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PIECEWISE LINEAR FIBRATIONS

T. A. CHAPMAN

By an ANR fibration we will mean a Hurewicz fibratίon p: E -> B,
where E is a compact ANR and B is a compact polyhedron. In case E is
also a polyhedron and p is a piecewise linear (PL) map, we say that E is
a PL fibration. An important special case of this is the notion of a PL
manifold bundle, which is a PL locally trivial bundle for which the fibers
are compact PL manifolds (with boundary). It is known that any ANR
fibration E -> B is "homotopic" to a PL manifold bundle <f -> B in the
sense that there exists a path through ANR fibrations from E to £. This
takes the form of an ANR fibration over B X [0,1] whose 0-level is E
and whose 1-level is <f. The purpose of this paper is to prove that if E is
additionally assumed to be a PL fibration, then the ANR fibration over
B X [0,1] can be chosen to be a PL fibration.

This establishes a PL link between the categories {PL fibrations} and

(PL manifold bundles}, and it is hoped that this will provide a convenient

framework for applying the methods of algebraic .fiΓ-theory to the study of

PL manifold bundles. This was the strategy that was adopted in [8], but

unfortunately there are gaps in the argument. In particular the ap-

propriate PL link was not established. Our Theorem 3, which is stated

below, does establish this PL link. Its proof relies on Theorem 1, which is

a PL local connectivity result for spaces of PL maps having contractible

point-inverses. The main tool used in establishing Theorem 1 is a stable

version of the Fibered Controlled /z-Cobordism Theorem of [5].

In order to state Theorem 1 we will have to introduce some notation.

If X and Y are compact polyhedra, then a PL surjection r: X -* Y is said

to be a contractible map (c-map) if all of the point-inverses are contract-

ible. A c-homotopy rt: X -> Y is a fiber-preserving (f.p.) c-map r = {rt}:

X X [0,1] -> Y X [0,1]. When we say that a statement is stably true

regarding X, we actually mean that there is an integer k for which the

corresponding statement is true for X X /*, where Ik is the &-cell [0, l]k.

Similarly when we say that a statement is stably true regarding a map r:

X —> y, we actually mean that there is an integer k for which the
proj r

corresponding statement is true for the composition XX Ik -+ X -» Y.

The first result that we estabhsh is the following local connectivity result.

In its statement we use Δn for the standard ^-simplex.
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THEOREM 1. Let n > 0 and ε > 0 be given. For any compact poly-
hedron Y there exists a 8 > 0 so that if M is a compact PL manifold and
r, s\ ΔΛ X M -> Δw X Y are f.p. c-maps such that the b-levels rb, sb: M -> Y
satisfy rb = sb for all b e 3Δ and d(rb, sb) < 8 for all J G A , then (stably)
there is a f.p. c-homotopy r = s rel 3Δ X M which is also an ε-homotopy.

It easily follows that the above statement is also true for f.p. c-maps
of E to B X Y, where £ is a compact PL manifold bundle over the
compact ^-dimensional polyhedron B.

Our proof of Theorem 1 proceeds by a double induction, where the
primary induction is carried out on n and the secondary induction is
carried out on dim Y. There is a significant difference between the case
n = 0 and the cases n > 1, so they will be dealt with separately. In §3 we
treat the case n = 0, and in §4 we establish a key lemma which is needed
in §5 to treat the cases n > 1. In the sequel we will use Theorem ln to
represent Theorem 1 for all bases Δ*, k < n.

Adopting the notation of [8] let SP be the classifying space for PL
fibrations. It is a semi-simplicial complex for which a typical w-simplex is
a PL fibration E -> Δ". For any m > 0 let £%m be the subcomplex of Sf
for which a typical w-simplex is a PL manifold bundle E -> Δ" of fiber
dimension m. Then define 38^ to be the direct limit lim { dSλ -> ̂ 2 ->
• * }, where the bonding maps are the stabilizations E *-* E X [0,1].
These stabilizations give us homotopy commutative triangles

sr
so there is induced a map 8t -> 5^. We say that a PL manifold bundle

p

E -> B of fiber dimension m is nice if £ is f.p. PL embedded in B X Rm

so that 3£ = U{dp~ι(b)\b e f i ) coincides with the topological boundary
of E and it is f.p. PL bicollared. Then define d&'m to be the subcomplex of
38m in which only nice bundles are allowed, and similarly define 38'^ to be
the direct limit lim {38[ -» 38'2 -> }. The second result that we estab-
lish is concerned with the restriction of the map (9^ -»SP to 38'^. Its
proof (given in §6) uses Theorem 1.

THEOREM 2. 38'^ -> SP is a homotopy equivalence.

An immediate consequence of this theorem is that for any PL
fibration E -> B there is a PL fibration over B X [0,1] whose 0-level is E
and whose 1-level lies in some 38'
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Let K be a compact polyhedron and let p: E -> B be a PL fibration
for which B X K is f.p. PL embedded in E. We say that E is a PL
fibration rel K provided that for each b e B the inclusion { b} X K *->
p~x{b) is a homotopy equivalence. In analogy with the semi-simplicial
complex ^ we define the subcomplex <Sf(K), where a typical π-simplex
is a PL fibration E -> Δn rel if. Now let JV be a compact PL manifold and
let p: E -> i? be a PL fibration rel TV. If we additionally assume E to be a
PL manifold bundle so that B X JV is f.p. PL collared in £, then we say
that E is a PL manifold bundle rel N. This occurs, for example, when the
pair (E, 1? X N) is a fibered λ-cobordism. We now form the subcomplex

of S?{N), in which a typical ^-simplex is a PL manifold bundle
Δ" rel iV. Observe that stabilization gives us a map
X [0,1]), so we can define ^(JV) to be the direct limit

Hm { * ? ( # ) -> ί ? ( # x [ 0 , l ] ) -» •••}.

As in Theorem 1 the inclusions #(iV X [0,1]*) ^ «**(#) define a map
^oo(^) -* ̂ ( ^ ) (where N = N X {*} -»iV X [0,1]Λ). Here is our third
result whose proof is given in §7.

THEOREM 3. ^(N) -> ̂ (iV) w α homotopy equivalence.

Observe that the concept of niceness, which was needed in Theorem
2, does not appear here.

2. Preliminaries. The purpose of this section is to set up some
notation and establish some preliminary results which will be needed in
the sequel. For any space X and A a X, Bd(^l) is the topological
boundary of A and Int(^l) is the topological interior of A. Also A will
denote the closure of A. If M is any topological manifold, then dM is the
combinatorial boundary of M and M is the combinatorial interior of M.
If /, g: X -» Y are maps and d is a given metric for 7, then the distance
between / and g is

d(f9g) = hΔ>{d(f(x),g(x))\xeX}.

If B c Y, then we say that / = g over B if f'\B) = g" 1 ^) and f(x) =
g(x) Jor all x e f~\B).

If X, 7, and J5 are spaces, p: Y -> J? is a map, and Z? has a given
metric, then a homotopy A,: X -> Y is said to be an ε-controlled homotopy
(with respect to /?), or a /?'1(ε)-homotopy, if the diameter of {pht(x) |0
< / < 1} is less than ε, for all x G X ΰ is called the parameter space. A
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map /: X -» Y is said to be an ε-controlled homotopy equivalence (with
respect to p)y or a /?"1(ε)-equivalence, if there exists a map g: Y -> X
along with ε-controlled homotopies

/g ~ id y (with respect to p),

gf ~ id x (with respect to pf).

