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THE BOUNDARY REGULARITY OF THE SOLUTION
OF THE 0-EQUATION IN THE PRODUCT OF
STRICTLY PSEUDOCONVEX DOMAINS

P1O0TR JAKOBCZAK

Let D be a strictly pseudoconvex domain in C”. We prove that for
every 0-closed differential (0, g)-form f, g > 1, with coefficients of class
#>(D X D), and continuous in the set D XD\A(D), the equation
du = f admits a solution u with the same boundary regularity properties.
As an application, we prove that certain ideals of analytic functions in
strictly pseudoconvex domains are finitely generated.

1. Introduction. Let D be a bounded strictly pseudoconvex domain
in C" with ¥? boundary. It is known ([2], Theorem 2) that given a
(0, g)-form f in D with coefficients of class ¥*(D X D) and continuous
in D X D, such that 3f =0, ¢ = 1,...,2n, there exists a (0, ¢ — 1)-form
u in D X D such that the coefficients of u are also of class €*(D X D)
and continuous in D X D, and such that du = f.

In this paper, using the results from [2], and the method of [6], we
prove the following theorem:

THEOREM 1. Let D be a bounded strictly pseudoconvex domain in C"
with €2 boundary. Set Q = (D X D)\ {(z,z)|z € dD}. Suppose that f is
a (0, q) 9-closed differential form with coefficients in €°(D X D) N €(Q).
Then there exists a (0,q — 1)-form u with coefficients in €*°(D X D) N
%(Q), such that du = f.

As an application, we prove a following theorem on the existence of
the decomposition operators in some spaces of holomorphic functions in
the product domain D X D: Let D and Q be as above. Denote by
Ay(D X D) the space of all functions holomorphic in D X D, which are
continuous in Q. Let (4,),(D X D) be the subspace of A4,(D X D),
consisting of all functions which vanish on A(D), the diagonal in D X D.

THEOREM 2. Let g;,...,8y € (Ag)o(D X D) satisfy the following

properties: (i) {(z,s) € Q|g(z,5) = --- = gy(z,5) = 0} = A(D); (ii) for
every z € D, the germs at (z, z) of the functions g,, i = 1,..., N, generate

371



372 PIOTR JAKOBCZAK

the ideal of germs at (z,z) of holomorphic functions which vanish on
A(D). Then for every f € (4y) (D X D) there exist functions f;, ..., fy
€ A,(D X D), such that f =X, g,f,.

This theorem is an improvement of several results, obtained previ-
ously by different authors. Namely, Ahern and Schneider proved in [1],
that if f € A(D), then there exist functions f,(z,s) € A4(D X D), such

that
f(z) = f(s) = g(zi—si)ﬁ(z,s), z,s € D.

@vrelid showed in 5], that if s € D is fixed and g,,..., gy € A(D) are
such that {z € D|g,(z) = -+ = gy(2z) = 0} = {5} and the germs of the
functions g; at s generate the ideal of germs at s of holomorphic
functions which vanish at s, then every f € A(D) with f(s) = 0 can be
written in the form

£(z) = ﬁ e(:)(z). zeD.

for some f; € A(D). In [4], the validity of Theorem 2 was shown in the
special case, when D = U—the unit disc in C—and under the additional
assumption, that there exists a neighborhood ¥V of A(3U) in U X U such
that g,,..., gy have no zerosin ¥V N (Q \ A(U)). The proof given in [4] is
different from that in the present paper.

It could seem unnatural to omit the boundary diagonal A(dD) from
study. However, when f € A(D X D) and f|y3,= 0, gi(z,5) =z, —s,,

i=1,...,n,and
n

f(Z,S) = Z (zi - S,-)f,-(Z,S),

i=1
then, as in [1],

" a
L (z,5) = fuls5) + L (2= 5)

i=1

(z,5),
and so, setting s = z, we obtain

i(z,z) = f(z, 2), z € D;

0z,

therefore, the functions f; need not be in A(D X D), even if fe
A(D X D). In the sequel we will always assume that the considered
domains are bounded. We will also use the following notations:

Given a domain D C C”, we denote by (D) the space of holomor-
phic functions in D, and by A(D) the algebra of all functions holomor-
phic in D and continuous in D.
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If F(D) is a function space in the domain D, and ¢ = 1,2,..., F, (D)
denotes the space of all differential forms of type (0, ¢) with coefficients
in F(D).

