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AN EVALUATION OF THE CONDITIONAL
YEH-WIENER INTEGRAL

KUN Soo CHANG, JAE MOON AHN AND JOO SUP CHANG

Yeh obtained the conditional Wiener integral of

ap{-fiV[x(u)]du}
given x(t) where x is in Wiener space C[0, t] and V is a function on R1

satisfying certain conditions. In this paper we extend Yeh's result to the
conditional Yeh-Wiener integral of exp{-f$ fa V[x(u, v)] du dv}
given x(s,t) where x is in Yeh-Wiener space C2(Q) and V is a
nonnegative continuous function on R1 satisfying the condition

ί w2)V(w) exp - — } dmL(w) < oo.

1. Introduction. Yeh recently derived inversion formulae for condi-
tional expectations [5] and for conditional Wiener integrals [6]. He also
evaluated some conditional Wiener integrals using these inversion for-
mulae. In [2] and [3], they introduced the conditional Yeh-Wiener integral
and extended some of Yeh's results for the conditional Wiener integrals to
the conditional Yeh-Wiener integrals.

Here the probability space is the Yeh-Wiener measure space on the
Yeh-Wiener space C2(Q) of the real valued continuous functions x
defined on Q = [0, s] X [0, /] for some fixed positive real numbers s and t
such that JC(O, υ) = x(u,0) = 0 for all 0 < u < s and 0 < υ < t. In this
paper we shall always denote Q as a fixed above rectangle. Let (C2(Q),
^,mv) be the Yeh-Wiener measure space. For a complete discussion of
Yeh-Wiener measure space, see [7].

A real valued functional F on C2(Q) is said to be Yeh-Wiener
measurable if it is ^-measurable. Its integral with respect to my if it exists,
is called its Yeh-Wiener integral which is denoted by EV(F). In this case
we write

(1.1) Ey(F)= f F(x)dmy(x).
JC2(Q)

We say that F is Yeh-Wiener integrable or m v-integrable when the
Yeh-Wiener integral of F, EV(F), exists and is finite. The Yeh-Wiener
measurability and Yeh-Wiener integrability of a complex valued func-
tional on C2(Q) are defined in terms of its real and imaginary parts.
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Let X and Y be the Revalued and real valued Yeh-Wiener measura-

ble functions on C2(Q), respectively, with Ey(\Y\) < oo. Let Px be the

probability distribution determined by X. By the conditional Yeh-Wiener

integral of Y given X we mean the conditional expectation Ey(Y\X)

which is given as a function on the value space of X. Throughout this

paper we shall be exclusively concerned with X and Y given by X(x) =

x(s,t) and Y(x) = exp{-/ρ V[x(u,υ)]dudυ] for x e C2(Q) in which V
is a nonnegative continuous function on R1 satisfying the condition

(1.2) £ V(w)-cxp^-—^ dmL(w)< oo

where mL is the Lebesgue measure on R1.

The techniques of this paper are closely related to those of paper [6]

of Yeh, but for the evaluation of the conditional Yeh-Wiener integral we

use slightly different techniques. In Theorem 2.1 we evaluate the condi-

tional Yeh-Wiener integral of Y(x) given X(x) which is the extension of

Yeh's result [6; Theorem 5]. The proof of Theorem 2.1 is simpler than that

of Yeh. To do this we will use the following Proposition which comes

from [3; Theorem 3.5].

PROPOSITION 1.1. Let X and Y be measurable transformations of

(C2(Q)^) into (R\ ^(R1)) with Ey(\Y\) < oo. Assume that Px is abso-

lutely continuous with respect to mL on (R1, ̂ (R1)) and Ey(eιuXY) is a

m L-integrable function of u on R1. Then there exists a version of

Ey[Y\ X)(dPx/dmL) such that for ξ e R\

(1.3) [\]tt)^f(ξ) f

2. The conditional Yeh-Wiener integral of

exp(- Γ Γ V[x(u,υ)]dudυ)

given x(s, t).

THEOREM 2.1. For some fixed positive real numbers s and t, let

(2.1) X(st)(x) = x(s,t) and

Y(sJx) = exp(- f f V[x(u,v)] dudv)

for x G C2(Q) where V is a nonnegative continuous function on R1 satisfy-

ing the condition

(2.2) £ F(W)exp|-^Jdm t(W) < oo
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for every s and t in (0, oo). Then the conditional Yeh-Wiener integral of Y(s t)

given by X(st) is

(2.3) E

JQ

st

'*V (*-«)( '-*)

(s - u)(t - υ)

uιχ, M 1 2 , M 2 1 ) dmL(u, v)

where x{s,t) = ζ e R1,

( u v){x) = Γ F[X(M, r)) dr f V[x{q, υ)] dq,

, Xis,0)(x))

(2.4)

(2.5) X(x) = {X(u,v)(x),

for x e C2(Q), and

(2.6) ^ ( " l i * " ^ 1 ^ ) = {(2 πγu2vl(s - u){t - v))

' «11 ("12 — »l l ) 2 («21-«ll)2\

-1/2

REMARK. The existence of F on (2.2) follows if V satisfies the order
of growth condition

V(w) = θ(txp{w2'8}) asw-> ±00

for some 8 e (0,2). Under (2.2), if we define

(2.7) )) L=
ylπst

for (5, 0 e (0, oo)2, then φ is a nonnegative continuous function on
(0, oo)2 and furthermore

lim φ(s9t)=V(o) f o r ( σ , τ ) e [0,oo)2-(0,oo)2.
( 0 ( )
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Let us define

(2.8) Φ ( σ , τ ) = lim φ(s,t)
(j,/)->(σ,τ)

for (σ, T) e [0, oo)2 — (0, oo)2 so that φ is continuous on [0, oo)2.

