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ON THE DUNFORD-PETTIS PROPERTY
OF FUNCTION MODULES
OF ABSTRACT L-SPACES

GERHARD GIERZ

The main result of this note states that a function module of Banach
spaces has the Dunford-Pettis Property, provided that all summands are
spaces of the form Lλ(μ). As a corollary we obtain that every injective
Banach lattice has the Dunford-Pettis Property. Another corollary states
that certain spaces of compact operators have the Dunford-Pettis Prop-
erty.

1. Introduction. In 1940, Nelson Dunford and Bill Pettis published
their now classical result that weakly compact operators defined on Lx(μ)
are completely continuous. Ten years later Grothendieck showed that the
space of real-valued continuous functions on any compact topological
space enjoys the same property which today is called the Dunford-Pettis
Property. Specifically:

DEFINITION. Let E be a Banach space and assume that every weakly
compact operator T:E -> F, F a Banach space, sends weakly compact
subsets of E into norm compact subsets of F. Then we say that E has the
Dunford-Pettis Property.

Since the early 50's the Dunford-Pettis Property has attracted much
attention in the theory of Banach spaces (see the survey article of J.
Diestel [5] for the historical development). However, up to today it is not
quite clear which Banach spaces have the Dunford-Pettis Property. Until
one or two years ago, even the following question was unanswered:

Question. If X is a compact Hausdorff space and if E is a Banach
space with the Dunford-Pettis Property, does the space of all vector
valued continuous functions C(X, E) also have the Dunford-Pettis Prop-
erty?
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In 1983, M. Talagrand [18] answered this question in the negative by
constructing a Banach space E which had the Dunford-Pettis Property,
but C([0, Ifc E) did not have the Dunford-Pettis Property. However, for
important classes of Banach spaces, the above question has a positive
answer. This is for instance the case, if E is a Schur space (see I. Dobrakov
[6]) or if E is a space of type Lλ{μ) (see J. Bourgain [2]). (A Schur space is
a Banach space in which every weakly convergent sequence is norm
convergent.)

In this note, we will change the above question a little bit and
consider function modules of Banach spaces instead of spaces of continu-
ous functions with values in a fixed Banach space E. There are two
reasons to do so:

(1) Function modules of Banach spaces contain, among other exam-
ples, spaces of continuous functions defined on a locally compact space
vanishing at infinity, spaces of continuous functions equipped with a
weighted norm, and Banach spaces of continuous vector fields on a
differentiable manifold.

(2) Function modules are an important tool in the representation
theory of C*-algebras.

The major result of this note extends Bourgain's result on C( X, L^μ))
in the following way: If all stalks of a function module are ylL-spaces,
then this function module has the Dunford-Pettis Property. The proof
utilizes some properties of the local structure of function modules which
are obtained in §3. An interesting corollary of the main result states that
every injective Banach lattice (in the sense of [3]) is a Dunford-Pettis
space.

Throughout this paper, we will follow the terminology of [16]. Espe-
cially, Banach spaces will be denoted by E, F..., and their (topological)
duals by E\ etc. The letter X always denotes a compact Hausdorff space
and the term 'compact' always includes the Hausdorff separation axiom.
If Ei9 i e /, is a family of Banach spaces, then their /^-sum is denoted by
IϊierEι and their /Γsum is denoted by Θ/e/-E, .

2. Notations. In this preliminary section, we will recall the defini-
tion of function modules of Banach spaces:

Let us suppose that we start with a compact Hausdorff space X and a
family of Banach spaces (Ex)xeX. Assume further that we are given a
closed linear subspace

E c Π Ex = {(σ(x))χ^x' σ(x) G ^ for all JC and sup | |σ(x)| |< oo)
x^X l xeX }
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such that the following conditions are satisfied:
(a) For every x e X and every a e Ex there exists an element σ e £

such that σ(x) = α.
(b) The mapping JC *-» ||σ(jc)||: Jf-> 9Ϊ is upper semicontinuous for

every σ ^ E.
(c) If σ E £ and a continuous real-valued function / G C(X) are

given, then/σ belongs to £", where/σ is defined by (fσ)(x) = f(x)σ(x)
for all x e X

Then i? is called a function module over X. For a given x e X, the
Banach space Ex is called the stalk over JC.