Given a set X, A(X) is a diagonal in the Cartesian product X X X.

This work was done during my stay at Sonderforschungsbereich
“Theoretische Mathematik™ at the University in Bonn. I would like to
express my gratitude for the hospitality and support, given to me by this
institution. I am also very indebted to 1. Lieb and J. Michel for helpful
discussions.

2. The solution of the d-equation. In this section we give the proof
of Theorem 1. Let D C C" be a strictly pseudoconvex domain, with the
defining function o, i.e. ¢ is of class ¥ and strictly plurisubharmonic in
some neighborhood D of D, D = {z € Djo(z) < 0}, and do(z) # O for
z € 3D. For € > 0, set 7,(z,w) = o(z) + o(w) — gz — w|%, (z,w) € D x
D. Then, if ¢ is sufficiently close to zero, the domain G, = {(z,w) € D X
Dir(z,w) < 0) is strictly pseudoconvex in C?2" with the defining function
7,. Moreover, DxDc G and 8(D X D) N 9G, = A(9D); therefore Q
C G, (we recall that Q = (D X D)\ A(dD)). It follows, that if ¢ < 0 is
sufficiently close to 0, the sets G,, = {(z,w) € D X D|r(z,w) <t} are
strictly pseudoconvex with ¢? boundary, and G,, C G,, C G, for 1 < ¢/
<0.SetE,, =G, ,Nn(DXD).

We want to apply [2], Theorem 2 to the domains E, ,. Note first, that
if we define the mappings x: C" X C", > C", i = 1,2, and x3: C" X C"
- C"xX C" by xNz,w) =12z, x*(z,w)=w, and x*(z,w) = (z,w), and
set, for fixed e > 0and 1 < 0, p, = p, = 0, and p; = 7, — ¢, then

E,,={(z,w) € D x Dlp,(x'(z,w)) < 0,i=1,2,3}.
Therefore, E,, is a pseudoconvex polyhedron in the sense of [2]. We must
also verify, that E_, satisfies the assumptions (C) and (CR) from [2], p.

523. Set

of o o f
gradcf = (az 7T 9z, owy T 0w,

and

af of of  f
gradg f = (az " Aw,’ 9z, Ow, )
The condition (C) says, that for every ordered subset A4 C {1,2,3},
A= {a,...,a,}, the number m, = rank(grad¢cx*,...,gradcx*) is
constant in the neighborhood of the set

S, = { (2w) € 9E, Joas(x™(z,w)) = -+ = p, (x%s(z.w)) = O},
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This condition is trivially satisfied, since the mappings x’ are linear. It
rests to verify the condition (CR): For every pair of ordered subsets
A,Bc{1,2,3}, A={e,...,a,}, B={B,,...,B,}, such that for every
B; € B,

(2.1) rank(grad . x%, gradc x*, ..., gradc x*%) > m,,
it follows that
(2.2) rank(gradn(pﬁ1 ° xﬁl), e gradR(pB‘o x’*f), gradg x™,
...,gradg x*, gradRF,...,gradRF) =t+2m,

in a neighborhood of the set S, , 5. Note thatif 3 € 4 or 4 = {1,2}, then
m , = 2n, and hence for any 3,

rank(grad . x#, gradc x®, ..., gradc x*) = 2n = m,,

and so (2.1) is not satisfied. On the other hand, if 4 = {1} or 4 = {2},
one can show that for every B C {1,2,3} such that A " B = &, (2.1)
holds. Therefore, in all those cases, we should verify (2.2).