We call the map g: 7 - ^ I a n ε-controlled inverse of /. Recall that we
defined a c-map /: K -> L to be a PL surjection of compact polyhedra for
which each point-inverse is contractible. Using [1] it follows that a c-map
is an ε-controlled homotopy equivalence (with respect to id: L -> L), for
all ε > 0.

Here are two well-known facts concerning maps of polyhedra and
manifolds that will be useful. The first asserts that if /: JRΓ —> [0,1] is a PL
surjection of compact polyhedra, then f~ι(t) is a PL bicollared subpoly-
hedron of K, for all but a finite number of t. In fact, it follows from the
simplicial structure that if [0,1] is the standard 1-simplex and K is
triangulated so that / is simplicial, then f~ι(t) is PL bicollared for all
/ G (0,1) (cf. [7, §9]). The second fact asserts that if (M, K) is a compact
polyhedral pair, where M is a PL manifold and K is PL bicollared in M,
then K is also a PL manifold. This follows easily from [10, Lemma 2.6]
and the uniqueness of regular neighborhoods.

If /: K -> L is a map, then the topological mapping cylinder of /,
M(/), is the space formed by sewing KX [0,1] to L via the map
(x91) -> / ( * ) . The top of M(f) is K = K X {0}, and the base of M(/) is
the naturally embedded copy of L. The quotient map qτ: K X [0,1] ->
M(/) (Γ = TOP) satisfies qτ(x,Q) = x and qτ(x,l) = / ( * ) , for all x e
X\ and gΓ is a homeomorphism over M(/) — L. There is also a natural
projection map τττ: M(f) -> L X [0,1] which satisfies πτ(x) = (/(JC),O),

for x & K, πτ(x) = (x, 1), for x e L, and πτqτ(x, t) = (f(x), t), for all
( JC, ί) G ̂ Γ x [0,1]. Generally we will not be interested in the topological
mapping cylinder except as a point of reference. More specifically, we will
need the PL analogue of M(f) as described below.

If /: K -> L is a PL map of compact polyhedra, then the simplicial
mapping cylinder, C(/), is a triangulation of M(f) so that the top K and
base L are subpolyhedra. We will not give a definition of C(/), but will
instead refer the reader to [7] for its definition and proofs of some of its
properties which we discuss below. Once subdivisions of K and L have
been chosen, there is a natural PL quotient map qs: K X [0,1] -> C(/)
which satisfies qs(x,0) = x, qs(x, 1) = / ( * ) , and qs is a c-map over
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C(f) — L. There is also a natural PL projection map πs: C(f) -> L X
[0,1] which satisfies πs(x) = (/(;c),0), for JC e IT, ττ5(x) = (JC,1), for
x e L, and %ί s (x , 0 = (/(*), 0> f o r a 1 1 (*> t) (Ξ K X [0,1]. The follow-
ing statements summarize some properties of C(/) which we will need.

1. If / is a PL homeomorphism (respectively c-map), then so are qs

and %. A proof of this can be found in [7].

2. If K -> B and L -> B are PL maps for which 5/ = r, and p is the

composition

then one easily checks that

pqs = rX id: # x [ 0 , l ] -> J? x[0, l ] .

3. If # -^ 5 is a PL fibration and / is a c-map, then p: C(f) -> B X
[0,1] is also a PL fibration. To prove this one has to use the characteriza-
tion of Hurewicz fibrations of [1], which asserts that a surjection of
compact polyhedra is a Hurewicz fibration if nearby fibers have "small"
homotopy equivalences between them.

Here is a result which will be needed in the sequel. As in the above
discussion its proof uses material from [7].

PROPOSITION 2.1. Let p: E -> ΔΛ be a PL fibration for which p is

simplicial with respect to a given triangulation of E and the standard

triangulation of Δ". If b is the barycenter of Δ", then there exists a f.p.

c-map Δ" X p~\b) -> E.

Proof. The proof is by induction on n, and since the cases n > 1 are
all similar it will suffice to treat only the case n = 1. For this Δ1 = [0,1]
and b = \, and all we have to do is construct a f.p. c-map [0, \] X
p~ι{\) -> p~ι([0, j]) which is the identity over \. In what follows we will
use the terminology of [7] and the ideas which occur in §9 of that paper.
Choose a simplex in E of the form στ> where σ < /^(O) and T < p~\l).
Any point z e p~ι{\) Π or is of the form z = \x + \y, where x e σ and
y e T. Define a map

by π(t, z) = (1 - t)x + ty. Observe that m is f.p. and the ^-level, πr.
p~λ{\) -* P~W)> i s the identity. So all we have to do is prove that π is a
c-map.
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The intersection of the cells of E with p~\[09 ^]) gives a complex cell
structure on p~λ([0, j]) which we can triangulate without introducing any
new vertices. When this is done we observe that π is simplicial, and in fact
it is the standard extension of π0: p~\\) -»p~\0). Thus π is a c-map
over p~ι([0, j]). To see that π0: p~ι{\) -> p'\0) is a c-map it suffices to
show that it is an ε-controlled homotopy equivalence, for all ε > 0 (with
respect to id: p~\0) -> p~ι(0)). (For then any point-inverse can be homo-
toped to a point in any neighborhood of the point-inverse.) To show that
7r0 is an ε-controlled homotopy equivalence we need an ε-controlled
inverse, i.e., a map g: p~\0) -> p~ι{\) along with controlled homotopies
gπ0 ί=s id and τrog ^ id. Since /^([O, |]) -» [0, j] is a fibration there are
maps gλ: p~ι(0) -^jp~1(δ), 8 > 0, which can be made as close to the
identity as we please. Since the map (0, \] Xp~\j) -> p~\(0, \]) is a
c-map it must be a δ-controlled homotopy equivalence, for all δ > 0. Let
8i: P~\(®> έl) -> (0,1] X/J'Hi) be an inverse, for some small δ > 0.
Finally, let g3 = proj: [0, §] X/?'1^) -* p~\\) be the projection map.
Then our desired inverse g: p~\0) -> /Γ^i) is defined by g = g3g2gi?

and we leave it to the reader to check out the controlled homotopies
gτr0 = id and ττog ^ id. D

For our purposes an h-cobordism is a compact PL manifold pair
(M,N) such that the inclusion N >̂ M is a homotopy equivalence and iV
is PL collared in M. Recall that an ordinary Λ-cobordism additionally
requires 3M — N <-* M to be a homotopy equivalence. We do not need
this additional assumption because we are working in a stable category. In
fact, it is easy to show that if (M, N) is an Λ-cobordism as defined above,
then (MX /3, JV" X 73) is an ordinary Λ-cobordism. To see this one first
checks that 3 ( M X / 3 ) - ( J V X / 3 ) ^ M X / 3 induces an isomorphism
on 771? and then duality on the universal covering spaces is used.

In the sequel we will be interested in controlled A-cobordisms. More
specifically, let (M, JV) be a compact PL manifold pair for which JV is PL
collared in M, and let /?: M -> B be a map to some parameter space. We
say that (M, JV) is an ε-controlled h-cobordism (with respect to p) pro-
vided that the inclusion JV «-> M is an ε-controlled homotopy equivalence.
(M, JV) is an ε-controlled product provided that there exists a PL homeo-
morphism h: [0,1] X JV -> M for which Λ(0, JC) = x, for all x e JV, and
for which the diameter of each /?/*([(), 1] X {JC}) is less than ε. The
homeomorphism h defines an ε-product structure on M. It is obvious that
each ε-controlled product is an ε-controlled A-cobordism. The following
result is concerned with a converse to this statement.
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PROPOSITION 2.2 (Stable Controlledh-Cobordism Theorem). Let B be a

compact polyhedron and let ε > 0 be given. There exists a 8 > 0 such that if
p

(M, N) -» B is a 8-controiled h-cobordism and the restriction p: N —» B is a

c-map, then (stably) (M, N) is an ε-controlled product.

