PACIFIC JOURNAL OF MATHEMATICS
Vol 128, No. 2, 1987

EXTENDED ADAMS-HILTON’S CONSTRUCTION

Y. FELIX AND J. C. THOMAS

J
Let F>E5 B be a Hurewicz fibration. The homotopy lifting

property defines (up to homotopy) an action of the H-space B on the
fibre F which makes H,(F) into a H,(2B)-module. Suppose B is

connected. We prove that if £ — B is the cofibre of amap g: W — E

where W is a wedge of spheres, then the reduced homology of F, H.(F)
is a free H,(2B)-module generated by H,(W). This result implies in
particular a characterization of aspherical groups.

The key point in the proof of this theorem is the following generaliza-
tion of the Adams-Hilton construction. In their famous paper, Adams and
Hilton construct for every simply connected C.W. complex B a graded
differential algebra whose homology computes the algebra H,($2B). Ex-
tending their construction to any fibration p we construct a differential
graded module C(F) whose homology computes the H,({2B)-module
H,(F). We suppose E is a subcomplex of B, then C(F) is a free
H,(QB)-module generated by the cells of E. The differential is defined
inductively on generators in accordance with the way the cells of E are
attached.

Our construction has many applications. For instance, let K LK be

a normal covering of a finite C.W. complex. K is the homotopy fibre of
some classifying map K — K(G,1). As H,(2K(G,1)) is isomorphic to
Z[G], our construction yields an explicit chain complex whose homology
computes the homology of K as a Z[G]-module. In particular, we estab-
lish some properties of infinite cyclic coverings in low dimensions.

1. The algebra structure of H,(2X; R). Let X be an arcwise
connected space with x, as base point. For sake of simplicity, we denote
by G the fundamental group =,( X, x,). Then

QX = I_[ (Qx )g
gEG
where (§2X), denotes the arcwise connected component of X whose
elements are the based loops y belonging to the homotopy class g.

We denote by e the homotopy class of the constant loop at x,. For

each y € g, the homotopy equivalence
Ly: (QX)e - (QX)g
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defined by L (w) = y * w, induces for each ring R a unique R-module
isomorphism (L,)s: Hy((2X),; R) > Hy((RX),; R). Let R[G] be the
group ring of G. If g =X A,g, belongs to R[G] and f belongs to
H,((2X),; R), the map

®: H,((2X).; R) ® R[G] > H,(2X; R)
defined by
®(f,8) = LA(Ly)u(f)

is an isomorphism of R-module.

Moreover, @ is an algebra isomorphism when H,(£X; R) is equipped
with the canonical Pontryagin algebra structure and if the product in
H,(2X,; R) ® R[G]is given by the formula

(f1,8)( 12, 82) = fifF ® 2185,

where ¢ € H,((2X),; R) denotes the image of f by the unique homo-
morphism H,((2X), R) = H,((X),; R) induced by the conjugation
map w — yoy ! withy € g.

REMARKS. (1) Suppose that X admits a universal covering p: X — X,
then @p: X — (£X), is an isomorphism of topological monoids.

(2) By the natural inclusion (2X), - QX, H((2X),; R) is a subal-
gebra of H(QX; R), and so H,(2X; R) is a free left module on the ring
H(QX; R).

(3) The conjugation map w — ywy ™! in (2X), corresponds via p to
the map in 2X defining the operation of 7,( X, x,) = G on m,( X, x,).

(4) If R is a field of characteristic zero, then by the Milnor-Moore
theorem [10] the Hopf algebra H(QX; R) is isomorphic to the enveloping
algebra U(7(2X) ® R). In this case ® induces a Hopf algebra isomor-
phism

H,(2X; R) = U(7.,(2X) ® R) ® R[G]

where the operation of R[G] on U(w.,(£X) ® R) is induced by the
natural operation of m( X, x,) on 7, ,( X, x,).

2. Adams-Hilton construction in the non-simply connected case.
Recall the Baues’ construction [2].

Let K be a 0-reduced CW complex. There exists a 0-reduced CW
complex K together with a homotopy equivalence

g: K-> K
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such that the attaching map of a 2-cell of K belongs to the free monoid
generated by the 1-cells of K. In order to do that, replace each 1-sphere in
K*' by the 2-dimensional complex

with one 2-cell and two 1-cells y and jy. The attaching maps of the 2-cell
is yy. The attaching maps of the n-cells of K define attaching map of K
and for the cellular chains complex of K we have the relations:

C(K)® C(K), n=1,
C(K)=({GC(K)®sC(K), n=2,
C,(K), n> 3.