Consider first the case 4 = {1} and B = {2,3}. Then

Siz = { (z,w) € D X D|z,w € dD, —¢|z — w|2 = t},
and the matrix

(gradk(pz ° XZ), gradR(p3 ° X3), gradg ', gradnxl)
at a point (z,w) € D X D has the form

‘ 0,(z) — 2¢(z, — wy) 1

o,(z) - 2.:3(2,, - w,) ‘ 1

UI(W) o,(w) — 2¢e(w, — Z,)

6,(w) | o,(w) — 2e(w, - ,)

01(z) — 2e(z, — wy) 1

0;(z) — Zé(z,, -w,) 1

or(w) | og(w) — 28(”’1 - z)

0,(w) | o, (w) = 2¢(w, - 2,)
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where we have set o, = 90/0¢; and o; = 30,/9,. Since z # w for (z,w) €
S1.3, this is true also for some neighborhood of S,,;. Moreover,
(o,(W),...,0,(Ww), oi(w),...,0;(w)) # 0 for w € aD, since do(w) # 0
there. Therefore, in order to prove that the above matrix has rank
2 + 2m, = 2 + 2n, it is sufficent to show, that the vectors

u=(0,(w),...,0,(w), 0:(w),...,0;(w)) = (u, %)
and
v=(W —Z,...,W, — Z,, W, — 21,...,w, — z,,) = (v1,0;),

are linearly independent (over C) in some neighborhood of S,,;. But if
z,w € 0D and u = av for some a € C, a # 0, then u; = av, and u, =
av,. Hence a is real. Therefore the vectors z —w and ov(w)=
(o7(w), ..., 05(w)) (the normal vector to dD at w) are linearly dependent
over R, as the vectors in R?". This is impossible, if z,w € D and z is
sufficiently close to w, i.e. if ¢ is sufficiently near 0. Hence, if we choose ¢
sufficiently close to 0, vectors u and v are linearly independent over C, for
(z,w) in some neighborhood of S,,;, and thus the condition (CR) is
satisfied.

In order to prove (2.2) in the case 4 = {1} and B = {2} (resp.
B = {3}), it suffices to note, that S}, = {(z,w) € 9E, |o(z) = o(w) = 0}
and (o,(w),...,0,(w), oy(w),...,0;(w)) # 0 for w in a neighborhood of
9D (resp. that since

S = { (z,w) € 8Ee,,|°(z) =0, 0(w)—ez - wlz _ t},
then also

(OI(W) - 28(v_v1 - 21),...,0”(W) - 28(\7)" - Zn)s

oi1(w) = 2e(w; — z7),...,0,(w) — 2e(w, — z,)) # 0 for (z,w)

in some neighborhood of S,,, provided that & and ¢ are sufficiently close
to 0).

The verification of the condition (CR) for 4 = {2} is similar. We
obtain therefore the following corollary, which is Theorem 2 from [2] in
this special situation:

COROLLARY 2.1. If D is as above, then there exist ¢ > 0 and t, <0
such that for every t with ty <t <0, for every q=1,...,2n, for every
f€ €3(E, )N % (E,,) with 3f =0, there exists u€ %5 \(E, )N
‘fgf,_l(E,,) such that du = f.
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In the next part of the proof of Theorem 1 we apply a method used in
[6]. Consider first the case g > 2. Let f € %5(D X D) N %,,(Q) with
9f = 0. Take a strictly increasing sequence {t }5_, of negative real
numbers, such thatlim, , ¢, = 0, and t1 > t,.Set E, = E,_, for simplic-
ity. We shall construct a sequence { u,}_, of d1fferent1al forms such that

(23) u, € (qu—l(En) N %Oq-l(En)’ aun = f n Em and
Ups 1, = UniE,

Suppose that uy,...,u,, are constructed. By Corollary 2.1, there exists
v € €5y 1(E,11) N o,_1(E, 1) such that dv = fin E, ;. Then

9(u,,—v)=0 onE,,.