Proof. We will not give a complete proof of this result because of its

similarity with other theorems in the literature. Note that in the above

statement 8 depends only on ε and B, and is independent of dim N. If we

allow 8 to also be a function of dimiV, then stabilization is no longer

necessary, and the result is then a consequence of the (non-stable) Thin

Λ-Cobordism Theorem of [12], or the (non-stable) Controlled s-Cobor-

dism Theorem of [4]. The proofs of both of these theorems can be adapted

to the stable category to give a proof of our result. Probably the latter is

the easiest to modify for our purposes.

Specifically we are referring to the proof of the Controlled s-Cobor-

dism Theorem which appears in §14 of [4]. The proof proceeds by

induction on dim B, with the heart of the inductive step being a somewhat

complicated splitting lemma. The reason for the difficulty in the proof of

this splitting lemma is that no stabilization is permitted. Fortunately it is

somewhat easier to construct a proof of the stable version of this splitting

lemma by using an argument which is similar to the infinite-dimensional

splitting of [3, §5]. When this is done δ can be chosen independent of

dim N, and we can therefore complete the inductive step for the proof of

our result. D

REMARK. There is a relative version of the above result which asserts

that if U is open in B, C c U is compact, and (M,N) already has a

given δ-product structure over £/, then the ε-product structure on (M, N)

can be chosen to agree with the given product structure over C. The proof

is quite similar.

We will also need a version of Proposition 2.2 in the fibered category.

For notation let (g,B X N) -> B be a PL manifold bundle relN, let

E -» B be a PL fibration, and let p\ S-* E be a f.p. map. We say that

(S,B X N) is a fibered ε-controlled h-cobordism (with respect to p)

provided that the inclusion B X N <-* § is a f.p. ε-controlled homotopy

equivalence. This just means that all maps and homotopies involved in the

usual definition of an ε-controlled homotopy equivalence are f.p. (<?, B X

N) is a fibered ε-controlled product provided that there exists a f.p. PL

homeomorphism h: [0,1] X B X N -» § for which Λ(0, x) = x9 for all

x G B X N9 and for which the diameter of each ph([0,1] X {x}) is less

than ε. The homeomorphism h defines a fibered ε-product structure on S.
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PROPOSITION 2.3. (Fibered Stable Controlled h-Cobordism Theorem).

Let E -> B be a PL fibration and let ε > 0 be given. There exists a δ > 0
p

such that if ($, B X N) -> E is a fibered 8-controlled h-cobordism and the

restriction p: B X N -+ E is a c-map, then (stably) (S,B X N) is a fibered

ε-controlled product.

Proof. Just as in the case of Proposition 2.2 we will not give the

details of the proof. The reason for this is the existence of the (non-stable)

Fibered Controlled Λ-Cobordism Theorem of [5], which is quite similar to

the above statement. The only difference is that the δ of [5] is also a

function of dim N. If we repeat the same argument in the stable category,

then we obtain a proof of our result. D

REMARKS 1. There is a relative version of the above result which

asserts that if U is open in E, C c U is compact, and (£,B X N) already

has a given fibered δ-product structure over [/, then the ε-product

structure on (<?, B X N) can be chosen to agree with the given product

structure over C.

2. There is another relative version of the above result which asserts

that if (<?, B X N) already has a given δ-product structure over a compact

subpolyhedron Bf of B, then the fibered ε-product structure o n ( ^ , 5 X

N) can be chosen to agree with the given product structure over B\

3. Proof of Theorem l 0 . Our proof of Theorem l 0 is given in Theorem

3.2 below, but first we will have to establish a lemma. Here is some

notation for its statement. Let K be a compact polyhedron and assume

that K X [-1,1] is a subpolyhedron of a compact polyhedron Y for which

LEMMA 3.1. For every ε > 0 there exists a δ > 0 so that if M is a

compact PL manifold and r,s: M -> Y are c-maps such that r~ι(K X {0}),

s~1(K X {0}) are PL bicollared and d(r,s) < δ, then (stably) there exists

a PL homeomorphism h: M -> M which satisfies

(1) hs-\K X {0}) = r~\K X {0}),

(2) h is supported on r~\K X [-1,1]),

(3) d(rh,r)< ε.

Proof. In what follows we will assume that the stabilizing /^-factor is

present whenever needed, but for notational convenience we will ignore

writing it down. Since r'\K X {0}) and s~\K X {0}) are PL bicollared



PIECEWISE LINEAR FIBRATIONS 231

they must be PL manifolds. Also s^iK X {t}) is a PL bicollared mani-
fold for all but a finite number of t. So without loss of generality we may
assume that s~ι(K X (^}) is a PL bicollared manifold. In our proof we
will be dealing with controlled homotopies, where the parameter space is
K and the controlling map to K is either the composition (proj) r:
r'\K X [-1,1]) -> Ky or the composition (proj) s: s~\K X [-1,1]) -> K
(or appropriate restrictions thereof). These maps will be generally denoted
by pr or ps9 respectively.

Assertion 1. There exists a PL homeomorphism φ: s~\K X [0, |]) ->
s~\KX {0}) X [0,1] which satisfies

(1) φ j - H * X {0}) - s'\K X {0}) X {0},
(2) φs-\K X {!}) = ̂ ( t f X {0}) X {1},
(3) J( ps(pτoj)φ9 ps) is small (as small as we want).

Proof. Since s is a c-map it is clear that

))* K

is a γ-controlled Λ-cobordism, for every γ > 0. It then follows from the
Stable Controlled Λ-Cobordism Theorem of §2 that our desired PL
homeomoφhism <p exists, and it satisfies properties (1) and (3) above. By
performing the following stable modification of <p we can also achieve
property (2).

In analogy with φ there exists a PL homeomoφhism

φ': s-λ{K X [0, i]) -> s-ι{K X {*}) X [0,1]

which satisfies
(iy φ'S-\κ x {}}) = s~\κ x {}}) x {0},
(3)' d(ps(pτoj)φ'9ps) is small.

Now using φ and φ' it is easy to see that there exists a PL homeomor-
phism a of s~\K X [0, |]) X [0,1] onto itself which satisfies

(1) a(s~\K X {0}) X [0,1]) = s'\K X [0, |]) X {0},
(2) a(s-\K X {}}) X [0,1]) = s'\K X [0, \]) X {1},
(3) έ/(/>,(proj)α, Λ(proj)) is small.

Similarly there exists a PL homeomoφhism β of s~\K X {0}) X [0,1] X
[0,1] onto itself which satisfies

(1) β(s-\K X {0}) X [0,1] X {0}) = s~\K X {0}) X {0} X [0,1],
(2) β(s-\K X {0}) X [0,1] X {1}) = s~\K X {0}) X {1} X [0,1],
(3) d(ps(pτoj)β,ps(pτoj)) is small.
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In fact, we can take this distance in (3) to be zero since β is constructed as
a "twist" on [0,1] X [0,1]. Finally φ = β(φ X id)α is a PL homeomor-
phism of s-\K X [0, £]) X [0,1] onto s~\K X {0}) X [0,1] X [0,1] that
satisfies properties (l)-(3). D

Now using the homeomorphism φ which was constructed above and
the given PL bicollarings it is easy to obtain a PL homeomorphism hx\
r'\K X [-1, 1]) -* r~\K X [-1, 1]) for which hxs'\K X {0}) =
s~ι(K X {\}) and d(pshvps) is small. Observe that this requires r and s
to be at least close enough so that s~\K X [0, ̂ ]) lies in r~\K X (-1,1)).
This completes the first step of our argument.

