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EXAMPLES OF HEREDITARILY I1 BANACH SPACES
FAILING THE SCHUR PROPERTY

PARVIZ AZIMI AND JAMES N. HAGLER

A class of separable Banach sequence spaces is constructed. A
member X of this class (i) is a hereditarily I1 dual space which fails the
Schur property, and (ii) is of codimension one in its first Baire class. A
consequence of (ii) is that X is not isomorphic to the square of any
Banach space Y.

Introduction. In this paper we introduce and study a new class of

Banach sequence spaces, the Xa spaces. The definition of the norm in a

particular Xa space depends on the action of special sequences of intervals

of integers on a vector x = (tl9t2, - ) (as in the definition of the James

space / [6]) in conjunction with a fixed sequence of weighting factors (as

in the Lorentz sequence spaces [7].)

Let X denote a specific Xa space, and let (et) denote the sequence of

usual unit vectors in X (i.e. et(j) = 8tJ for integers / and j). Our main

result is the following:

THEOREM 1. (1) Xis hereditarily I1.

(2) The sequence {et) is a normalized boundedly complete basis for X.

Thus, X is a dual space.

(3) (i) The sequence (et) is a weak Cauchy sequence in X with no weak

limit in X. In particular, X fails the Schur property, (ii) There is a subspace

Xo of X which fails the Schur property, yet which is weakly sequentially

complete.

(4) Let Bλ(X) denote the first Baire class of X in its second dual, i.e.,

Bλ(X) = {x**εX**: JC** is a weak* limit of a sequence (xn) in X]

Then dim B1(X)/X = 1.

Part (4) shows that the space X has properties analogous to those of

the quasireflexive spaces of James. Since dim Bλ( X)/X is an isomorphism

invariant, we have the following immediate consequences of the Theorem.
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COROLLARY 2. (1) For any n and any Banach space Y, X is not

isomorphic to Yn. In particular, X is not isomorphic to its square.

(2) For any n > 1, Xn does not imbed isomorphίcally in X.

(3) Let X = A Θ B. Then exactly one of A or B is weakly sequentially

complete and the other is of codimension one in its first Baire class.

The properties of the Xa spaces provide an interesting contrast to the

work in the paper [5], where an example of a separable Banach space

which has the Schur property yet fails the Radon-Nikodym property is

given. The spaces presented here were designed (in part) so that the

combinatorial considerations encountered in [5] could be avoided.

In addition to the James space and the Lorentz sequence spaces

mentioned above, the Xa spaces owe their origin to the space of Maurey

and Rosenthal [8]. A class of examples (unpublished), similar to the Xa

spaces, was constructed independently by E. Odell.

The existence of hereditarily I1 Banach spaces failing the Schur

property was shown first by Bourgain [3]. However, the analysis of the Xa

spaces is self contained and particularly straightforward. For example, the

basic sequences which are equivalent to the usual basis of I1 are explicitly

constructed, and there is no use of RosenthaΓs characterization [9] of

Banach spaces containing I1.

Except as indicated below, our terminology and notation are stan-

dard. The reader is referred to the books of Day [4] and Lindenstrausss

and Tzafriri [7] for standard reference material on Banach spaces.

The authors would like to thank S. Bellenot, E. Odell, and H. P.

Rosenthal for suggestions and discussions regarding the current paper.

Preliminaries. In this section the definition of the Xa spaces is given.

First, by a block we mean an interval F (finite or infinite) of integers. For

a block F and x = (tvt2,...) a sequence of scalars such that Σjtj

converges, define (x, F) = ΣJeFtj.

To define the norm, we consider special sequences of blocks and

special sequences of nonnegative reals. Specifically, we call a sequence

(finite or infinite) Fl9F2,...9Fn,... (where each Ft is a finite block)

admissible if

maxFi < min Fi+ι for i = 1,2,3,

Let us now consider a sequence a of nonnegative reals (at) (whose

terms are used as weighting factors in the definition of the norm) which
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satisfies the following properties:

(1) aλ = 1 and ai+ι < ai for i = 1,2,

For x = (tv t2,13,...) a finitely nonzero sequence of scalars, define

where the max is taken over all n, and admissible sequences Fl9 Fl9..., Fn.

Let X ( = X(a)) be the completion of the finitely non zero sequences of

scalars x = (tl9t29...) in this norm. An Xa space is a Banach space

constructed in this fashion from some sequence a satisfying (l)-(3) above.