Hence, by Corollary 2.1, there exists w € €5;_,(E,,) N %,,- 2(Em) such
that 0w = u,, — v. Let x be a ¥ function on C?", such that 0 < x < 1,

=lonkE,_, x 0 on (D X D)\ E,,. Then the form xw, extended
tnv1ally by 0, is in €5,_»(E,, 1) N €,-2(E,, 1), and

3(xw) = (3x)w + x(u,, —v) € & 0g-— (Epi1) N Coq- KK)

Define u,,,; on E, ,; by u,,,, =0+ 9(xw). Then u,, ., satisfies (2.3).
Since U®_, E, = Q, the desired solution u is defined by setting u = u, on
E,. Now let ¢ = 1. We need some auxiliary approximation lemmas:

LEMMA 2.2. Let D, ¢, t, be as in Corollary 2.1. Let t,t" € R satisfy
the condition ty < t’ <t < 0. Then there exists a neighborhood U of E
such that every function f holomorphic in a neighborhood of E, , can be
approximated on E_ , by functions holomorphic in U.

Proof. By Theorems 4.3.2 and 4.3.4 of [3] it is sufficient to find a
neighborhood U of E . such that (EE Ny = E,,, where (E, E,,){ denotes
the holomorphic convex hull of E,_, in U. Fix ¢t such that t <¢” <0,
and let D, = {z€ D|o(z) <n}. If n > 0 is sufficiently small, then
(D)D = D and hence

(2'4) (B X-l—))l/)\"qu=5 XE.
Moreover,

N -
(2.5) (G..)s,,. = G-

Set U=(D,xXD,)NG,,. Then U s a neighborhood of E:, and it
follows from (2.4) and (2.5) that

(E.o)y =((DxD)NG,,),

(DXD)NG,,=E

g,t g,t’"
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LEMMA 2.3. Let D, &, ty, t and t’ be as in Lemma 2.2. Then every
function f € A(E,,) can be uniformly approximated on E, . by functions
which are holomorphic in a neighborhood of E, ..

Proof. We prove first one result on the separation of singularities:

LEMMA 2.4. Given € > 0, there exists N € N and the strictly pseudocon-
vex domains D, C C", i=1i,...,N, such that D C D,, diam(dD \ D,)
<, and such that for every f € A(E,,) there exist functions L,f €
A((D; X D)N G,,), such that f = TI_, L,f.

Proof. While D is compact, there exist a positive integer N, and
points z,,..., z, € 0D, such that 9D c UL, B(z,,¢/4). Let f € A(E,,).
Choose a function ¢, € ¥*(C"),suchthat0 < ¢; <1, 91951 50;,e02 = 1,
P1joD\ B(z,,3¢ /4 = 0- Set w; = fdg;. Then there exist strictly pseudoconvex
domains D; and Dj in C” such that D U (0D \ B(z,,¢)) € D,, D U (0D
N B(z,,e/4)) c D], D = D, U D is strictly pseudoconvex, and wy,
extended trivially by 0, is in

%Oof((D{, X D) N Gs,t) N %01((51” X —5) N G—e,t)>
and 0w = 0 there. Moreover, if D{’ is sufficiently close to D, then the
domain (D;” X D) N G,, satisfies the assumptions (C) and (CR) from [2].

Therefore, by [2], Theorem 2, there exists oy € (D’ X D) N G, ) N
F((Dy X D) N G, ) such that da; = w;. Set

Lif=¢f—a, Lif=0-o)f+a.
Then
Life A((D,xD)NG,,), LifeA((D{xD)nGgG,,),
and f=L,f+ Lif.

Suppose that for k < N — 1 we have constructed the strictly pseudo-
convex domains D;,..., D, and Dy in C” such that D U (0D \ B(z,, €))
cD,i=1,...,k,and D U (3D NnU%, B(z,,e/4)) C D, and the func-
tions L,f,...,L,f and L,f such that L,fe A(D,XD)NG,,), i=
1,....k, Li,f€ A(D; X D)NG,,), and f=X¥ Lf+ L)f. Choose a
function ¢,,, € ¢*C") such that 0 <¢,.; <1, ¢,,;, =1 on 0D N
B(z,,,,e/4), and ¢@,,., =0 on 9D\ B(z,,,,3¢/4). Set w,, , =
(L, f)39, ., Then there exist strictly pseudoconvex domains D, and
Dy ., < C”, such that