LEMMA 2.1. For 0 < u < s and 0 < u < t,

(2 9) Ev\eιw(x(^t)-x(s,v)-χ(u,t) + x(u,v))λ = e χ p / _ S U * ^^

\ 2

forx G C 2 ( β ) andw G R1.

The lemma can be followed from the fact that the left-hand side of

(2.9) is the characteristic function of the random variable x(s, t) - x(s, v)

— x(u, t) + x(u, v) whose probability distribution is the normal distri-

bution with mean 0 and variance (s — u)(t — v).

Proof of Theorem 2.1. We can easily obtain that X(sJ) and Y(s 0 are

measurable transformations of (C2(Q)9<&) into (R1, ^(R 1 )), with Ey(\Y\)

< oo. Now

= exp{- Γ Γ V[x(q,r)]dqdr

x ( Γ K [ x ( « , r ) ] d r - Γ F [ x ( ί ? t ; ) ] φ - K [ J C ( « , I ; ) ] } ,

thus we have by (2.1)

(2.11) y(J/)(x) = l + ίίexpί- Γ Γ V[x(q,r)]dqdr

x ( f V[x(u,r)]drΓ V[x(q9υ)]dq- V[x(u,υ)]\ dmL(u,v).

To show that Ey[e'wX<s "Y(st)] is a mL-integrable function of w in R1,

let

(2.12) Ey[eiwX^Y(st)] = E>[eiwχ(SJ)] -Jy(s,t) +J2(s,ί)

where

(2.13) Ji{s,t)

= Ey v[x(u,v)]
Q

- / V[x(q9r)]dqdr\dmL(u,v)
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and

(2.14) J2(s,t)

I fv v[x(u9r)]drΓ V[x(q,υ)]dq
Q WO J0

Xexpj-J" f V[x(q,r)]dqdή dmL(u,υ) .

T h e n w e c a n h a v e

( 2 . 1 5 ) E y [ \ pLzr
/2πst

by the basic Yeh-Wiener integration formula and the formula

(2.16) / exp{ — (aζ2 4- bζ)] dmL(ξ) = J— exp< —

for a > 0 and real or imaginary b. Thus

(2.17) f < 00.

To interchange the order of the Yeh-Wiener integral and the integral
with respect to dmL(u, v) on Q in (2.13), note that

e»»χ(s<<)V[x(u9υ)]exp[- f Γ V[x(q,r)] dqdr
0 Ό

< V[x(u,υ)]

for ((«, v), x) s Q X C2(Q) and note that by (2.7) and the continuity of
on [0, <»)2,

(M,t;))] dmL(u,v)= [ φ(u,o) dmL(u,v) < oo.

By the Fubini Theorem we have

(2.18) Λ( M )

-J" j""
Since

,/) - x(s,v) - x(u,t) + x(u,v), {x(s,v),x(u,t),x(q,r)}}
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is an independent system of random variables on (C2(Q), *&, my) for every
(</, r) e [0, M] X [0, v], we can have by Lemma 2.1,

(2.19) Λ(5, t)= exp - ^~u>y-u>w

2

Xexpj- f f V[x(q,r)]dqdή\dmL(u,v).

Let X be a three dimensional random vector on (C2(Q), &, my) given by

(2.20) X(x) = (^(x), X2(x), X,(x))

where Xγ = X(u<v), X2 = X(U<1), and X3 = jr(J>I(). Let Yγ = 7(u>l)). Then the
regular conditional distribution of Yx given X, P(Yι \X), exists since Yι

is a real valued random variable. With fixed w e R1 consider a complex
valued function / on R3 X R1 defined by

(2.21)

for ξ = ( ξ l 5 1 2 , | 3 ) e R3 and η e R1. By Proposition 2 and Proposition 1
in [5], we have

(2.22) Ey\e'w{x(s υ)+x("'')-χ{u'D))V[x(u,v)}

- ζ £ V[x(q,r)]dqdr}\

•Ίi3

where

(2.23) dPx(un, uu, u21) = {(2ir)3u2v2{s - u)(t -

ί "n («i2-«π)2 («2i-«ii)2

Xexp - TΓ11- - V l ^ - ~ hr ψ-
r l 2uv 2u(t - v) 2(s - u)v
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By (2.19) and (2.22) we can obtain

(2.24) J 1 ( , , O -

ί ei

'R3

X Ey{Y11 X)(un, un, u2l) dPx(un, uι2, M21) I dmL(u, v).

