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WEAK*-CLOSED COMPLEMENTED INVARIANT
SUBSPACES OF L_(G) AND
AMENABLE LOCALLY COMPACT GROUPS

ANTHONY To-MING LAU AND VIKTOR LOSERT

One of the main results of this paper implies that a locally compact
group G is amenable if and only if whenever X is a weak*-closed left
translation invariant complemented subspace of L_(G), X is the range
of a projection on L_(G) commuting with left translations. We also
prove that if G is a locally compact group and M is an invariant
W *-subalgebra of the von Neumann algebra VN(G) generated by the
left translation operators /,, g € G, on L,(G), and (M) = {g € G;
{, € M} is a normal subgroup of G, then A is the range of a projection
on VN(G) commuting with the action of the Fourier algebra 4(G) on
VN(G).

1. Introduction. Let G be a locally compact group and L_(G) be
the algebra of essentially bounded measurable complex-valued functions
on G with pointwise operations and essential sup norm. Let X be a
weak*-closed left translation invariant subspace of L _(G). Then X is
invariantly complemented in L_(G) if X admits a left translation invariant
closed complement, or equivalently, X is the range of a continuous
projection on L_(G) commuting with left translations.

H. Rosenthal proved in [13] that if G is an abelian locally compact
group and X is a weak*-closed translation invariant complemented
subspace of L_(G), then X is invariantly complemented in L_(G).
Recently Lau {11, Theorem 3.3] proved that a locally compact group G is
left amenable if and only if every left translation invariant weak *-closed
subalgebra of L_(G) which is closed under conjugation is invariantly
complemented. Note that if T is the circle group, then the Hardy space
H_, is a weak*-closed translation invariant subalgebra of L _(T) and not
(invariantly) complemented (see [15] and Corollary 4).

In [20, Lemma 4], Y. Takahashi proved that if G is a compact group,
then any weak*-closed complemented left translation invariant subspace
of L_(G) is invariantly complemented. However, there is a gap in
Takahashi’s adaptation of Rosenthal’s argument (see Zentralblatt fur
Mathematik 1982: 483.43002). It should be observed that Rosenthal’s
original argument in [13, Theorem 1.1} is valid only for locally compact

149



150 ANTHONY TO-MING LAU AND VIKTOR LOSERT

groups G which is amenable as discrete (for example when G is solvable).
Indeed it follows from [21, Theorem 16] that under Martin’s Axiom, if P
is a bounded projection of L_(G) onto C (which is a weak*-closed and
left translation invariant subspace of L_(G)), the functions x —
(I, -1Pl f,h) = (Pl f, h), where f€ L, (G) and h € L (G), is in gen-
eral bounded but not measurable even when G is compact.

In §3 of this paper, we generalize Rosenthal’s result to all amenable
locally compact groups (and thus giving a correct proof of Takahashi’s
Lemma 4 in [20] for all compact groups). More precisely, our Theorem 1
implies that a locally compact group G is amenable if and only if
whenever X is a weak*-closed translation invariant complemented sub-
space of L_(G), X is invariantly complemented. Furthermore (Corollary
4), if G is compact, then X is even the range of a weak*-weak*
continuous projection which commutes with left translations. Also in this
case, L_(G) has a unique left invariant mean (for example when G =
SO(n,R), n = 5) if and only if every bounded projection of L_(G) into
L _(G) which commutes with left translations is weak*-weak* continuous.

Our proof of Theorem 1 depends heavily on a recent result of Losert
and Rindler [12] on the existence of an asymptotically central unit in
L,(G) of an amenable locally compact group.

Finally in §4 we give a non-commutative analogue of Lau’s result [11,
Theorem 3.3]. We prove that (Theorem 4) if M is an invariant W *-subal-
gebra of the von Neuman algebra VN(G) generated by the left translation
operators {/,; g€ G} on L,(G) of a locally compact group G and
Y(M)={geG; [,€ M} is a normal subgroup of G, then M is
invariantly complement. However, we do not know if the normality
condition on X(M) may be dropped or not unless Y(M) is compact or
open.

2. Preliminaries. If E is a Banach space, then E* denotes its
continuous dual. Also if ¢ € E* and x € E, then the value of ¢ at x will
be written as ¢(x) or (¢, x).