In the following statement W denotes the intersection of
r~\KX [0,1]) and s'\K X [-1, £]). It is clear that if r and s are
sufficiently close, then W is a PL submanifold of M.

Assertion 2. For any ό\ > 0 we can choose δ > 0 small enough so that
there exists a PL homeomorphism ψ: W -* r~ι(K X {0}) X [0,1] which
satisfies

Proof. If we can show that

%{W,r-1(KX{O}))% K and {W,s~ι{K X {\})) $ K

are γ-controlled Λ-cobordisms, for γ a number whose size depends on the
size of δ, then we can repeat the proof of Assertion 1. Because of the
similarity of the two cases we only need consider the former. For conveni-
ence we will ignore mentioning any specific size estimates on homotopies,
but will instead simply assume that δ > 0 is chosen small enough so that
all of our constructions are possible. Since r is a c-map there exists a
strong deformation retraction of r~\K X [0, i]) onto r'\K X {0}). Re-
stricting this to W gives a deformation taking place in r'\K X [0, ̂ ]).
Now compose this deformation with a retraction

t>\WVs-\Kx[\9\])-+ W9

where p trivially extends a retraction p of s~\K X [\, f ]) onto
s-\KX{\}). Ώ

Using the homeomorphism ψ and the given PL bicollarings we can
easily obtain a PL homeomorphism
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for which h2r'\K X {0}) = s~\K X {\}) and d{prh2,pr) is small (cor-
responding to a small choice of 8). By construction the homeomorphisms
hx and h2 trivially extend to homeomorphisms hλ and h2 oΐ M to M.
Then h = ~h~2hx\ M -> M is a PL homeomorphism which is supported on
r'\KX [-1,1]) and which takes s~\K X {0}) to r'\K X {0}). The
third requirement, d(rh,r), < ε has not been achieved, but this is only
because d(0, f) is large. So all we have to do is repeat the above argument
with ε/2 in place of f. •

REMARK. There is a relative version of the above absolute result which
we now describe. For this we are additionally given Co U c K, where C
is compact and U is open, such that r = s over U X [-1,1]. The conclu-
sion states that the PL homeomorphism h: M -> M which was con-
structed above can be additionally required to satisfy h = id on
r~ι(C X [-1,1]). To see how this is achieved recall that the homeomor-
phisms h1 and h2 of the above proof were constructed by pushing along
the [0, l]-intervals obtained from the product structures

(s-^K X [0, i]), s-\K X {0})) = s-\K X {0}) X [0,1]

and

{W, r'\K X {0})) - r'\K X {0}) X [0, l ] ,

which resulted from the Stable Controlled A-Cobordism Theorem. If we
choose C c Int(D) c D c [/, where D is compact, then it follows from
the relative version of the Stable Controlled Λ-Cobordism Theorem that
these product structures can be chosen to be identical on r~\D X [0,\]).
Thus hx = h2 on r~ι(C X [-1,1]), and so h = h2

ιhι is the identity on
r ' H C X [-1,1]).

THEOREM 3.2. For every ε > 0 #ft<i compact polyhedron Y there exists a
8 > 0 so that if M is a compact PL manifold and r,s: M -> Y are c-maps
for which d(r, s) < δ, then (stably) there exists a c-homotopy r = s which is
also an ε-homotopy.

Proof. We will actually establish a relative version of this result in
which we are additionally given C c [/ c 7, where C is compact and U is
open, for which r = s over U. The conclusion additionally states that the
homotopy r — s can be required to be constant over C. The reason why
we establish this relative result is that it appears to be necessary in order
to carry out the inductive step in our proof which proceeds by induction
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on dim Y. The relative result is trivially true for dim Y = 0, so assuming it
to be true for all bases 7 of dimension < k - 1 we consider the inductive
step where dim Y = k. We will only give explicit details for the absolute
version and merely remark that the relative version follows from the same
proof. In what follows we will not keep careful track of the sizes of the
various homotopies that we encounter. Instead, we will simply assume
that δ is chosen small enough so that all of our constructions can be
carried out. It will then be clear that our c-homotopy r — s will be small
provided that δ is chosen correspondingly small.

We start by choosing a triangulation of Y such that all of the
simplices have small diameters. Choose a 0-simplex v and let N be a
small regular neighborhood of v, which may be viewed as a cone with
vertex v. For notation let Nt c N be the ί-level of the cone such that
No = {v} and Nλ = N. We have already observed in the proof of Lemma
3.1 that r~l(Bd(Nt)) and ^ ( B d ^ ) ) are PL bicollared manifolds, for
almost all t. So for simplicity we may assume that r~ι(Bd(N1/2)) and
s~\Bd(N1/2)) are PL bicollared manifolds. It follows from Lemma 3.1
that (stably) there exists a PL homeomorphism h0: M -> M which
satisfies

(1) V H B d ί Λ ^ ) ) = r-\Bd(Nι/2)),
(2) h0 is supported on r~ι(N),
(3) rhQ is close to r.

The same thing can be done for all 0-simplices simultaneously, so we may
assume that the above properties are true for all 0-simplices and their
correspondingly small regular neighborhoods.

We now focus our attention on the c-map rh0: M -> 7, which will be
our link between r and s. By property (2) above we have rho = r over
Y— UΙnt(TV). So by squeezing slightly larger regular neighborhoods
towards the 0-simplices of Y we obtain a c-homotopy ft: Y -» Y for
which /0 = id and fxr = fχrh0. Thus we obtain a small c-homotopy
r — rh0. So we only need to find a small c-homotopy rh0 — s. By property
(3) above rh0 is close to s> and by property (1) we have (r/zo)~1(Bd(iV1/2))
= s~ι(Bd(N1/2)), for all N. Using the given PL bicollarings and the
absolute version of our inductive hypothesis we obtain small c-homotopies
rh0 2= ΓQ and s — s'o so that r0' = s'o over UBd(iV1/2), where the union is
taken over all N. We may further assume that ro

r = s'o over UBd(iVr), for
all t close to \. Once again using the above squeezing trick (towards the
0-simplices) we obtain small c-homotopies r0' — r0 and s'o — s0 so that
r0 = s0 over UiV1/2. Note that rQ and s0 are still close together, where the
size of this closeness depends on the size of δ. This completes the first step
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in which we have obtained small c-homotopies r — r0 and s =* s0 so that

r0 = s0 over a neighborhood of the 0-skeleton. The reader should have

observed that the above argument is somewhat sketchy. In fact, it is a

good exercise to write down a c-homotopy that squeezes a regular neigh-

borhood of the 0-skeleton in a polyhedron to the 0-skeleton.

The next step is to repeat the above process for the 1-skeleton. For

convenience let us assume that r0 = s0 over the star of the 0-skeleton in

the second barycentric subdivision of Y. The regular neighborhoods N

which were used above now become regular neighborhoods of the bary-

centers of the 1-simplices. For a typical 1-simplex σ with barycenter b we

now define N to be the seventh star of b in the fourth barycentric

subdivision of Y. We also choose notation so that the \-level of N, Nι/2,

is the sixth star of b in this fourth barycentric subdivision of Y. Now use

the relative version of Lemma 3.1 to find a PL homeomorphism hλ:

M —> M which satisfies

(1) h^\Bd(N1/2)) = ro-\Bd(N1/2)),

(2) hλ is supported on r^ι(N),

(3) rohι is close to r0,

(4) hλ is the identity over the third star of the 0-skeleton in the fourth

.barycentric subdivision of Y.