Banach spaces E which satisfy these conditions are also called upper
semicontinuous function spaces (see [4]) or continuous sums of the Banach

spaces Ex, x e X (see R. Godement [10], I. Kaplansky [12], and Gelfand
and Naimark [15]). They also occur as spaces of sections in bundles of
Banach spaces (see [9] for the details of this last equivalence). Our
notation is the one of E. Behrends [1].

Function modules E are C( JQ-convex C( X)-modules in the following
sense: Given elements σ , τ G £ such that ||σ||, | |τ | | < 1, and given a
continuous function/ e C(X) such that 0 < / < 1, then ||/σ + (1 - /)τ | |
< 1. This generalizes to convex combinations of more than two elements
in the following way (see [9, 7.14] for details):

Given σ i ^ E 1 < i < n, and a partition of unity (fi)ι^i^noί X, then

ΣM max

If all the stalks of a function module E are ylL-spaces, i.e. spaces of
the form Lλ{μ) for a positive measure μ, then E is called a function
module of ^4L-spaces. Function modules of ^4L-spaces are important in
the representation theory of injective Banach lattices (see [3] for the
definition of injective Banach lattices). Every injective Banach lattice may
be represented as a function module of ^L-spaces. Furthermore, it is
possible to characterize exactly those function modules of ^4L-spaces
which in fact yield injective Banach lattices (see [7] and [11]).

Another important class of Banach spaces which can be represented
as function modules are Grothendieck's G-spaces. Recall that a closed
linear subspace G a C(K), K compact, is called a G-space, provided that
there are triples (JCZ, yi9 η) e K X K X 9Ϊ, / e /, such that G = {/ e
C{K): f{xt) = r./(j;.) for all i e / } , In order to avoid technical diffi-
culties, we will assume that 0 is not in the weak *-closure of the extreme
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points of the dual unit ball of G. In this case we have

2.1. THEOREM (Mόller [14]). Let G be a G-space and assume that 0 is

not an element of the weak *-closure of the extreme points of the dual unit

ball ofG. Then there exists a function module E over a compact space X such

that G is isometrically isomorphic to E. Moreover, all the stalks of this

function module are one-dimensional.

The proof of this result follows from [14, 4.1], [14, 3.6(vi)], and the fact

that for compact spaces X the notions of sections in bundles and function

modules are equivalent. D

3. The local structure of bundles of yίL-spaces. In this section we

will be dealing with finite dimensional subspaces of function modules of

ylL-spaces over compact spaces X. Let E be such a function module and

let U c E be a finite dimensional subspace. For every given ε > 0 we will

construct a finite dimensional subspace V such that

(i) UcV9

(ii) There are finite dimensional v4L-spaces l^n^,.. -Jι(nm) having

the property that the Banach-Mazur distance between V and the /^-sum

h(nι) X "' X / i ( « J is less than 1 + ε .
We need a technical notation:
If E is a function module over X, if δ > 0, and if F c E, then we let

p e a k δ ( i ^ ) = { j c E l : ||σ|| - δ < ||σ(jc)|| for allσ e F).

Note that the upper semicontinuity of the norm implies that peak δ (F) is

closed in X.

3.1. LEMMA. Let 8 > 0 be a positive real number, let E be a function

module over a compact base space X, and let σ y e E, 1 < i < n and

1 < j < ni9 be a finite set of elements such that \ ||σjf .|| — 1| < δ for all /, j .

Furthermore, let Uv..., £/„ c X be a (finite) open cover of X such that

condition (*) is satisfied:

(*) For every 1 < i < n there exist pairwise different elements

X; €Ξ peak β({σ l V : 1 <j < π,.}) Π Ut

such that
nι

Σ ψi = Σ

holds for every choice of real numbers r G 9ΐ, 1 < j < n t.
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Then there exists a partition of unity subordinated to the open cover

/</2> say (//)i</<«> such that the Banach-Mazur distance between the

linear span of {fiσij. 1 < i < n, 1 <j < nt) and the l^-sum ΠjLx/iίΛ,-) is

less than or equal to (1 + δ)/(l - 2δ).

Proof. Every function module £ is a C(Ar)-convex C( Z)-module.