Throughout this paper, G denotes a locally compact group with a
fixed left Haar measure. Let C(G) denote the Banach algebra of bounded
continuous complex-valued functions on G with the supremum norm, and
let C,(G) be the closed subspace of C(G) consisting of all functions in
C(G) which vanish at infinity. The Banach spaces L,(G), 1 < p < o, are
as defined in [7]. If f is a complex-valued function defined locally almost
everywhere on G, and if a,t € G, then (/,f)(¢) = f(a7't) and (r,f)(¢) =
f(ta) whenever this is defined. We say that G is amenable if there exists
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m € L_(G)* such that m > 0, ||m|| =1 and m(/,f) = m(f) for which
f€ L (G) and a€ G (m is called a left invariant mean). Amenable
locally compact groups include all compact groups and all solvable
groups. However, the free group on two generators is not amenable (see
[4]-

For g € G, the corresponding inner automorphism induces a map 7,
on L (G)by7f(x)= f(gxg™). The adjoint map T,0on L,(G) is given by
TH(x) = &( g 'xg)A(g), where A is the Haar modulus function of G.
This can also be written as 7,6 = §, * ¢ * §,-1, where §, stands for the
Dirac measure concentrated at g € G (convolution as defined in [7]). A
net {u,} in L,(G) is called an approximate unit if im |ju, * ¢ — ¢,||; =
lim,||¢ xu, — ¢|l; =0 for all ¢ € L (G). The net {u,} is said to be
asymptotically central if lima[|ua]|‘1||7gua —uy)|=0 for all g € G. The
following result of Losert and Rindler is the key to the proof of one of our
main results:

LemMMA 1 ([12, Theorem 3]). Let G be an amenable locally compact
group, then L,(G) has an asymptotically central approximate unit {u_}
with ||u,|| < 1.

3. Subspaces of L_(G). A left Banach G-module X is a Banach space
X which is left G-module such that

(1) ||s - x|| < ||x|| forall x € X, s € G.

(1) for all x € X, the map s — s - x is continuous from G into X.
In this case, we define foreach f€ X*, s € G, x € X

(f-s.x)=(f.sx).
Define also (f-u,x) = [{f,s-x)du(s), p € M(G), f€ X*, x € X,
where M(G) is the space of (complex, bounded) Radon measures on G.
Then f-pe X* f-p=f-sifp=20 and (f-p) p,=f"(p *p,) for
By € M(G).
A subspace L C X* is called G-invariant if L - s C L forall s € G.

LEMMA 2. Let L be a weak*-closed subspace of X*. Then L is
G-invariant if and only if L - ¢ C L for each ¢ € L,(G).

Proof. Suppose that L is G-invariant and ¢ € L,(G), ¢ > 0 and
ll¢|l; = 1. Define ®(f) = [f(¢)¢(¢)dt, f € C(G). Then ® is a positive
functional on C(G) with norm one. Hence there exists a net {m,} in
C(G)* such that each m_ is a convex combination of point evaluations
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and m, converges to ® in the weak* topology of C(G)*. If m, =

_1 A, p,, where p(h) = h(s), h€ C(G),s € S,and f€ L, then f-m,
=3¥" N\ f-s, converges to f- ¢ in the weak*-topology of X*. Hence
f-¢o€ L.

Conversely, if L-¢ C L for each ¢ € L,(G) and s € G, let m €
L_(G)* such that m extends p, € C(G)* and ||m| = | p,]| = 1. Then
m > 0. Hence there exists a net {¢,} € L,(G), ¢, = 0, ||¢,]l; = 1, such
that {¢,} converges to m in the weak* topology of L_(G)*. Conse-
quently, if f € L, then f- ¢, converges in the weak* topology of X* to

f-s.

A left Banach G-module X is called non-degenerate if the closed
linear spanof {g-x; g€ G, x € X} is X.

THEOREM 1. Let G be a locally compact group. Then G is amenable if
and only if whenever X is a non-degenerate left Banach G-module and L is a
weak *-closed G-invariant subspace of X which is complemented in X, then
there exists a projection Q of X* onto L such that Q(f-s) = Q(f) -s for
alls € G, fe X*.

Proof. If G is amenable, there exists an asymptotically central ap-
proximate unit {u,} in L,(G), |juy) <1 (Lemma 1). Let m be an
invariant mean on L_(G). For each s € G, f€ X* put P, (f)=
O(f - (uy,*9,))-(8;-1*u,). By Lemma 2, P, : X* - L and H sl <
||P||. For each fixed a, f € X*, x € X, the function s - (x, P, (f)) is
bounded and continuous. Hence we may define the mean P, of the family

{ }seG y
(x,P.fy=m{s —-><x,P“(f)>}.