We can arrange this so that we are working on disjoint pieces, thus we

may assume that these properties hold for all N simultaneously.

It is now easy to repeat the above argument which was used for the

0-skeleton to obtain small c-homotopies ro ^ rohx — r[ — rx and s0 — s[

^ S-L so that rx is close to sλ and rx = sγ over a neighborhood of the

1-skeleton. The only difference in the details for this case is that when the

inductive hypothesis is used to construct the c-homotopies rohλ = r[ and

s0 — s[, we must use the relative version so that r[ = s[ over a neighbor-

hood of the 0-skeleton which lies between its second and third stars in the

fourth barycentric subdivision of Y. This completes the second step of the

construction.

So far we have only worked up through the 1-skeleton of Y, but it

should be clear by now that we can continue this process to obtain small

c-homotopies

r ^ r0 ^ rλ - - - rk,

S ~ S0 ~ Sl ~ ' ' ' ~ Sk

so that rk = sk. The size of these combined homotopies is determined by

the mesh of the given triangulation of 7, which in turn determines the size

of δ. D
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4. A bundle theorem. The purpose of this section is to establish a

bundle theorem which is needed in §5 for the proof of Theorem lw, n > 1.

The result is established in Theorem 4.6 below, but first we will need some

preliminary material. We begin with a batch of lemmas culminating in

Proposition 4.5.

LEMMA 4.1. Ifp: X -» Y is a simplicial surjection of compact polyhedra

{with fixed triangulations) and Yλ is a first derived subdivision of Y, then

there exists a first derived subdivision Xx of X such that p: Xx -> Yλ is

simplicial.

Proof. Let {y l9 y2,..., yn} be the set of starring points which are used

to construct the subdivision Yλ of Y. We may assume that the vertices of

Y are among the yt. If σ is a simplex in X, then p(σ) is a simplex in Y

and so there exists a unique yέ in p(ό). Choose any xσ e σ Π p~\yt) to

be a starring point for σ. Then using the set {jcσ} for starring points we

can form a first derived subdivision Xx of X for which p: Xλ -> Yλ is

simplicial. D

REMARKS 1. Any subdivision Xλ of X which is constructed in the

above manner is said to cover Yv

2. It is obvious that if Xx and X2 are any two first derived subdivi-

sions of a triangulated polyhedron X, then there is a unique simplicial

isomorphism g: Xx -> X2 (which we call the standard isomorphism) that

takes each simplex of X to itself. It then follows by linearity that if Xγ

and X2 are two first derived subdivisions of X which cover Yl9 then the

standard isomorphism g: Xx -> X2 covers i d y (i.e., pg = p).

LEMMA 4.2. If p: X -> Y is as in Lemma 4.1, Yλ and Y2 are first

derived subdivisions of F, and Xi is a first derived subdivision of X which

covers Yi9 then the standard isomorphism g: Xλ —> X2 covers the standard

isomorphism h: Yλ -> Y2 (i.e., pg = hp). D

LEMMA 4.3. If X has first derived subdivisions Xl9 X2 and g: Xλ -> X2

is the standard isomorphism, then g is PL isotopic to the identity.

Proof. Our first step is to define a triangulation Kx of the polyhedron

X X [0,1]. The starting point is the 0-level XX {0}, which is triangulated

by Xx X {0}. If r is a 0-simplex in X we triangulate T X [0,1] so that it

has two 0-simplices r X {0} and T X {1} and one 1-simplex T X [0,1].
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Proceeding inductively let τ be an /-simplex and assume that τ X {0} U
3τ X [0,1] has been triangulated. If x Ξ f is the starring point for τ in the
construction of Xv then τ X [0,1] is triangulated by starring, (x, 1)
(T X {0} U 3τ'X [0,1]). This completes the inductive description of Kv

Note that the 1-level XX {1} is also triangulated by Xx X {1}. Similarly
let K2 be the triangulation of X X [0,1] which is inductively defined by
starring, (x\1) (T X {0} U 3τ X [0,1]), where x' e f is the starring point
for T in the construction of X2. Observe that the 0-level is triangulated by
Xλ X {0}, and the 1-level is triangulated by X2 X {1}.

It is now clear from the above inductive constructions of Kλ and K2

that there exists a unique simplicial isomorphism G: Kγ -> K2 which is
the identity on the 0-level and it is g on the 1-level. By linearity G must be
level preserving, thus Gt: id - g is our desired isotopy. D

REMARKS. 1. We will refer to the above isotopy as the standard isotopy
of id to g.

2. Observe that if T is a simplex in X and xv x2 e f are the starring
points for Xx and X2, respectively, then g takes xλ to x2 and by linearity
the isotopy G moves xλ along the straight line [xv x2\

LEMMA 4.4. Let p: X -> Y be as in Lemma 4.1, let Yx and Y2 be first

derived subdivisions of Y, and let Xi be a first derived subdivision of X which

covers Yr If g: Xγ -> X2 and h: Yλ -» Y2 are the standard isomorphisms

and Gt: id = g, Ht: id = h are the standard isotopies, then Gt covers Hr D

PROPOSITION 4.5. Let X and B be compact polyhedra and let p:

X -> B X [-1,1] be a PL surjection. Then for every b0 G B there exists a

finite set Fbo c [-1,1] which satisfies the following property: corresponding

to each t0 e [-1,1] — FbQ there is a neighborhood Uo c B of b0 such that

p~\UQ X {t0}) isf.p. PLbicollaredinp-\U0 X [-1,1]).

Proof. Just to make sure that there is no confusion, the above
statement means that the bicollaring intervals of /?~1(t/0

 x {*o}) a r e s e n t

to points in B under the map proj ° p: X -» B. Choose triangulations of
X and B X [-1,1] so that p is simplicial and so that {b0} X [-1,1] is a
subcomplex of B X [-1,1]. The vertices of B X [-1,1] which lie in {b0)
X [-1,1] determine our finite set Fbo c [-1,1]. We are going to describe a
first derived subdivision of B X [-1,1], so we will need starring points.
For a fixed t0 e [-1,1] - FbQ let e be the 1-simplex in {b0} X [-1,1]
which contains (i o ,/ o ), and let (bo,to) be its starring point. For any
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simplex σ in B X [-1,1] which contains e as a proper face choose a

starring point in σ which is of the form (b, to)9 where b is close to b0. For

all other simplices of B X [-1,1] select starring points in an arbitrary

manner. Let Ko be the first derived subdivision of B X [-1,1] obtained

by using these starring points.

We are now going to describe another first derived subdivision of

B X [-1,1]. Choose tx Φ t0 so that (bQ, tτ) e e and let (bo> tλ) be a new

starring point for e. For any simplex σ in B X [-1,1] which contains e as

a proper face choose a starring point which is of the form (b, tλ), where

(b, t0) was the starring point used above for σ in the formation of Ko.

(Observe that if t0 and tx are chosen first, then b can be chosen close

enough to b0 so that this can be done.) For all other simplices of

B X [-1,1] select starring points which are the same as for Ko. Let Kλ be

the first derived subdivision of B X [-1,1] obtained by using these

starring points.