D, U(aD\B(Zk+1’ 3)) C Dy,y, D; U(BD N B(Zk+1’£/4)) C Diyqs
D/i,+1 =D, U Dllc+1
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is strictly pseudoconvex, the domain (D;’,; X D) N G, , satisfies the as-
sumptions (C) and (CR) from [2], the form w,  ; extended trivially by 0, is
in

¢5((Disy X D) NG,,) N %y (Dl,cl-f-l X DN —Ge_t)’
and 9w, ,, = 0 there. By [2], Theorem 2, there exists
a1 € €°((DYy1 X D) N G,,) N €((D{,, xD)NG,))
such that da,,, = w,, . Set

Li.f= Qi Lif — 1, Lif= (1 - (pk+1)L;cf+ Qpya-
Then

Li.f€ A(Dyyy X D)0 Ge,t)? Ly f€ A((DI’<+1 X D) N Gs,t)’

k+1
f= Y Lf+L,,.f, DU(D\B(z,e))cD, i=1,...,k+1,
i=1

and
k+1
DuldaDn U B(z,e/4)| c D;,,.
i=1
After N — 1 steps, we obtain the decomposition f=YX¥ ' L.f+ L} _,f.
It remains to put Dy = D, _;, and Lyf = L} _,f.

We return to the proof of Lemma 2.3. We can choose N, ¢ and the
domains D, in Lemma 2.4 in such a way, that there exist 7; € R with
t’ <t, <t (where t and ¢’ are as in the assumption of Lemma 2.3),
6 >0,and v,,...,vy € C" such that for every i = 1,..., N, for every s
such that 0 < s < §, the set {(z + sv;, w)|(z,w) € (D; X D) N G,,} con-
tains (D X D) N E:,l Therefore, if f€ A(E,,) and f=X)_,L,f is the
decomposition of f according to Lemma 2.4, then the functions g, ,(z,w)
= L,f(z — sv,,w) are defined in the set (D; X D) N G_e’,—l, where D, is
some neighborhood of D, and 8; — f uniformly on (D X D) N G,, as
s — 0. Given a function g, ;, we can apply the decomposition procedure,
described in Lemma 2.4, but now with respect to the second group of
variables, and with respect to the domain (D; X D) N G,,. We obtain
then for some N’ = N’(g, ) the decomposition g, , = X, L,g, ., where
forj=1,...,N’, L;g;, € A(D; X D))" G,,), and D; C C" is a strictly
pseudoconvex domain such that D C D; and diam(dD\ D)) <e. We
choose then ¢, with t' < ¢, < ¢, and shift the functions L;g; ; similarly as
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above, but now with respect to the second group of variables, in order to
approximate every function L;g, . uniformly on (D X D)N 6;; by func-
tions of the form &, ;  .(z, w) Lg (z,w—ru;), u;€ C", r>0, de-
fined in a set (D] X D) N G, ,, where D,” is some nelghborhood of D.
Since E . Cc(DXD)n G, we obtain the conclusion of Lemma 2.3.

Having proved Lemmas 2.2 ane 2.3, we can finish the proof of
Theorem 1 for ¢ = 1. Choose two sequences {¢,} and {s,} of negative
real numbers, such that 7,,s, > 0asn - o0, 1, <s,and s, < ¢, < s,,1,
n=12....8et E,=E,_ , F,=E, . We shall construct a sequence of
functions {u } such that u, € %”(E )N %(E,,) du, = f on E,, and the
uniform norm |ju,, ., — ,,|| 7 < 27" Suppose that wu;,...,u,, are con-
structed. By [2], Theorem 2, there exists v € ¥*(E,,,,) N ‘f(m), such
that dv = f in E, .. Then u, — v € A(E,). By Lemma 2.3 there exists a
function w holomorphic in a nelghborhood of F,, such that

[w—(u,,— )|z <27*D.

By Lemma 2.2 there exists a neighborhood U of E, ., and a function ¢
holomorphic in U, such that ||t — w||z <2~ ™*D Let u,,,, =t + v on
E_,.,. Then u,, € ¢*(E,,,) N ¥E,,,), ou,,,=f on E,,,, and
14,41 — u,llz, <277 Since u,,,, — u,, is holomorphic in E,, it follows
that the sequence {u,} converges to the function u € €*(D X D) N

%(Q), such that ou = f.

