X7 A, P,. Similarly, we can show lim ||PT — T|| = 0. We also
note that each P € Zis positive and has norm one.

Let {¢g} be a net in ¥(H)* converging to some ¢ € ¥(H)* in the
weak™* topology and ||| — [|¢|l. By Lemma 2, there exists P, € Z and f3,
such that

(3) |Rp9 — 0| <e/2 and [Ru0, — ¢ < &/2
for all B > B,. By considering the reversed C *-algebra, we may also
assume that

(@) ILng — 6] < e/2 and [Lygy — o5l < /2.
where (L,¢)(T) = ¢(P,T), T € €(H). Consequently, if B > S,
(5) IRz Lrp — ¢l <[RpLpd — Rpol +[Rpd — ¢l < ¢
since || R || < || Poll = 1 by (3) and (4). Similarly

(6) |‘RP0LP0¢B - ¢B” <&

Also, Pi¢(H)P, is a finite dimensional algebra over C. Hence, { ¢4},
restricted to P,¢( H) P, converges to ¢ in norm. Consequently, there exists
B, = B, such that

(7) “ Ty Lpds — RPOLPO¢” <&
if B > B,. Now if B > 8, we have
log — ol <llég — Rp,Lrgell + [RpLrgs — RpLrgl
IRy Ly — ] < 36
by (5),(6) and (7).
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REMARK. Clearly if a dual Banach space E has the weak* normal
structure then E has the quasi-weak*-normal structure. But the converse is
false. Indeed, let E the space of absolutely summable real sequences with
norm

llxll = max{{lx* |12, [Ix~[2}
where x*, x~ denote the positive and negative part of x respectively and
[Ix]l; = £2,]x,- Then, as shown by Lim [6] (Lemma 1 and Example 1), £
is a dual Banach space which does not have weak* normal structure.

However, since E is separable, an argument similar to that of Wong [13,
Theorem 2] shows that E has quasi-weak *-normal structure.

Problem 1. Does the trace class operator 7 (H) = ¥(H)* with dual
norm have the weak* normal structure or the weak normal structure?

LEMMA 3. Let I' be a non-empty set. Then c,(1I') has the quasi-weak-
normal structure if and only if T is countable.

Proof. If T is countable then c¢,(I') is norm separable. Hence each
weakly compact convex subset of c¢,(I') has quasi-normal structure by
Theorem 2 in [13].

Conversely, if I is not countable, consider I'" as a group (say the free
group on |I'| generators). Picka € I'. Let f = §, i.e. f(x) = 1if x = a and
f(x) = 0if x # a. Let K denotes the closed convex hull of {/ f; x € T},
where (I, f)(t) = f(xt), t € I'. Then K is weakly compact ([2, Corollary
3.7])) and diam(K) = 1. Now if g € K, let 6 C I be a countable set such
that g(¢)=0if t€l ~0. Pick z€I' ~ o and let h = §,. Then h € K
and ||g — hl|, = 1. Hence K does not have quasi-normal structure.

THEOREM 3. Let H be a Hilbert space. Then H is separable if and only if
€ (H) has quasi-weak-normal structure.

Proof. 1If H is separable, then ¥(H)* is separable [10, Proposition
2.1.10]). Hence ¥(H) is separable. Consequently every weakly compact
convex subset of €( H) has quasi-normal structure by [13, Theorem 2].

Conversely, if H is not separable, then H is isomorphic to /,(T") for an
uncountable set I'. Consider the map p: ¢ (I') = #(/,(I')) defined by

p(f)(n)(1) = f(1)h(r), teT,
then p is an isometry and an algebra isomorphism of ¢,(I') into Z(/,(T)).
Furthermore, p(f) is compact for each f € c,(I'). By Lemma 3, there
exists a weakly compact convex subset K in c¢,(I') which does not have
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quasi-normal structure. In particular, p(K) is a weakly compact convex
subset of ¥ ( H) which does not have quasi-normal structure also.

Summary. In the Table we shall abbreviate normal structure by n.s.,
quasi-normal structure by g.n.s., etc. We assume I is not finite and H is
not finite dimensional.

co(T) L(T) 1,(T)
No n.s. No n.s. No n.s.
q.w.n.s. w*.1n.s. No q.w*.n.s
0
I' is countable W.I.S.
¢(H) 7(H) #(H)
No n.s. No n.s. No n.s.
q.w.n.s. w*n.s.(?) No q.w*.n.s.
His sef)arable w.n.s.(?)
g.w*.n.s.

3. On Lim’s condition. Let E be a Banach space. Then E* is said
to satisfy Lim’s condition if whether {¢,} is a bounded net in E*,
¢, converges to 0 in the weak* topology and lim,||¢,|| = s, then
lim||¢, + ¢|| = s + ||¢]|| for any ¢ € E*.