THEOREM 1 [2, D3.7 and 3.16]. Let K be a O-reduced CW-complex.
There is a differential d on T(s 'Cy(K)) together with a weak equivalence
of chain algebras

v: A(K) = T(s7'Cy(K)) = C4(2K).

Moreover, the construction of d and v is inductive. Assume constructed
v,: A(K") = C(RK™") then for each (n + 1)-cell e, with attaching map f:
S" > X, put ds™'e = z where (v,)4[z] = (f)u(§) with ¢ a generator of
H,_,(95"Y).

Each 1-cell y of K yields a loop y € 2K C Cy(2K). Then v(s~ly) =
y.

For a 2-cell e in K, ds™le = a — 1, where « is an element of the free
monoid generated by the 1-cells of K, representing the attaching map of
e.

REMARK. These formulas differ slightly from the Baues’ ones. (Simply,
subtitute formally y by y + 1).
Now, consider the canonical fibration

9k PRL K.
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Let denote by S,(2K) (resp. Si(K), Si(PK)). The singular chain
group generated by non-degenerated cubes (resp. whose vertices are at the
base point, in Q(K)). Following, the original Adams-Hilton construction
it is easy now to obtain.

THEOREM 2. If K is a 0-reduced CW-complex there is a commutative
diagram of augmented chain complexes

(A(K),d) S S(Q(K))
rl L
(B(K)®4(K).d) 3 S.(P(K))
7l lp
(B(K),d) 5 sdE)

with B(K) = Z & C(K), such that
1. v is a homomorphism of Z-algebras;
2. 0, is a homomorphism of differential modules;
3. The induced maps vy, (0,)x, 04 are isomorphisms.

ReMARKS. (a) Denote by A, the set of n-dimensional cells. Then
( tooa €A1, BE A2> is a presentation of the fundamental group G of
K. This defines a group extension:

1>-H->F->G-1
where F denotes the free group (¢,,a € A,) and H the normal subgroup
of F generated by the elements rg, BEA,.

The group ring Z[F] is an augmented Z-algebra concentrated in
degree zero. We denote by

A(K)=Z[F]*T(s7'C_,(K))
the free product of the two associative Z-algebras. As A(K) =

T(s7'ICy(K) ® s7ICy(K) ® C,(K) & 57'C,, 5(K)), the homomorphism p:
A(K) — A(K) defined by

o(t,) =t,, p(i,)=1" p(C(K)) =0, plsc,=id

induces an isomorphism in homology. If K is countable, Milnor con-
structs a topological group G(K') which has the homotopy type of Q(K).
In this case it is possible to construct directly an equivalence of chain
algebras, between (A(K), D) and S,(G(K)).
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(b) As in the classical construction, we define on the chain complex
B(K) ® A(K) (resp. B(K) ® A(K)) an e-derivation s such that
sd+ds=1—¢
where ¢ denotes the augmentation of the complex.
In partiuclar, using Fox calculus we obtain in B(K) ® A(K) the
following relations, in low degrees;

dt, =0, i€ A,
dlevi=10r-1®1, jEA,,
Arel1=1®t-1®1, i€ A,
or;
dbj?®1=1®v}—2b}®a—tji, jEA,,

where
A(K)=Z[t,.,t,.‘1]*<vj’.>, i€N,jEA, =2,
B(K) = (1,b}), jEA,, k=1

NotATIONS. (v,), @ € A denotes the free group (resp. the free
association algebra) generated by the u,’s when the degree of the v,’s is
zero (resp. is positive) (b,), @ € A denotes the abelian group freely
generated by the b,’s.

EXAMPLES.

ExaMpPLE 1. K = P*(R),
A(K) = (Z[t’t—ll *<Ul’02’v3>’ d)’
dt=0,dv, =t*—1, dv, = to,t7! — vy,
dU3 = tU2t~1 + 02 - U%t_z.
ExampLE 2. K = S! X §?,
A(K) = (Z[t’ t—l] * <Ul’ U2>’ d)’
dv, =0, dvy, = oyt ™! — v,.

Therefore the natural projection A(K) > (Z[t,t7']1® (v,), 0) is a
quasi-isomorphism.