Then P,: X* — L (since L is weak*-closed and if x € X is annihilated
by L, then (x, P,f) = 0 by Lemma 2), and ||P,f]|| < ||P||. Finally define
Q(f) = weak* lim_ P,(f). Again Q: X* —» L, ||Q]| <||P|. For f€ L,
f-(u,*8;) € L. Hence (P, )(f)=/f"(u *u,). Now {u,*u,} is also
an approximate unit in L,(G). Since X is non-degenerate, Cohen’s
factorization theorem [8, 32.26] implies that each y in X has the form
¢-x, x € X, ¢ € L(G). Hence

<f'ua*ua—f7y>=<f’(ua*ua)'(¢'x)_¢'x>_)0
ie. P, (f)=1.
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Now foreach r € G
P, (f+1) =Py (f) t=P(ft-(uyx8-1%8,))(8-1%u,)
—P(f(u,*8,)) - (8- %u,)
+P(f (ug*8,)) (8¢ 8, xugx8-1%8)

—P(f'(ua * 8[:))(8(15)‘1 * ua * St)

Hence

1Pos(f - 1) = Py ((f) -t < 20 PINANNS, * g% 8- = g

and this estimate carries over to ||P,(f-t) — P(f) - t|| by invariance of
m. Since we assume ||8, * u, * 8,1 — u, || = 0, weget Q(f-t)=Q(f)-¢t.

The converse follows as in the proof of Theorem 3.3 in [11] by
considering X = L,(G) and (s-¢)(?)=¢(s7't), s€G, t€G, ¢ €
L,(G). Thenif fe L _(G),(f-s)t)=f(st)=(l-f)2).

Let Z be a locally compact Hausdorff space. Consider a jointly
continuous action G X Z —» Z. Assume that Z has a quasi-invariant
measure ». For each s € G, define x,(E) = »(s'E). Then », < ». Hence
there is a locally »-integrable Radon Nikodym derivative (dv,/dv) such
that », = (dv,/dv) -v. Also L,(Z,v) is a non-degenerate Banach left
G-module (see [S, Lemma 2.3]): s - ¢ =8, * ¢, s € G, ¢ € L,(Z, v) where
(8, * p)( &) = (dv,/dv)(£)(s7'¢) defined v-a.e. on Z. Hence Theorem 1
implies:

COROLLARY 1. Let G be a locally compact group. Then G is amenable if
and only if for any locally compact Hausdorff space Z and jointly continuous
action G X Z — Z such that Z has a quasi-invariant measure, then any
weak *-closed G-invariant complemented subspace of L (Z,v) is invariantly
complemented.

REMARK. Theorem 1 also implies Lemma 3.1 of [13] for L,(G),
1 < p < o0, and Theorem 4.1 of [11].

If H is a closed subgroup of a locally compact group, then there exists
a non-trivial quasi-invariant measure » on the coset space G/H = { xH;
x € G} which is essentially unique. Write L _(G/H) = L_(G/H,»).

COROLLARY 2. Let G be a locally compact group. Then G is amenable if
and only if every weak*-closed complemented invariant subspace of
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L _(G/H), H a closed subgroup of G, is the range of a projection on
L_(G/H) which commutes with translation.

COROLLARY 3. Let G be an amenable locally compact group and X be a
weak *-closed left translation invariant subspace of L_(G). Then X is the
range of a weak*-weak* continuous projection on L_(G) commuting with
left translation if and only if X N Cy(G) is weak *-dense in X.

Proof. This follows from Corollary 2 and Lemma 5.2 of [11].

COROLLARY 4. Let G be a locally compact group. Then G is compact if
and only if G has the following property:

(*) Whenever X is a weak*-closed complemented left translation
invariant subspace of L _(G), there exists a weak*-weak* continuous
projection from L_(G) onto X commuting with left translations.

Proof. If G is compact, property (*) follows from Corollary 2, and
Lemma 2.1, Lemma 5.2 of [11]. Conversely, if (*) holds, then apply the
property to the one-dimensional subspace X = C. It follows that there
exists ¢ € L,(G), ¢ >0, ¢(1) = 1 such that ¢(/,f) = ¢(f) for all f&
L_(G), s € G. In particular, G is compact.

A bounded linear operator T from L_(G) into L_(G) is said to
commute with convolution from the left if T(¢* f) = ¢ * T(f) for all
¢ € L,(G) and f€ L_(G). In this case, T also commutes with left
translations i.e. T(/,f) = I,T(f) for all s € G (see [10, Lemma 2}).

LemMA 3. If T is a weak*-weak* continuous linear operator from
L. (G) into L (G) and T commutes with left translations, then T also
commutes with convolutions from the left.