In [6], Lim showed that /; satisfies this condition for sequences.

LEMMA 4. Let E be a Banach space. If E* satisfies Lim’s condition,
then E* has the following properties:

(a) Norm and weak* topology agree on S = { ¢ € E*; ||¢|| = 1}

(b) For any 0 <& < 2,if {¢,} is anetin E*,|¢,]| < 1, ¢, = ¢ in the
weak *-topology and ||x, — xp|| = € for all « # B, then||$|| <1 — ¢/2.

In particular, E* has the Radon Nikodym Property and weak* normal
Structure.

Proof. (a) Let {¢,} be a net in S, ¢ € S such that ¢, — ¢ in the
weak *-topology. Suppose ||¢, — ¢|| — 0. Then we may assume, by passing
to a subnet if necessary, that ||¢, — ¢|| > & for each a. Since {||¢, — ¢||} is
bounded by 2, we may further assume that lim_||¢, — ¢|| =5 > ¢ > 0.
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Lety, = ¢, — ¢. Then ¢, — 0 in the weak*-topology but
1 =1im [ +(¢, = )| =lo] + 5 > 1

which is impossible.
(b) We may assume that ||¢, — ¢|| = ¢/2 for each a, and

tim 6, — ] = 5.

Then by Lim’s condition,
lim [lg,| = lim [|(¢, — ¢) + ¢ = s + o]

re.s+ ¢l <lorfo|<1—-—s5s<1-¢/2

The last statement follows from Corollary 8 and Proposition 9 in [8],
and the proof of Theorem 3 [4] (That E* has weak* normal structure also
follows simple modification of Lim’s proof of Theorem 3 in [6]).

Given a locally compact Hausdorff space X, let C,(X) denote the
C*-algebra of complex-valued continuous functions f on X such that for
any ¢ > O there exists a compact subset o of X such that |f(x)| < ¢ for
x € X ~ o with the supremum norm.

THEOREM 4. Let X be a locally compact Hausdorff space. The dual
Banach space Cy(X)* satisfies Lim’s condition if and only if Cy(X)* is
isometric isomorphic to I,(I') for some non-empty set T'.

Proof. If Cy( X)* satisfies Lim’s condition, then, by Lemma 4, Cy( X)*
has the Radon Nikodym Property. Since Cy( X)** = M is the enveloping
von Neumann algebra of the C*-algebra C,( X), it follows from Theorem
4 in [3] that M is the direct sum of Type I factors i.e. M is isomorphic to
Y er ® #(H,). Since M is commutative, H, = C for each a € T. In
particular, Cy( X)* = [,(T).

Suppose Cy( X)* is isometric isomorphic to /;,(I') for some non empty
set I'. We may assume that I' is infinite. Let { f,} be a bounded net in
1,(T) such that f, —» 0 in the weak*-topology and lim_||f,|| = s. Let
g € I(T). Since ||f, — gll < £l + ligll for each a, we may assume, by
passing to a subnet if necessary, that lim || f, — g|| = ¢ exists. Clearly we
have ¢t < s + ||g||. To see that we actually have equality, let ¢ > 0. Observe
that in /;(T),

(1) Ife = &l =11l = llgl + 2 2 (lg(s)] = |a(5)1)

SE€Eo
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for any subset o of . Now let ¢ be a finite subset such that X _ |g(s)| >
llg|l — e. For this o, we can choose «,, using the weak* convergence of f,
and the convergence of || f,|, so that for all @« > a, we have X _ |f.(s)] < ¢
and ||f,|| > s — & Then for all « > a, we have from (1)

Ifu — gll=s—e—llgl+ 2llgl — 2e — 2e = s +||g]| — 5e.

Thust > s + || g]l.

Problem 2. Let X be a locally compact Hausdorff space. When does
Co( X)* have the weak* normal structure?

THEOREM 5. Let H be a Hilbert space. Then I (H) satisfies Lim’s
condition if and only if H is finite dimensional.

Proof. If H is finite dimensional, then J (H) is finite dimensional.
Hence .7 ( H) satisfies Lim’s condition.

If H is infinite dimensional, let {£,, n = 1,2,...} be an orthonormal
sequence in H. For each n =1,2,..., define ¢,(T) = (T¢,, &,). Then
¢, € 7 (H),|l¢,]l =1and ¢, —» 0 weakly. Indeed, if T € #(H), then

o > ITeN" = X [(Te €01 > X (T £ = T fo(T)]

ael

where {£,},; 15 a complete orthonormal set of H containing {£,}. So
¢,(T) — 0. Also ||¢, — ¢,]| < V2 for each n. Hence Enn b, — ¢l < V2
re. lim, ||, — ¢, # lim ||¢,|| + [|¢,||. In particular, 7 ( H) does not satisfy
Lim’s condition.
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