REMARK. Property (3) of the sequence (α,) is introduced to insure a

new class of spaces. Indeed, if we consider sequences (at) which satisfy (1)

and

(2') there is a 8 > 0 such that aι > 8 for all /, then the spaces X we

obtain are all isomorphic to I1. If we require (1), (2) and

(30 ΣΓ=1 «,.<<»,
then the spaces X are all isomorphic to c0.

Proofs of the results. For the remainder of the paper let us pick and fix

a sequence (αf.) satisfying (l)-(3) above, and let X = X(ay This section

contains the analysis of the stucture of the space X.

What we will show in the proof of Theorem 1 is that an I1 subspace

of X is obtained by considring block basic subsequences (ut) of (et)

which have the property (roughly) that the number of sets m in an

admissible sequence FvF2,...,Fm needed to norm un goes to oo as

n —> oo.

Before beginning our detailed analysis, we collect some basic facts

about the space X into the following lemma:

LEMMA 3. (a) The sequence (et) forms a monotone, subsymmetric basis

for the space X. (Recall that a basic sequence is subsymmetric if it is

equivalent to each of its subsequences) (b) For each integer n,

n In

L(«2i-1 - e2i) = L«i
( = 1 » = 1
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The proof of part (a) of the lemma follows immediately from the

definition of the norm in X. Part (b) follows from the obvious selection of

the admissible sequence F( = {/} for i = 1,2,..., 2n.

This next simple lemma provides the key to the analysis of the

space X.

LEMMA 4. Let the sequence ( α z ) be as above, let n0 > 0 be an integer

and let ε > 0. Then there exists a δ > 0 such that, if bv b2,...,bn

are > 0, Z>. < δ for alii, and Σ * = i α A = 1> t h e n Σϊl==ιoίi+riQbi > 1 - ε.

Proof. The series of nonnegative reals Σf=1[cci — ccι+no] converges, say

to c. So, for any n, Σfl==ι[ai - ai+no] < c. Thus,

n

Σ [«i - «, + Λ o ] * , ^ [max 6,-] c < e

if max bt is small enough.

Lemma 4 provides us with a tool for calculating the norm of linear

combinations of vectors in terms of the norms of the individual compo-

nents. We apply this to obtain a criterion for a sequence of vectors to have

a subsequence which is equivalent to the usual basis of I1.

For x e X, put s(x) = max|(x,G>| where the max is taken over all

blocks G.

LEMMA 5. Let (t/,) be a sequence of norm one vectors in X and (G() an

admissible sequence of blocks such that {j: ut{j) Φ 0} c Gt. For each /,

put st; = s(ut). If lim/_00.s
i

J. = 0, then a subsequence (vk) of (uk) is

equivalent to the usual basis of I1.

Proof. We select the sequence (vk) by induction. Let vλ = uv Pick nx

and admissible blocks FvF2,...,Fn satisfying maxFw = maxG1 and

Σ"L1αi\(vι, JF))| = H l̂l = 1. Let 8X be any 8 guaranteed by Lemma 4 for

the integer nλ and ε = 1/2. (To simplify notation in the remainder of the

proof, let nQ = 0.)

Assume now that we have selected for k = 1,.. .,/?- 1

(1) an integer mk ( > mk_1) so that vk = umk.
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(2) an integer nk (> nk_λ\ blocks Fnk_i + ι,..., FUk and δ^ > 0 such

(b) The sequence Fl9 F29..., Fni,..., Fni,..., Fnk is admissible.

(d) δ^ is any δ guaranteed by Lemma 4 for the integer nk_ι and
ε = 1/2.

Now let δ^ > 0 be any δ guaranteed by Lemma 4 for the integer np_1

and ε = 1/2. Pick mp (> m r l ) so that sm < 8p and let υp = um .
Finally, pick blocks Fn _i + 1 , . . . , i^ such that (a), (b) and (c) above are
satisfied for vp and Gm . This completes the induction process.

Observe that | ( ^ ^ + ^ _ 1 ) | < s»k < 8k for i = 1,...,ΛΛ - nk_v By
Lemma 4,

Σ « i + ι . J ( ^ ^ +»ft.1

This inequality can be rewritten as

*,\(»k,F,)\>k

Now, let scalars tl9 tl9...9tk be given. Since the sequence Fl9...9 FUk

is admissible, it follows from the observation above that

ŷ

Σ «.K«!,.^
Thus, the sequence (vk) is equivalent to the usual basis of I1.