Proof. Let ¢ € L,(G), ¢ > 0 and ||¢||; = 1. Let ¢, = X7_;A,8, bea
net of convex combinations of point measures on G such that [ f(z) d¢ (1)
converges to [f(t)de¢(t) for each f€ C(G). Hence if h € L_(G), then
the net

(Gu*h, k) =(k*h,¢,) > (k*h,¢)=(¢*h, k)
for each k € L(G) (h(t) = h(t™')). Consequently,
T(¢p*h)=1lim T(¢p,*h) =lim ¢, *T(h) = ¢ *T(h).
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LemMMA 4 [10]. If G is compact, then any bounded linear operator T
from L_(G) into L_(G) which commutes with convolution from the left is
weak *-weak* continuous.

Proof. This is proved in [10, Theorem 2]'. We give here a different
proof. Indeed if ¢ € L,(G), then ¢ = ¢, * ¢,, ¢;, ¢, € L,(G) by Cohen’s
factorization theorem. Hence if f € L_(G), then

<T*(¢)’f> = <¢1*¢2,T(f)> = <¢2,‘3>1*T(f)>

={¢,, T(d,%f)) =(T*($,),8,% f) = (6, OT*(4,), /)

ie. T*(¢) = a; © T*(¢p,), where © is the Arens product defined on the
second conjugate algebra L _(G)* = L,(G)**. Since G is compact, L,(G)
is an ideal in L_(G)* (see [6]). Hence T*(¢) € L,(G), i.e. T is weak*-
weak * continuous.

PROPOSITION 1. Let G be a compact group. The following are equiva-
lent:

(a) L(G) has a unique left invariant mean.

(b) If E is a finite dimensional G-invariant subspace of L (G)*
(i.e I*E C E for all s € G) such that the map s — I} of G into E is
continuous, then E C L,(G).

(c) Any bounded ( projection) linear operator T from L_(G) into
L (G) which commutes with left translations is weak *-weak* continuous.

(d) Any bounded ( projection) linear operator T from L_(G) into
L (G) which commutes with left translation also commutes with convolution
from the left.

Proof. (a) = (b). Consider a continuous representation 7 of G on E
defined by #(s)(m)=1%Xm, s € G, m € E. Since E 1is finite dimen-
sional, there exists an inner product (, ) on E such that 7 is unitary. We
may further assume that « is irreducible. Let {{;,...,{,} be an ortho-
normal basis of E. Write e, ;(s) = (7(s)y,,¢,) for the coefficients of .
For g€ L (G), ¢ € L (G)*, define y-g€ L _(G)* by (y-g,f) =
(Y, 8f), f€ L (G). Thenforanyf, g€ L_(G), y € L (G)*, we have

(f1x(0-2)=(Lf,¥-8)=(g-(Lf). ¥)
=(L,((L-8) - 1), ¥) = (1. (15) -(I;g)).

! The converse to Theorem 2 in [10] was omitted in print. It is stated on page 352.
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Consequently /*(y - g) = (IXY) - (/,-1g). Furthermore, observe that
I, = Z ejz(s-l)‘l’ja [-e, = Z e, (s7)ey.

j=1 =1
Since = is unitary, 2, e, (x)e,(x) = 8, Put ¢, = L/_, ¢, - &, (™ denotes
the complex conjugate). Then

1%, = Z (1:9,) -(1,-1(24))

= Z e/z(s 1)\IJ€I’(S 1 elk Z‘Pl Jk

i,j, !
for all s € G. By assumption, ¢, € L,(G). Flnally

Z¢k e = Z‘P(Zezk e/k)=4‘1

and ¢ - f € L/(G) whenever ¢ € L,(G), f€ L_(G). Hence ¢, € L,(G)
forall/=1,2,...,n

(b) = (c). Since G is compact, it follows that T(¢ * f) = ¢ * T(f) for
all ¢ € L(G), f € C(G). If ¢ € L,(G) such that {/*¢; s € G} belongs
to a finite-dimensional G-invariant subspace of L_(G)*, then the same is
true for T*¢. Hence T*¢ € L,(G) by (b). Since elements of this type are
densein L,(G), T*(L,(G)) € L,(G)ie. T is weak*-weak* continuous.

That (¢) = (d) follows from Lemma 3.

(d) = (a). If L _(G) has more than one left invariant mean, then there
exists a left invariant mean m such that m & L,(G). Now define T(f) =
m(f)-1, f€ L (G). Then T is a projection of L_(G) into L_(G)
commuting with left translations. But 7 does not commute with convolu-
tion by Lemma 4.