Hence for every choice of real numbers (riJ)l<j<n^ι<i<n

 a n d every

partition of unit (//)i</<nwe have

(1) Σ ]
ι = l / =

Σ/J

< max

7 = 1

nι

Σ ritJotJ

7 - 1

< ( l - δ ) m a x
l<i<n

We now choose a special partition of unity: For every 1 < / < n let

Then, since the x. are pairwise distinct and therefore xι e F̂ , the V/s are

still an open cover of X. Let (/))!</<„ be any partition of unity sub-

ordinate to (^)i<;<,l. Further, since for every / we have T/l

j==1fj(xi) = 1

and JC, ί 1̂  for j Φ i, we conclude that /)(*,-) = 1. For every 1 < /: < n

we obtain the inequality

Σf,\
7 - l

Σ rkJσkJ(xk) = Σ \rk •

and therefore

(2)
7 = 1

> (1 - 2δ) max Σ \r, ,|

Define a linear operator T by

n

Ί ( Ό "> (fiO,,/. l < i < n , \ < j < nt)
j - l

χ ( | /4» »'l/,»Λ</<II-
> Σ Σ '

ι=ly-l



78 GERHARD GIERZ

Then equation (1) implies that | |Γ | | < (1 + δ), whereas the second equa-

tion yields that {{T^W < 1/(1 - 2δ). Hence the Banach-Mazur distance

between the linear span of {/;<*,,/ 1 < / < n, 1 <j < nt) and ΠjLx/xίw,.)

is less than or equal to (1 + δ)/( l - 2δ). D

Another notation: If G c E is a linear subspace of a function module

E over X9 then we define Gx = {o(x)\ σ e G). Note that Gx is a linear

subspace of the stalk Ex.

3.2. LEMMA. Let E be a function module of AL-spaces with base space X

and let G c E be a finite dimensional subspace. Let σ l 9 . . . , σm e G be a base

of G consisting of elements of norm 1. Then for every ε > 0 there exists a

finite dimensional subspace H c E such that

(i) For every element of the base σk there is an element yk e H such that

\\yk\\ = l and \\σk-yk\\<ε.

(ii) The Banach-Mazur distance between H and a Banach space of the

form Πf= 1 /i(fl ) is less than or equal to 1 4- ε.

Proof. Choose δ > 0 such that 2δ < ε and (1 + δ)/( l - 2δ) < 1 + ε.

For every x e X consider Gx. Since the stalk Ex is an ^IL-space, there

exists a finite dimensional subspace Vx c Ex such that

(a) Vx is isometrically isomorphic to a space of the form lι(xn).

(b) For every σk there exists an element of ak e Vx such that ||σΛ(jc) —

ak\\ < 8.

Let σx l 5 . . . ,σx n G E be chosen such that the σx k(x) e Ĵ . correspond

to the unit vector base in Vx = lλ{nx). In this case we have

(c) IIΣyLi^σjc,/*)!! = Σ " ^ ! |ry.| ||σ^y (x) | | for every choice of real num-

bers rj e 9ΐ, 1 <j < nx.

Moreover, since | |σ X 7 (x) | | = 1, we can find an open neighborhood

U c X of x such that | |(σ) x y(j>)| | < 1 + δ for every y e ί7. Pick a

continuous function f: X -* $1 which takes its values in the unit interval,

is equal to 0 off the open set U9 and equal to 1 at x. Then we have

I \\fσxj\ - 1| < δ and (fσxj)(x) = σxj(x). Hence, by passing from σxjs

tofσx j's if necessary, we may assume that

(d) I \\σXJ\\ - 1| < δ andx e peak σ (σ x y ) for all 1 < j < nx.

Let Vx be the linear span of the σxp 1 <j < nx. Then (Vx)x = Vx.