Now form first derived subdivisions Xo and Xx of X which cover Ko

and Kl9 respectively. Let g: XQ -* Xv h: Ko -» Kx be the standard

isomorphisms and let Gt: id — g, Ht: id = h be the standard isotopies so

that G covers H. We use Ao for the union of all simplices of Ko which are

of the form x1x2 xr, where xέ is the starring point of a simplex which

contains e. Similarly let Ax be the union of all simplices of Kx which are

of the form xλx2 JCΓ, where JC, is the starring point of a simplex which

contains e. It is clear that the projections of Ao and Aγ to B are equal and

define a neighborhood ί/0 of b0 for which ^40 = ί/0 X {/0} and Ax = IJX

X {^j. Also the isomorphism h takes ^40 to ^41? and in analogy with

Remark 2 following Lemma 4.3 it follows that the isotopy Ht moves

UQ X {ίo} along Uo X [t^t^ from Uo X {/0} to Uλ X {^}. Then frjt/o

X {ί0} gives us a f.p. PL bicollaring of UQ X {m} in Uo X [-1,1], where

m is the midpoint of the segment [t0, tλ]. Since G covers H it follows that

G gives us a f.p. PL bicollaring of p~\U0 X {m}). D

THEOREM 4.6. Let M be a compact PL manifold, let B be a compact

polyhedron, and let p: B X M —» B X [-1,1] &e a f.p. PL surjection

(B = base). For every i o 6 δ //jere ex/ste1 # //mte set Fb c [-1,1] which

satisfies the following property: corresponding to each t0 e [-1,1] — Fbo

there is a neighborhood C/o c B ofb0 such that proj: p~ι{UQ X {t0}) -» t/0

is (stably) a PL manifold bundle which is f.p. PL bicollared in Uo X M.

Proof. It follows from Proposition 4.5 that such a Uo exists for which

p~\U0 X {t0}) is f.p. PL bicollared in Uo X M. It follows from the PL

bicollaring that the fibers of jp"1(ί70 X {/0}) ~* Uo are PL manifolds,
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so we need a trick to sew them together. The f.p. PL bicollaring of

p~\U0 X {t0}) easily implies that p~\U0 X {t0}) X I2 -» Uo is a PL

submersion, so by using the PL Bundle Theorem of [11, p. 70] we

conclude that p~\U0 X {t0}) X I2 -> Uo is a PL manifold bundle. D

5. Proof of Theorem 1. Our proof of Theorem \n (n > 1) is somewhat

like the proof of Theorem l 0 given in §3. It is given in Theorem 5.2 below,

but first we will need a lemma which is a f.p. version of Lemma 3.1. For

notation, let K be a compact polyhedron and assume that K X [-1,1]

is a compact subpolyhedron of a compact polyhedron Y for which

LEMMA 5.1. Let n > 1 and ε > 0 be given. There exists a 8 > 0 so that

if M is a compact PL manifold and r\ s: Δn X M -> Δ" X Y are f.p. c-maps

such that r~\Δ XKX {0}), ^ ( Δ X K X {0}), and s~\Δ XKX {|})

are PL manifold bundles over Δ which are f.p. PL bicollared in Δ X M and

which satisfy d(rb, sb) < δ for all i e Δ , then (stably) there exists a f.p.

PL homeomorphism h: Δ X M -> Δ X M which satisfies

(1) hs~\Δ XKX {0}) = r~\Δ XKX {0}),

(2) h is supported on r~\Δ X K X [-1,1]),

(3) the compositions (proj)^/^, (proj)r^: rb

ι(K X [-1,1]) -> Kare less

than ε apart, for all b.

Proof. Our proof is similar to the proof of Lemma 3.1 which treats the

case n = 0. We will again omit the necessary stabilizing factor Ik

9 and our

controlling maps will be

pr = (proj)r: r ^ Δ X K X [-1,1]) -> Δ X K,

Ps= (proj>: s-\Δ X # X [ - 1 , 1 ] ) -* Δ X K.

These are just fibered versions of the controlling maps which were used in

Lemma 3.1. Again using [11, p. 70] it follows that ^ ( Δ X K X [0, }]) is a

PL manifold bundle over Δ, thus

( j -^Δ χ ϊ χ [ 0 , £]), s-\Δ XKX {0})) ^ Δ X K

is a fibered γ-controlled Λ-cobordism, for every γ > 0. So using the

Fibered Stable Controlled Λ-Cobordism Theorem of §2 there exists a f.p.

PL homeomorphism φ of s~\Δ X K X [0, y]) onto s~\Δ X K X {0}) X

[0,1] which satisfies

(1) φs-\Δ XKX {0}) = s~\Δ XKX {0}) X {0},

(3) d(ps(pτoj)φ, ps) is small (as small as we want).
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Repeating the argument given in Lemma 3.1 (see Assertion 1) we may
additionally require φ to satisfy

(2) φS-\Δ X KX {£}) = s-\Δ XKX {0}) X {1}.
Using φ we obtain a f.p. PL homeomorphism hλ of r~ι(Δ X K X [-1,1])
onto itself for which hλs'\Δ x κ x {°}) = S~\Δ x κ x {3}) a n d

d( pshv ps) is small (as small as we want).
Now let W denote the intersection of ^ ( A x ί X ^ l ] ) and

s~\ΔxKx [-l,i]). Then

(W,r~ι(Δ Xίx{0})) ^Δx K

and

(W,s~ι{Δ X K x{\})) ^ Δ X K

are fibered γ-controlled Λ-cobordisms, for γ a number whose size depends
on the size of δ. Once again using the Fibered Stable Controlled h-
Cobordism Theorem we can repeat the proof of Assertion 2 of Lemma 3.1
to obtain a f.p. PL homeomorphism ψ of W onto r~\Δ X K X {0}) X
[0,1] which satisfies

(1) ψr-^Δ XKX {0}) = r~\Δ XKX {0}) X {0},
(2) ψs-\Δ XKX {}}) = r~\Δ XKX {0}) X {1},
(3) rf(Λ(proj)ψ,jPr)<δ1.

Using ψ we obtain a f.p. PL homeomorphism h2 of r- 1(A X K X [-1,1])
onto itself for which A^-^Δ X ί X {0}) = j - ^ Δ X # X {i}) and
d(prh2,pr) is small (provided that δ is chosen small). The homeomor-
phisms hλ and h2 trivially extend to f.p. PL homeomorphisms hvh2:
A x M - ^ A x I , and h = h'2\\ Δ X M -> Δ X M is our desired ho-
meomorphism. D

REMARKS. 1. There is a relative version of the above result which is a
f.p. version of the relative version of Lemma 3.1. For this we are
additionally given C c U a K, where C is compact and U is open, such
that r = s over A x ί / X [-1,1]. The conclusion states that the PL ho-
meomorphism h which was constructed above can be additionally re-
quired to satisfy h = id onr - 1(Δ X C X [-1,1]). The proof is identical.

2. There is another relative version of Theorem 5.1 in which we are
additionally given rh = sb9 for all b lying in a compact subpolyhedron P
of Δ. The conclusion states that the PL homeomorphism h: A x M ^
Δ X M can be additionally required to satisfy h \ P X M = id. This fol-
lows easily from the correspnding relative version of the Fibered State
Controlled /z-Cobordism Theorem.
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THEOREM 5.2. Theorem ln is true, for all n > 0.