3. Adams-Hilton construction for homotopy fiber and applications.

31. Let f: K— L be a cellular map between O-reduced C.W.

complexes. Denote by g: F — K the homotopy fibre of f and by § the
connecting homomorphism in the Puppe sequence.
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THEOREM 2. With the notations introduced in §2, there is a commutative
diagram of augmented chain complexes

143

(4(Z),q) = S.(QL)
Lr 18
(B(K)®A(L),d) >  Su(F)
ll1ee Vf
(B(K),d) 5 Su(E)

such that ¥ is a homomorphism of differential modules and ¥, is an
isomorphism.

Proof. Clearly we may suppose that f is an inclusion. We have only
to define d and ¥ on B(K) ® A(L). d is defined as the restriction of the
differential d of B(L) ® A(L) to B(K) ® A(L). This is possible since f
is an inclusion. The cellular construction of Theorem 2.2 shows that the
restriction of 6,(L) to B(K) ® A(L) factors into a homomorphism of
differential modules ¥, making commutative the above diagram.

(i) Suppose that K = V,S! and denote by QL —» F’ - K the in-
duced fibration by the inclusion K — L. Then we obtain a commutative
diagram

- Ve
B(K)®A(L) - S.(F')
i i
B(K)® A(L) 2 Se(F).
K

As j, and j’, are isomorphism, it suffices to prove that (¥ ), is an
isomorphism.

The Leray-Serre spectral sequence of the fibration QL — F’ — K on
one hand and the spectral sequence obtained using the filtration B_,(K)
® A(L) on the other hand, yield the commutative diagram

- H,.,(B(K) ® A(L))-By(K) ® Hq(A(i))il*Hq(A(z))—’Hq(B(K) ®A(L))

L(¥x)a =16, 8(v.)e = | (vp)s L (¥k )«
- H,.(F) - G(K)®H/(QL) - H/(QL) - H,(F) -

So, from the five lemma we deduce that ¥, is an isomorphism.
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(i) Suppose we have proved Theorem 3 for C.W. complexes of
dimension less or equal to n and let K = K"*!. The following diagram
defines then F’ as the total space of a pull-back fibration

QL) = QI = QL)
i I d
F' - F - P(L)
J ) v

— f —

K" - K > L

So obtain the commutative diagram:

0>  S(F) -  S(F) - S«(F)/S«(F") -0
T TV T

0 - B(K")®4(L) » B(K)®A(L) » B(K)®A(L)/B(K")®A(L) - 0
From the inductive assumption and the five lemma it suffices to prove
that (¥), is an isomorphism.

We denote by x: (E"*', S") — (K, K") the characteristic map of the
cell e, and suppose that K = K" U e.

Now from the commutativity of the diagram

(B(K)p@) ® A(L) - (B(L"Ue) 5z ®A(L)
¥ 61
S«(F)/S«(F") > Sp L7 ue), p L)

where the two horizontal maps are quasi-isomorphisms, we might as well
suppose that

K'=L" and ¥ =40, (6,,asinTh.2).

Now, let us recall the construction of 6,: B(L) ® A(L) — S,(PL).
We denote by { a cycle of S,(£2S") corresponding by homology suspen-
sion to a generator of H,(S"). Let £ € S,(PS™) and n € S,(2E"*!) such
that d§ = { and dn = { when { is considered as an element of S,(PS")
or of Sy(RE"*!). Considering now, all these chains in S,(PE"*!) we
obtain the relation dk = £ — y for some k € S, ,(PE"*!). Now 6, is
defined such that

6,(e® 1)+ Px(x) €S,,,(PL") C S,,,(p~'L")
with Pyx: the canonical map PE"*! - PK < PL.
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From this formula we deduce the following commutative diagram,

B(IF U e) @ A(L) 4 Su(p-{T7 U e))

v l

(B(FU")/B(F))®A(L) - S*(P_l(l_";ue)’l’_l(ﬁ))
al
S*(PE"“,SZE"“g"PS”) ® S,(QL)
pl X

Se(x~p), x ()|

where,

(1) a=v ® vy with y(e) = —p(k) and p is the canonical map
S«(PE"*Y) > S (PE"*YL,QE"*' U o PS™).

(ii) x’ is defined by the following diagram

(PP S (T Ue), 5 (D)
4 Lp
(E™1,57) 5 (I" U e,I7)
(iii) p is induced by the homotopy equivalence
(PE”“,QE"“SEJ PS”) X QL5 (x Y(p).x (p)ls)
p

with p(c) = (Px(c),c(1)) if ¢ € PE™*! and extended using the operation
of QL on x Y(p).