Hence, by statement (b) above, for every k e {l,...,m} there is an

element yxk e F* such that ||σΛ(jc) — yxyk(x)\\ < δ. Using the upper

semicontinuity of the norm function again, we can find an open neighbor-

hood Ux of x such that

(e) K ( j;) - γ ^ ^ J I I < δ for a l l ^ e R a n d a l l A: e { l , . . . , m } .
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Clearly, the open sets Ux, x ^ X, cover X. Hence there are finitely

many pairwise distinct elements xl9...,xn e X such that X=UXiU

• U UXn. Define

Ui= UXi for all 1 < i < n,

"i = n

Xl>

σi,j = σx j for all 1 < / < n, 1 < j < nr

Then, by (c) and (d), the conditions of Lemma (3.1) are satisfied. Pick a

partition of unity (fi)i subordinate to the Ut as promised in (3.1) and let H

be the linear span of {fai,/- 1 < / < «, 1 <j < nt}. Then the Banach-

Mazur distance between H and the m-product Π " = 1 ^(π,.) will be less than

or equal to (1 + fi)/(l - 25) < 1 + ε.

It remains to construct the elements yk G H: Define elements τk e H

by

n

Tk=Z Σs JiΊx^k'

From (e) and the fact that the support of the function ft is contained in

U{ = Uv we conclude that

- τΔ\ =

= sup

Therefore, ||σfc|| = 1 implies | | |τΛ | | — 1| < δ. Define

Then

- Ύftl ^ Ik* - τ J I + Ik* - Ύ*II

< 8 ^ 8 + | | τ j - 1 < 2δ < ε.

Finally, γΛ e H: Indeed, yxk e F Λ for all x e ^implies

D
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Now the same perturbation argument as in [13, p. 198] shows

3.3. PROPOSITION. Let E be a function module of AL-spaces and let

U c E be a finite dimensional subspace. Then for every positive ε > 0 there

exists a finite dimensional subspace V c E such that

(i) U<zV,
(ii) There are finite dimensional AL-spaces lλ{nλ),... Jm(nm) such that

the Banach-Mazur distance between V and the m-product ΠJ l i l(nέ) is less

than 1 + ε. D

The results of this section remain true if one changes from function

modules of ΛX-spaces to function modules of JS^-spaces for a fixed p,

1 < p < oo. For the case/? = oo one gets as an interesting corollary:

Let £ b e a function module of Banach spaces over a compact base

space and assume that every stalk Ex is a predual of an ^L-space. Then E

is a predual of an ylL-space.

4. The Dunford-Pettis Property for function modules of ^4L-spaces.

In this section we apply some results (and their proofs) of J. Bourgain [2]

to function modules of ylL-spaces. The proof of the next result is an

immediate consequence of (3.3) and [2, Theorem 5]:

4.1. THEOREM. Let E be a function module over a compact base space X

and assume that all the stalks are AL-spaces. Then E and all duals of E have

the Dunford-Pettis Property. •

Of course, this result contains Bourgain's theorem that C( X, Lι) is a

Dunford-Pettis space as a special case. However, we used the key part of

Bourgain's proof in our present result (namely Bourgain's Theorem 5).

4.2. COROLLARY. Every injective Banach lattice has the Dunford-Pettis
Property.

Proof. Every injective Banach lattice may be represented as a func-

tion module of y4L-spaces (see [7] or [11]). Hence (4.2) follows. D

4.3. COROLLARY. Let E be a Banach lattice satisfying Cartwright's

splitting property.

For all 0 < al9 a2, b e E and all real numbers rl9 r2 such

, v that Ha,! < η and \\aλ + a2 + b\\ < rx + r2 there are

0 <bv b2E: E with bλ + b2 = b and \\at + bt\\ < ri9

ι = l,2.

Then E and all its duals have the Dunford-Pettis Property.
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Proof. Under the assumption (C), the second dual E" of E is an

injective Banach lattice (see [3]). Hence (4.3) follows from (4.2). D

Our last corollary deals with spaces of compact operators:

4.4. COROLLARY. Let F be a predual of a Lγ-space and let G be a

G-space such that 0 is not an element of the weak ^-closure of the unit ball of

G\ Then the space of all compact operators K(F,G) equipped with the

operator norm has the Dunford-Pettis Property.

Proof. By (2.1), we may assume that G is a function module over a

compact space X such that all stalks are one-dimensional. Therefore, it

follows from [8, 2.7] that K(F,G) is isomorphic to a function module over

the same space X with stalks F'9 i.e., K(F,G) is isomorphic to a function

module of ^4L-spaces. Hence (4.4) follows from (4.1). D

This last corollary leads to the conjecture that the space of all

compact operators between two preducals of LΓspaces is always a Dun-

ford-Pettis space.
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