Proof. As in Theorem 3.2 (i.e., the case n = 0) we will actually
establish a relative version in which we are additionally given C c U c Y9

where C is compact and U is open, for which r = s over Δ X U. The
conclusion additionally states that the homotopy r — s can be required to
be constant over Δ X C. Our proof proceeds by induction on «, with the
case n = 0 having been established in Theorem 3.2. For the inductive step
we will assume that Theorem 1M_1 is true and use this to establish
Theorem ln. For this proof of Theorem ln we also induct on dim Y. It is
trivially true for dim 7 = 0 , so assuming it to be true for all Y of
dimension < k — 1 we consider the inductive step where dim Y = k.
Continuing in the spirit of the proof of Theorem 3.2 we only treat the
absolute version, and we will not keep careful track of the sizes of the
homotopies that arise.

We start by choosing a triangulation of Y so that all the simplices
have small diameters. The first step is to (stably) find small f.p. c-homo-
topies r ~ r0 and s — s0 rel 3ΔXM such that r0 is close to s0 and r0 = s0

over the product of Δ with a neighborhood of some 0-simplex. Let our
0-simplex be υ and let N be a small regular neighborhood of v. As in the
proof of Theorem 3.2 let Nt be the /-level of N. Using Theorem 4.6 it
follows that for each i e A , and all but a finite number of t e [0,1], there

proj

exists a neighborhood U c Δ of b such that r~\U X Bd(Λ )̂) -> U is a
PL manifold bundle which is f.p. PL bicollared in U X M. The size of U
depends on b and t. Of course a similar statement is true with s in place
of r. Choose a fine triangulation of Δ, and for each barycenter bσ of a
simplex σ in Δ let Δσ be the closed star of bσ in the second barycentric
subdivision of Δ, i.e., Δσ = St(Z?σ, Δ"). Then Δσ is an «-cell, and for fixed
i the collection {Δσ |dimσ = i} is a collection of pairwise-disjoint /i-cells.

Now choose equally spaced numbers
O < t o < t ' o < t ι < t [ < ••• < t n < t ' n < \ .

By the usual compactness argument we may assume that the triangulation
of Δ is sufficiently fine so that for each σ there are numbers t, \tάϊma — t\
< l/(2n + 3), for which

r-HΔσXBd(Λθ)P-Δσ

is a PL manifold bundle which is f.p. PL bicollared in Δσ X M. There is
no loss of generality in assuming that this is true for t = /d i m σ. Similarly
we may assume that

x B d ί t t ))->Δ Λ
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and

- ( Δ σ X

are PL manifold bundles which are f.p. PL bicollared in Δ σ X M.

It will be convenient to assume that the above bundles extend to

bundles over small neighborhoods of the Δσ, with a similar statement

about the f.p. bicollarings also being true. For any σ we can use Lemma

5.1 to obtain a f.p. PL homeomorphism hσ: Δ σ X M - > Δ σ x M which

is supported on r" 1 (Δ σ X N), which takes s-\Δσ X Bd(iV/dm)) to

r " 1 ( Δ σ X Bd(7V,dun )), and which is the identity on r" x ((Δ σ Π 3Δ)X N).

We can do this so that the hσ have disjoint supports for different σ. By

the construction of the hσ given in Lemma 5.1 we can isotope them to the

identity on slightly larger neighborhoods to obtain f.p. PL homeomor-

phisms hσ: Δ X M -> Δ X M with disjoint supports. By piecing together

the hσ we obtain a f.p. PL homeomorphism h0: Δ X M —> Δ X M which

satisfies

(1) hQ is supported on r - 1 ( Δ X N),

(2) V H Δ , X Bd(ΛΓ/dmσ)) = r-\Aσ X B d ^ J ) , for all σ,

(3) Λ0 |3Δ X M = id.

By choosing the numbers t\ close to tt it is clear that h0 can be

constructed so that rh0 is close to r. Of course we can similarly treat all of

the O-simplices in Y simultaneously, but recall that we are working with a

fixed 0-simplex v. This restriction considerably simplifies notation.

As in the case of the proof of Theorem 3.2 we now focus our attention

on the f.p. c-map rh0: Δ X M -> Δ X M. By squeezing towards the

0-simplex v of Y it is clear that there is a small f.p. c-homotopy r - rh0.

This homotopy must be feathered out near 9Δ X M so that it is rel 3Δ X M.

Using our inductive hypotheses (k - 1) and the given f.p. PL bicollarings

we obtain small f.p. c-homotopies r/z0 - r0' and s — s'o rel3Δ X M so that

ΓQ = s'o over Δ σ X Bd(Nt ), for all σ. Moreover by using the collar

structures we can additionally require that r0' = s'o over Δσ X Bd(A^), for

all t close to tάimσ. In analogy with the construction of h0 above these

homotopies are easily constructed by piecing together homotopies whose

supports lie in slightly larger neighborhoods of the s~1(Δσ X Bd(7V,d )).

Our goal is to construct small f.p. c-homotopies r0' - r0 and s'o - s0

rel 3Δ X M such that r0 = s0 over Δ X Nn for some / > 0. This was

accomplished in Theorem 3.2 with a squeeze towards the 0-simplex v. We

can use a similar squeeze here, but it will have to be a variable squeeze

over Δ. Assuming that r0' = s'o over Δσ X Bd(Λ^), for Δσ a slightly larger

neighborhood of Δσ and for all t close to tθ9 we can perform a constant
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squeeze over U{Δ σ |dimσ = 0} to obtain small f.p. c-homotopies r0' — a0

and s'o ^ b0 relθΔ X M so that a0 = b0 over U{Δ σ |dimσ = 0} X Nn for

all t in a small neighborhood of t0. We can also require the homotopies to

be constant on r ' ^ Δ X (Y — Nt,+ε)), for some small ε > 0, so in particu-

lar it follows that a0 = b0 over

U{Δσ X Bd(Nt) |dimσ > 1 and / close to / d i m σ } .

For each i let Sέf = U{Δ σ |dimσ < /}. Now define a PL map

φ: Sλ -> [/0,/J so that φ(S0) = {/0} and φ(b) = tv for all b outside

of a small neighborhood of So. Using the inductive hypothesis (n - 1)

there exist small f.p. c-homotopies a0 — a[ and b0 — b[ rel(9Δ X M) U

(So X M) such that a[ = b[ over

U{{6} XBd(Nt)\b e SΊ and ί close to φ(b)}.

We can now perform a variable squeeze over Ŝ  to obtain small f.p.

c-homotopies a[ - ax and b[ — bx rel 3 Δ X M so that ax = Z>x over

Ό{{b) X ^Vφ(/>) |Z? G Sλ). All of these homotopies are constant over

r - 1 ( Δ X (Y — Nt>))9 so we have ax = bλ over

U{ Δ σ X Bd(Nt) Idimσ > 2 and t close to ί d i m σ } .

It is now clear that we can continue this process to obtain small f.p.

c-homotopies

r0 — a0 — a i — * * * — an = Γ 0 '

s'o~K-bι~ '" ~ K = so
rel 3Δ X M so that r0 = s0 over Δ X Nn for some t > 0. This achieves our

desired goal. By carrying out the same procedure over each 0-simplex in Y

we may assume that r0 = s0 over the product of Δ with a neighborhood of

the 0-skeleton.

We are now in a position to repeat the same argument for the

1-skeleton of Y. The first thing to do is to completely abandon the above

triangulation of Δ and repeat the process with a new triangulation (chosen

in conjunction with Theorem 4.6). As explained in the corresponding step

in the proof of Theorem 3.2, the only new ingredient is the use of the

relative version of Lemma 5.1. When this step is carried out we obtain

small f.p. c-homotopies r0 — rx and s0 ^ sλ rel 3Δ X M such that rλ = sλ

over the product of Δ with a neighborhood of the 1-skeleton. After k steps

the process terminates. D

6. Proof of Theorem 2. Our proof of Theorem 2 is given below, but

first we will have to establish some preliminary results.
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LEMMA 6.1. Let Eo -> B and Ex -> B be nice PL manifold bundles, let

E -> B be a PL fibration, and let rQ: Eo -> E, rx\ E1-+ E be f.p. c-maps.