Proof of Theorem 1 (1). By standard perturbation arguments, we need
only establish the result for norm one vectors (u() and blocks (Gz) with
maxG, < minG/ + 1 such that {j: ut{j) Φ 0} c Gr

Let (st) be as in the statement of Lemma 5. If some subsequence of
(s() -> 0, then we're done. If not, then there is a δ > 0 such that, for each
/, there is a block Ft with Fi c G, and \(ui9 Ft)\ > 8.

Select a sequence of (w,) (which we don't rename) so that
lim ^ ^ (ui9 N) exists. Put υt = u2ι_λ — u2r Then | |^ | | < 2 and
limJ._>oo(ι;/, N) = 0. By passing to a subsequence of (vt) and again not
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renaming, we may assume that

Thus, if F is any block, and m < n, it follows that

< 5.

To see this, suppose that HVH2,... is an admissible sequence of blocks,

so that each υt is supported in Hi (i.e. {/. vt(j) Φ 0} c //..) Pick ι0 and

j Q so that inf F e Hio and supF e i/^. Then (since \(x9 F)\ < \\x\\ for any

block F) it follows that

Finally, we show that for any subsequence (zt) of (ϋ, ), H !̂ 4-

• + z n | | -> oo as n -> oo. For each / pick a block i7^ c /ξ. such

that |<zf., Fi)\> 8 and (z ; , JF;> = 0 if j' Φ i. Clearly, the sequence Fv F2,...

is admissible. So, if zn = zx + + z Λ ,

Thus, | |zw | | -> oo as « -> oo.

Now, observe that if F is any block,

as « -^ oo.

At last we are ready to select a sequence (xt) equivalent to the usual

basis of I1. Let nι = 1. Inductively pick nk+ι so that \\vnk+λ +

Let JCX = ^i/ll^ill and, for k > 1, let

Then \\xk\\ = 1, and the sequence (xk) satisfies the hypotheses of Lemma

5 for some admissible sequence G 1 , G 2 , . . . , so a subsequence of (xk) is

equivalent to the usual basis of I1.
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Proof of Theorem 1 (2). Suppose that (tj) is a sequence of scalars such

that, for each integer «, | | Σ " = 1 tjβjW < 1, yet Y^=ιXtjej does not converge.

Without loss of generality, we may assume that

(ii) There exists an ε > 0, such that if m is any integer, there is a

We claim that for every δ > 0, there is an integer n such that, if F is a

block with minF> n, then \(Σ°°=1tJeJ, F)\ < δ. Let us assume for the

moment that the claim has been established and finish the proof of (2).

Using property (i), we first find an integer p0 such that, if x =

Y.Pj(Litjej, then ||JC|| > 1 — ε/4. Now pick an admissible sequence

F 1 ? F 2 , . . . , F n o s u c h that

11*11-Σ«,K*,*i>l

Let δ > 0 be any δ guaranteed by Lemma 4 for ε = 1/2 and the integer

n0. Using the claim, pick pλ > p0 so that if F is any block with

min F > Pl, then ftLj^tjβj, F)\ < 8.
Let y = Σy=/>1 tjβj be chosen so that | | j ; | | > ε, as guaranteed by (ii).

Pick blocks Gl9 G 2 , . . . , Gs such that minG1 > px and

Observe that |(JC, Gy> | < δ for all i = 1, . . . , s. Thus, by the choice of δ,

Then the sequence Fv F2,..., Fn , G l 9 . . . , Gs is admissible, and

k «o no + s + l

> 1 - ε/4
i - l

f
which is a contradiction. Thus, the basis (et) is boundedly complete.

It remains to prove the claim. If the claim were false, we could find

blocks Gl9 G 2 , . . . such that maxG7 < minG / + 1 for all / and

> δ
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for each i. But then, if m > maxG / ( m ) , and xm = Σ™=1 tjβp

II m II \ ^ I / m s^~i \ I O \ ^

z=l /-I

Since we can choose i(m) so that i(m) -> oo as ra -> oo, it follows that

| | jc m | | -^ oo as ra-» oo, a contradiction. This establishes the claim and

finishes the proof of part (2).

The following result is crucial to the proof of parts 3 (ii) and 4 of the

Theorem:

LEMMA 6. Let (wz) be a bounded sequence in X and (Gz) an admissible

sequence of blocks such that

}
(ii) (ui9N) = 0 for each i.

(iii) (w,) is a weak Cauchy sequence in X.

Then (Uj) -> 0 weakly in X.

Proof. First observe that (w,) is an unconditional basic sequence in X.

This follows easily from the fact that, for any scalars (/,), and any j ,

WΣ i + jtitiiW < HΣ^W II. See [7] (Proposition l.c.6, page 18).