REMARK. As known (see [3], [15] and [16]) if G is a nondiscrete
compact abelian group (or more generally, G is amenable as discrete),
then L_(G) has more than one left invariant mean. However, if n > 5,
and G = SO(n,R), then L_(G) has a unique left invariant mean (see [14]
and [17] for more details).

4. Subspaces of VN(G). Let P(G) be the continuous positive defi-
nite functions on G (see [6]). If H is a closed subgroup of G, let

Py = {9 € P(G); ¢(g) = 1forall g€ H}
Then P is a subsemigroup of P(G).

LEMMA 5. If H is a closed normal subgroup of G, g & H, there exists
¢ € Py such that ¢(g) =
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Proof. Consider the quotient group G/H and let ¢ € P(G/H) such
that y(gH) = 0 and ¢(H) = 1. Define ¢ = i o 7, where 7 is the canoni-
cal mapping of G onto G/H. Then ¢ € P(G), ¢(h)=1, forall he H
and ¢(g) = 0 (see[2, p. 199)).

Let VN(G) denote the von Neumann algebra generated by the left
translation operators /,, g € G, on L,(G). Then the predual of VN(G)
may be identified with A(G), a subalgebra of C,(G) with pointwise
multiplication, consisting of all functions ¢ of the form ¢(g)=
[ h( g 'Ok (t)dt, h, k € L,(G). Furthermore, A(G) with the predual norm
is a semi-simple commutative Banach algebra and a closed two sided ideal
of B(G), the linear span of P(G). There is a natural action of 4(G) on
VN(G) defined by (¢ - x,¢) = {(x,¢¢), x € VN(G). When G is com-
mutative, then A(G) and VN(G) are isometrically isomorphic to L,(G)
and Lw(é) respectively (where G is the dual group of G) and the action
of A(G) on VN(G) corresponds to convolution of functions in LI(G) and
L_(G). (see [2] for more details.)

A subspace M of VN(G) is called invariant if ¢ - x € M for all
¢ € A(G), x € M. Define

Y (M)={geG;l eM}.

If M is an invariant W *-subalgebra of VN(G), then X(M) = H is a
non-empty closed subgroup of G and M = N, the ultraweak closure of
the linear span of {/,; g € H} in VN(G) (see [18, Theorems 6 and 8)).

LEMMA 6. Let M be an invariant W *-subalgebra of VN(G) such that
Y(M) = H is a normal subgroup of G. Then M = {x € VN(G); ¢ - x = x
forall ¢ € Py}.

Proof. Let N = {x € VN(G); ¢ - x = x for all ¢ € Py}. Then N is
weak *-closed, invariant and N 2 N, = M (since ¢ - [, = ¢(g)l, = [, for
¢ € Py, g€ H). Now if g€ G and /[, €N, then ¢(g) =1 for all
¢ € P,. In particular 2(M) C H by Lemma 4. Hence if x € N, then
supp(x) € 2(N) € H by Proposition 4.4 [2]. Consequently, x € N;, by
Theorem 3 [19].

The following implies one direction of Theorem 3.3 [11] when G is
abelian:

THEOREM 2. Let M be an invariant W *-subalgebra of VN(G) such
that (M) = H is a normal subgroup of G. Then there exists a continuous
projection P of VN(G) onto M such that P(¢ - x) = ¢ - P(x) for all
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¢ € A(G) and x € VN(G). In particular, M admits a closed complement
which is also invariant.

Proof. By Lemma 6, M = {x € VN(G); ¢ - x = x for all ¢ € P,}.
For each x € VN(G), let K _ denote the weak*-closed convex hull of
{¢-x; ¢ € P(G)}, where P,(G) = {¢ € P(G); ¢(e)=1}, and (¢ -
x, ¥y = (x,¢¢), ¥y € A(G). Then K, is a weak*-closed subset of VN(G).
For each y € Py, let T,: K, — K, bedefined by T)(y)=¢ -y, y €K,.
Then T, is weak*-weak* continuous and affine. Since P, is a commuta-
tive semigroup, an application of the Markov-Kakutani fixed point theo-
rem ([1, p. 456]) shows that M N K is nonempty for each x € VN(G).
By Theorem 2.1 in [9), there exists a projection P from VN(G) onto M
and P commutes with any weak*-weak* continuous operator from M
into M which commutes with {T,; ¢ € Py}. Hence P(¢ - x) = ¢ - P(x)
for each ¢ € A(G), x € VN(G).

REMARK. Lemma 5 (hence Lemma 6 and Theorem 2) holds for any
compact subgroup (see Eymard [2, Lemma 3.2]) and any open subgroup
H of G (see Hewitt and Ross [8, 32.43]) without normality.
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