3. The decomposition in the algebra 4,(D X D). We prove here
Theorem 2. The method of the proof is that used by Gvrelid [S], therefore
we give only the necessary modifications. It follows from the assumptions
that at every point (z,s) € D X D, the germs at (z, s) of the functions g,
generate the ideal of germs at (z, s) of holomorphic functions vanishing
on A(D). Therefore, by [3], Theorem 7.2.9, for every f € (Ay)o(D X D)
there exist functions (Rf);,...,(Rf)y € O(D X D) such that f=
EN g(Rf).. Let N,={(z,5) € Q\A(D)|g(z5) =0}, i=1,...,N.
Since the sets N, are closed in C>”\ A(D), there exist functions ¢, €
#>°(C?*"\ A(D)) such that 0 < ¢, <1, XY @, = 1, and , vanishes in a
neighborhood of N, in C*"\ A(D), i = 1,..., N.

Choose @, € €*(C?"\ A(3dD)), such that 0 < ¢, <1, ,=1 in
some neighborhood W of A(D) in D X D, and ¢, = 0 in a neighborhood
of 3(D X D)\ A(3D). Set ¢, = (1 — @,),, and define (Sf); = ¢o(Rf),;
+ @ f/8» i=1,...,N. Then XY, g,(Sf), = f in_Q. Choose the neigh-
borhoods W; and W2 of A(D) in D X D such that W, ¢ W and W, C W,
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(the closures in Q), and let ¢ be a function in ¥°(C?"\ A(dD)) such
that 0 <o <1, ¢ =1 outside W;, and ¢ =0 in W,. Set L, = {u €
%gﬁ(D X D) N 6,,(Q)|3f € %,,(Q)}. Define L:, 0 < r, s, the operators
9 and P, on L: similarly as in [5], and let M= {k € Li|k|y, = 0},
and k, = Z,_lqup/g, ® e, € L} (here e,,...,ey is some basis of CV).
Using then Theorem 1 in place of Lemma 1 from [5], we end the proof
similarly as in [5] (of course, after the suitable change of notations,
according to that given above; in particular, the functions g; and 4, from
the final part of the proof of [5], Theorem 1 should be replaced by (St,)
and f; respectively).

Note. The operator f— (fy,...,fy) from Theorem 2 is in gene-
ral neither linear nor continuous. Nevertheless, if »n =1 (i.e. D C C),
then every f € (Ap)o(D X D) can be represented as f(z,s) =
(z — s)(Rf)(z,s) with (uniquely determined) Rf € A,(D X D), and the
mapping f — Rf is linear and continuous (where 4,(D X D) is equipped
with the topology of uniform convergence on compact subsets of Q).
Moreover, by Theorem 2, the function z — s can be decomposed with
respect to the functions g, in the form z —s =X g, with some
h; € Ay(D X D). Therefore, setting f, = (Rf)h;, i = 1,..., N, we obtain
the continuous and linear operator

(Ag)(D X D)3 f— ((Rf)hy,...,(Rf)hy) € [4y(D x D)]™

such that
N
(3-1) f= Z 8./
i=1

We obtain therefore the full generalization of Theorem 2 in [4]. Similarly,
if D c C" is strictly pseudoconvex with €2 boundary, then, by a theorem
of Ahern and Schneider [1], every function

fe€Ay(DXD)= {fEA(D X D)|f|A(D)= 0}

can be decomposed with respect to the functions z, — s,,...,z, — s, into
f(z,8) =X (2, — 5,)f(z,s) with some functions f, € 4 (D >< D), and
the operator Ao(D X D) f - (fy,...,f,) € [4,(D X D)]" is linear and
continuous. Applying Theorem 2 to the functions z, — s,, i = 1,.
and proceeding as above, we obtain the linear and continuous operator
Ao(D X D)3 > (f,...,fy) € [An(D X D)V, satisfying (3.1).
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