By excision X’ is an isomorphism and since a, and p, are also
isomorphisms, s0 is (8, ).

3.2. Fibre of a cofibre.

PROPOSITION. Let K and L be connected C.W. complexes. If f: K — L
is the cofibre of a map V ,S" — K and F the homotopy fibre of f, then
H _(F) is a free H,(2L)-module generated by H ,(V ,S"=).

Proof. The 1-connected version of this theorem soon appears in [6].
Nevertheless, for the convenience of the reader, we sketch the proof again.
By 3.1,

H,(F)= H,(B(K)® A(L)).
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Consider then the exact sequence of differential chain complexes

() 0-(B(K)®4(L),d)~> (B(L)®A(L),d) ~> (B(L)/B(K)®A(L),d) >0

The inductive property of the Adams-Hilton construction shows that:

Hy(B(L)/B(K)® A(L),d) = B(L)/B(K) ® Hy(A(L))

The long exact sequence induced by (*) is an exact sequence of
H,(A(L))-modules. So on we obtain an isomorphism of H,(A(L))-mod-
ules

B(L)/B(K) ® Hy(A(L)) > H,(B(K) ® A(L)). o

3.3. Coverings. Let K be a connected finite C.W. complex and
H - 7(K)= G a normal subgroup with quotient group N = G/H.
Denote by 6,: A(K) - C4(G(K)) an Adams-Hilton model of K, by
K — K a covering corresponding to H and by 7v: A(K) = Z[m(K)] -
Z[ N] the composite of the canonical projections. The following proposi-
tion results then directly from Theorem 3.

PROPOSITION.
B(K) @ Z[N] = (B(K) ® A(K)) ®,(x, Z[N]

is a chain complex whose homology is isomorphic to H(K; Z) as Z|N]-
module.

Proof. The homotopy fibre of the inclusion
K- L=K(N,1)

has the homotopy type of K. From Theorem 3 and the definition of p:
A — iA we obtain the following commutative diagram:

Z{N] < A(L) L (A(L),d) 3 s(9L)

' ' ! !
B(R)eZ[N] < B(K)ed(L) & (B(R) ® A(),d) Su(K)

\ i i
(B(K),d) > S«(K)

It is easy, then to prove that 1 ® », and 1 ® p induce isomorphisms at
the homological level.

[
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If we choose a, A(K) - A(L) such that 7v, = av,, and if we define
a A(K)-module structure on Z[N] with Tv,, we obtain a commutative
diagram

B(K)®A(K)®, . A(K) — B(K)®A(L)

A(K)
1@y, l1ey,
B(K)® A(K) ®, £, ZIN] - B(K)®Z[N]
I’
where the canonical isomorphisms p and p’ commute with differentials,
and so induce isomorphisms between homologies. a

With the notations of remark (b) below Theorem 2, the differential d
of the complex B(K) ® Z[N]is defined in low degrees as follow:

dpte1)=10[4]-1®1,

or;
d(b?®1)= - Y b} ®[5t—’]

where [a] denotes the image of a by the projection Z[¢
we recover the classical formulaes of [5].

t7Y - Z[N]. So

i

3.4. Infinite cyclic coverings in low dimensions. Let K — K be an
infinite cyclic covering of a 0-reduced finite C.W. complex K. Denote by
&/ the matrix ([dr;,/92,]) defined in 3.3 and by rank «/ the maximal r
such that there exists in &/ a non-zero r X r minor. Then

PROPOSITION. If K — K is a connected infinite cyclic covering of a
0-reduced finite C.W. complex, then H,(K; Q) is finite dimensional if and
only if rank &/ = n — 1, where n is the number of 1-cells in K.

Proof. H,(K) is a finitely generated Z[¢, ¢ !]-module. If we write,

-1 -1
Z[t, 17 @---@Z[t’t ]
(o) (a,)
H,(K; Q) will be finite dimensional if and only if all &, # 0, and so if and
only if

H1(IZ) =

H(K) ® 4, Q(1) = 0.
Tensoring the complex C,(K) by the field Q(¢) over Z[¢, t '], we obtain a
chain complex of Q-vector spaces

(¥) 0 < Co(R) ® g, 1, Q1) & C(K) ® g1, 1, Q1)

3 .
< G(K) ® 4, Q1) <
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(whose Euler characteristic coincide with x(K)). As Hy(K) = Z, Hy(K)
® s Q(?) = 0 and dimImd, = 1. Sorank /= dimImd, =n — 1 if
and only if

Hl(c*(IZ) ®Z[z,t“] Q(t)) = HI(K) ®Z[t,t“] Q(t) + 0.