Now, assume that (ut) does not converge weakly to 0. Then, there

exists an / e X*, | | / | | = 1, and a 8 > 0 such that (passing to a subse-

quence of (w ) and not renaming) f{ut) > 8 for all i. On the other hand,

since (ut) is unconditional and not equivalent to the usual basis of Z1,

there are an N and non-negative scalars tl9...,tN such that

tx = 1 and
N

Σ t,vt

Thus,

N N

>Σt,f{vi)>8,

which contradicts the assumption that (w,) does not converge weakly to 0.

This completes the proof of Lemma 6.

Proof of Theorem 1 (3-i). If the sequence (e, ) were not weak Cauchy,

we could find nx < mλ < n2 < m2 < , . . . , a δ > 0, and a n / e l * with

= 1 and f(en - em)> 8 for all /. Thus,

TV

> 8 for all N.
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But since the basis (et) of X is subsymmetric, it follows from Lemma 3
that

N

N ι

IN

N ι as N —> oo.

Thus, the sequence (e,.) is weak Cauchy.

Suppose that this sequence has a weak limit χ e X I f χ = (/y.), then

t =(x,{j})= lim(^,{y}> = 0,
/-•oo

so x = 0. On the other hand,

(x,N)= lim(ei9N)=l9
/—* oo

which is a contradiction.

Proof of Theorem 1. (3-ii). For each integer /, let xt = e2i — e2i_ι,
and let Xo be the closed subspace of X generated by the sequence (JCZ).

Since (xz) is an unconditional basic sequence (see the proof of Lemma 6)
and since Xo contains no isomorph of c0, it follows from [4] (Theorem 2,
page 74) that Xo is weakly sequentially complete. On the other hand,
HJCJI > 1 for all i and, as was shown in the proof of part (3-i), JC, -» 0
weakly. Thus, Xo fails the Schur property.

REMARK. Since the space X contains no isomorph of c0 and fails to
be weakly sequentially complete, it follows from a result of Bessaga and
Pelczynski [2] that X does not imbed isomorphically in a space with an
unconditional basis. (See also [4], page 74.) H. Rosenthal has observed
that, in fact, X does not have local unconditional structure.

Proof of Theorem 1 (4). Let θ0 e X** be the weak* limit of the
sequence (et) in X. We will show that if (vt) is a weak Cauchy sequence in
X, then ϋέ -> x + a 0O, where x e Xand a = \imi_O0(vi, N).

For each /, let /, e X* be defined by /,(£,) = δ/y . First, observe that
if w, -> JC** weak*, then x** = x 4- 0, where JC G I and 0(/) = 0 for
each /. (This follows from the fact that X is a dual space and the usual
duality arguments.) Let w, = vt — x. Then wt -> 0 weak*. From this it
follows that fj{wt) -> 0(/)) = 0 as i -> oo. By standard pertubation argu-
ments, we can assume that a subsequence of the (wf ) (which we don't
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rename) satisfies the following:

There is an admisible sequence (Gt) of blocks with
maxG; + 1 < minG/+1 and {j: wt(j) Φ 0} c G>

Let mi = m a x ^ + 1, and ut = wέ — (wi9 N) e . By Lemma 6, ui -» 0
weakly in X. On the other hand,

ut = wt - (wi9 N) - emf -> 0 - α θ0

weak* in X**, where a = l im^^w,, N). Thus, θ = α θ0. This shows
that x** = x - f α ^0 and completes the proof of part 4 and of Theo-
rem 1.

Final remarks. There are a number of possible future directions that
one might take in studying further the structure of the Xa spaces. We
briefly list some of them:

(1) Determine the isomorphism types of the spaces Xa in terms of the
sequence a = (at).

(2) If X is isomorphic to A Θ B, must one of A or B be isomorphic to
XΊ (Corollary 2 shows that the usual decomposition techniques do not
apply to the space X)

(3) Since each X is a dual space, X = Y* for some Banach space Y.
What is the subspace structure of YΊ In particular, is Y hereditarily c0?

(4) Is X hereditarily complementary Z1?

Added in proof. A. Andrew (Rocky Mountain J., to appear) has shown
that Xa and Xβ are isomorphic if and only if they are equal as sets,
answering question (1). He also has shown that if X is isomorphic to
A Θ J9, then one of A or B contains a complemented isomorph of X. The
second named author (in preparation) has shown that the answer to
question (4) is yes, and that, if Y* = X, there are many subspaces of Y
isomorphic to c0.
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