To show that J^s, t) is integrable, observe that

for ((« u , u12, u21),(u, v)) e R3 X Q. Let πx be a function from R3 to R1

defined by W1(M11, M12, M21) = MΠ. Then Xλ — i!x ° X. Thus by Proposition
3 in [5] and (2.7) we have

(2.25) J V(ulι)Ey(Y11 X)(uu, uu, u21) dPx(un, "12, uΆ)

= EyKV XM < Ey[V(x(u,υ))] = φ(u,v).

Now

ί φ(u,v)e-«s-uX'-vV2)w2dmL(u,v) = Ke
o

where

K= [ φ(u,v)e«sv+u'-"v)/2)w2dmL(u,υ) < 00
JQ

by the continuity of φ on [0, oo)2. Thus Jλ{s, t) is integrable since

(2.26) f \J1{s,t)\dmL(w)<KJ e-(st/2)w2dmL(w)< 00.

To interchange the order of the integrals in (2.14) note that

eiwχi*.»f f V[x(Uy r)] dr f V[x^ υ)] dq\
wo ^o /

Xexpί- f Γ V[x(q,r)]dqdr)

<ί f V[x(u,r)]dr f V[x(q,v)]dq

ΐoΐx e C2(β)and

[ Ey\f V[x(u,r)]dr Γ V[x(q, υ)] dq] dmL(u, v) < Mst
JQ L y 0 ^0 J

< 00
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for some M > 0 since K° x is a continuous function. Thus from (2.14) we

obtain

(2.27) 4(..,)

Xexp{-jΓ jΓ"

by the Fubini Theorem and the same way as in (2.19). Let X be given as

in (2.20) and let Yx = Y(UjV). Note that E\\Y$ < oo. Let

Zi(χ) = Zι«,v)(χ) = Γ vίχ(u>')! d r ί Ffχ^' y)l ^

for x G C 2 ( β ) . Then it is obvious that Zλ is Yeh-Wiener measurable and

Yeh-Wiener integrable on C2(Q). Put Fλ = Z ^ ^ Then Fγ is a real valued

random variable on (C2(Q), W, my) with Ey(\F^ < oo. For fixed w G R1

consider a complex valued function g on R3 X R1 defined by

for ξ = (ξl9 £ 2, £3) G R3 and η G R1. Applying Proposition 2 and Proposi-

tion 1 in [5] to the real and imaginary parts of g we have by (2.1),

Γ ( rv ru \
\λ.Σ6) t y \e "< I V [x{u, r)\ ar f Yix\q,v)\aq)

v 'o •'o /

= ί ei»(u2i + »i2-»n)^.
I V I I /\ 11' 12' 21/ X >

where dPx(un, uu, «21) is given as in (2.23). By (2.27) and (2.28) we have

(2.29) J2(s,ή-

{Jf, e' , uu, u^dPx(un, un, »2

dmL(u, v).
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To show that J2{s, t) is integrable, observe that

for ((wn, w12, u21),(u, υ)) e R3 X Q. Since the conditional Yeh-Wiener
integral is P^integrable, we have

N = j Ey(Fι\X){un,uu,u2ι) dPx(un,uu,u2ι) < oo.

Thus

ί Ne-((*->
JQ

where

w β
Hence J2(s, t) is integrable since

(2.30) ( \ J2(s,t)\dmL(w) < NL ί e-(st/2)w2dmL(w)< oo.
R* R̂

Therefore by (2.12), (2.17), (2.26) and (2.30), we have that
E-v[e'wX('- )Y(s t)] is a wL-integrable function of w on R1 and thus, by
Proposition 1.1, there exists a version of

dPγ

such that

^iwi{Eyywx^\ - Φ,t) + J2{s,t)} dmL{w)

by (2.12). To evaluate the above integral first note that

(2.32) J - /" e-'^^e""^- 0] dmL{w) = - i ^ exp(- ^
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by (2.15) and (2.16). And also note that

(2.33) y-( e-^φj) dmL{w)

\ ί

Pχiun, Unί M2i)J dmL{u> v)
by (2.24) and the Fubini Theorem. By (2.16) we can have

(2.34) ^ : J e-ff-^-^+'πl-ίO-X'-l/V^j,,)

1 f (f - «2i - "i2 + "ii)2 \
exP

f
e x P\

pw(s - u)(t - v) \ 2(s-u)(t-v)

Substituting (2.34) in (2.33) we obtain

(2.35) ^

/2ir(ί - M)(/ - υ)

X e X P { ~ (? 2 ( " « ) ( " P T ) 2 } ^ M " ' ^ ' M ^ } *"*(
Finally we can note that

(2.36) ±

" un,un,u21)} dmL(u,v){ 2 ( 5 - u ) ( t - v ) } }
by (2.29), the Fubini Theorem and (2.34). Hence by (2.31), (2.32), (2.35)
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and (2.36) we have

(2.37) E

1 / ζ2

e x P - ^ 7

~f If {V(un)Ey[γi\χ](un>un>uzι)

1

]/2π(s - u)(t - v)

— r - ^ — Γ T 5 ^ r1— ) dPx(un, ul29u2l) dmL(u,v).

Since

dmL

we can have the desired result (2.3) from (2.37).
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