COROLLARY 1. Let K be a O-reduced finite 2-dimensional C.W. com-
plex whose Euler characteristic is zero and satisfying rank /= n — 1
(n = number of 1-cells). If K — K is a connected infinite cyclic covering,
then H i(K ; Q) is finite dimensional for each i.

Proof. In the chain complex () as x(K) = 0, 9, becomes injective, so
dim H,(K; Q) and dim H,(K; Q) are finite.

COROLLARY 2. Let K be a O-reduced finite 3-dimensional C.W. com-
plex satisfying

(1) K satisfies Poincare Duality with rational coefficients

(i) rank &/ + 1 = number of 1-cells.
Then each connected infinite cyclic covering K has the rational homotopy
type of a compact manifold.

Proof. In this proof we assume a lot of material and notation from S.
Halperin’s paper [8]. Consider the K.S. model [9, 20-2] of the classifying
map ¢: K — S* of the covering K:

(At,0) > (At ® AV,D) > (AV, D)

In [7] we show that dimy H'(AV; D) < oo if and only if dim H,(K; Q)
< oo. From the duality assumption we deduce a surjective quasi-isomor-
phism

(At ® AV, D) > (4, D)

such that 473 =0 and 4% = QU. Moreover, since K is arcwise con-
nected, H,(p) # 0 and there exist a cocycle v € AV such that §(w) = U.
Consider now the c.d.g.a. (At ® AV ® A¢, D’) with D'(7) = ¢, D'|\,enp
= D, deg(f) = 0. Denote now by (4 ® Az, D) the tensor product of the
two commutative differential graded algebras

(4,D) ® 5,001, (A1 ® AV ® At, D).

Clearly, (4 ® Af, D) is quasi-isomorphic to (AV, D). Now (4 ® Ai)’ =
QU ® Af. As U ® i" = D(8(v)i" /n) for n > 1, H*(AV, D) = Q and
thus H,(K; Q) is finite dimensional.
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On the other hand, the above proposition shows that H,(K; Q) and
HO(K ; Q) are finite dimensional. As x(K) = 0, in the chain complex (x)
we obtain Hz(K ) ® 7.1 Q) =0, s0 H,(K) is also finite dimensional.

The corollary results then of the Milnor theorem ([11]).

3.5. Aspherical groups. Let (W, w,) be a wedge of S'’s and let X be
obtained by attaching 2-cells to W:

X=w u( U ef).
iel
For each, k € I, ¢,: S* —> W denotes the attaching map of the 2-cell
2

ek.

Let N, be the normal subgroup of m,(W, *) generated by the homo-
topy classes [¢,], kK € 1.

Note that the group extension

(IW )#
1Ny > m(Wow) = m(X,w,) =1
induces on the abelianized group (Ny), a canonical structure of
Z[ 7,( X)]-module. Denote by ¢, the image of [¢;] in (Ny) ..

PROPOSITION. (iy,5)»: m(W,wy) = 7 (X, w,) is surjective iff (Ny)
is freely generated by the ¢.’s as Z|m,( X)]-module.

Proof. We denote by j: F, » W the homotopy fibre of i},,. Then
each ¢,, i € I, factorises into g,: S* = Fy and so induces ®, belonging to
H,(Fy). From 3.2, the reduced homology H  (Fy) is freely generated as
H,(Q2X)-module by the ®’s. An argument of degree shows that H,(Fy) is
isomorphic to @, _, Z[m(X)]®,, since Hy(2X) = Z[m,(X)].

(a) If (i, )« 1s surjective, then F, has the homotopy type of a wedge
of S¥’s and so

(NX)ab = H,(Fy).

(b) In order to prove the “only if” direction first remark that the exact
sequence

0_)772(X)—’771(Fx)1:’NX_’0

obtained from the homotopy fibration F, Swx naturally splits.
Now, if we suppose that (Ny),, is a Z[m(X,w,)]-module freely
generated by the ¢,’s then H,(Fy) is isomorphic to (Ny) ;.
Thus 7,( X, w,) = 0 and then 7_ ,( X,w,) = 0. O
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