Then for every ε > 0 there (stably) exists a f.p. PL homeomorphism h:

Eo -» Ex such that d(rλh, r0) < ε.

Proof. It will be simpler to first treat the case B = {point}. For this

we may assume that Eo and Ex are nicely embedded in some Rm (i.e.,

dim2?0 = d i m £ x = m) and we may also assume that E is a subpoly-

hedron of Rm. Fix δ > 0 and let us assume that there is a PL embedding

u: E -> EQ which is a δ-inverse of r0. If we choose m > 2 dim 2s 4- 2,

then we can extend u to a PL homeomorphism ύ: Rm -> Rm. Since we are

allowed to stabilize we may assume that rλ: Ex -> E is of the form

rj^proj), where r[ takes the spine of Eλ to E. If m > 2 dim(spine) 4- 2,

then there exists a PL homeomorphism v: Rm -> Rm such that v\Ex is

close to rx (as close as we want). If it is close enough, then ϊιυ{E-]) c EQ.

Assertion. If v\Eλ is chosen sufficiently close to rl9 then the inclusion

uviE^ c^> Eo is an rQl(3δ)-equivalence.

Proof. Since u: E -> Eo is a δ-inverse of r0 one can easily check that

the inclusion u(E) «-> EQ is an ro~
1(3δ)-equivalence with inverse ur0:

Eo -> t/(£r). Observe that for any given γ > 0 we can choose v \ Ex close

enough to rx so that rλv~ι: v(Eλ) -> E is γ-homotopic to the identity. We

may therefore assume that

u(r1v~1)ύ~ι: uviEi) -» w(£)

is homotopic to the identity via a homotopy that is small and takes place

in Eo. So in order to check that ^(E^) ^ Eo is an ro"
1(3δ)-equivalence it

suffices to check that the composition

u(rλυ)ύ

ύv(E) ->

is an ro"
1(3δ)-equivalence. Since the first map is a c-map and the second

map is an ro"
1(3δ)-equivalence, this is straightforward. D

Now consider the cobordism (EQ X [0,1], ύviE^)), where ίiί;(£1) =

ύv(Eλ) X {0}. Using r0(proj): Eo X [0,1] -^ E as a controlling map we

see from the Assertion that (Eo X [0,1], ύviE^) is a 3δ-controlled Λ-

cobordism. Moreover the restriction r0(proj) | : ^(E^) -> E is homotopic

to the c-map rιυ~1u'1: ύv(Eλ) -> £ via the following homotopy in 2?:

rQ\fc(£r

1) ί=s ̂ (wr^" 1 ^" 1 ) Iϋt;(£r

1) - rxv~xu~x \ύv(E1).
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The first comes from the proof of the above Assertion, and it can be made

as small as we want. The second comes from the fact that rou — id, so it is

a δ-homotopy. Thus we have a δ-homotopy of r0(proj) to a map p:

Eo X [0,1] -» E for which p \ ύυ(E^) is a c-map. Using p as a controlling

map we see that (Eo X [0,1], uo{E^)) is a δ'-controlled Λ-cobordism,

where the size of δ' depends on the size of δ. Using the Stable Controlled

/ι-Cobordism Theorem of §2 we conclude that (Eo X [0,1], ύυ(EJ) is

(stably) an ε'-product, where the size of ε' depends on the size of δ'. This

product structure gives us a PL homeomorphism k: Eo X [0,1] -> ϊw(Eι)

X [0,1] such that r0(proj)fc is close to r0(proj). Then our desired homeo-

morphism is

h = (( to)" 1 X Ίά)k: Eo X [0,1] -> Eλ X [0, l ] .

This completes the proof of the case n = 0.

Finally we remark that the proofs of the cases n > 1 are all similar to

the above proof of the case n = 0, with the main difference being the use

of the Fibered Stable Controlled Λ-Cobordism Theorem of §2. D

REMARKS 1. It follows from the above proof that if we are addition-

ally given a compact subpolyhedron B' of B for which r0 = rx over B\

then the homeomorphism h can be constructed to additionally satisfy

h = id over B'.

2. Since Eo -» B is a nice PL manifold bundle it follows that the

product bundle Eo X [0,1] -> B X [0,1] is nice. Using the fact that Eo X

[0,1] is f.p. PL homeomorphic to C(h) (over B X [0,1]) we conclude that

C(h) -> B X [0,1] is also a nice PL manifold bundle.

LEMMA 6.2. Let Eo-+ B and Eλ-> B be nice PL manifold bundles, let
p

E -> B be a PL fibration, and let r0: Eo -> E, rλ\ E1 -> E be f.p. c-maps.

Then (stably) there exists a nice PL manifold bundle ^ - > ί X [ 0 , l ] such

that SIB X {0} = Eo, S\B X {1} = Ev and there exists a f.p. c-map r:

<f-> E X [0,1] for which r = r0 over B X {0} andr = rλ over B X (1).

Proof. To make sure that there is no confusion in the above statement
/?Xid

we are regarding E X [0,1] as the product fibration E X [0,1] -> B X

[0,1]. Using Lemma 6.1 there exists a f.p. PL homeomorphism h: Eo -> E1

such that rxh is close to r0. It follows from Theorem 1 that if these c-maps

are sufficiently close, then there is a c-homotopy between them. Thus we

obtain a f.p. c-map F\ Eo X [0, \] -> E X [0, \] for which FQ = rQ and
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Fι/i = r\h- T o define £\B X[<d,\] and r over B X [0, \] we let £\B X

[0, i ] = £ 0 X [0, i ] a n d r = ^
Recalling the Remarks following Lemma 6.1 we know that C(h) -* B

X [0,1] is a nice PL manifold bundle. If we linearly identify [0,1] with

[^,1] it follows that C(h) -> B X [^,1] is a nice PL manifold bundle

which equals Eo over B X {\} and equals Ex over B X {1}. Then sew

C(Λ) to £15 X [0, \\ by identifying £ 0 X {\) in «f | B X [0, £] with Eo in

C(A). This gives us a nice PL manifold bundle £ -^ B X [0,1] which

equals C(h) over 5 X [ i , l ] . To define r over 5 X [ i , l ] we need a f.p.

c-map of C(h) to E X [^,1] which agrees with rλh on £ 0 and which

agrees with rx on Ev We observed in §2 that there exists a f.p. c-map of

C(h) to 2^ X [\, 1] which agrees with h on 2?0 and which is the identity

on Ev Then compose this map with rλ X id: Ex X [\91] -> £ X [̂ , 1]. D

Here is some notation which will be needed in the statement of our
p φ

next result. Let E -> B be a PL fibration and let 5 -^ 5 be a PL map.
//

The fibered product of φ and p is the PL fibration E' -* B which is

defined by

and ^'((ό,^)) = b. Here is a fairly straightforward result whose proof is

left to the reader.

PROPOSITION 6.3. (1) // ψ: B -^ B is another PL map, then the fibered

product of ψ and p' is f.p. PL homeomorphic to the fibered product of φψ

and p.

(2) If E is a nice PL manifold bundle, then so is E'.

(3) // E is the f.p. c-image of a nice PL manifold bundle, then so is

Er. •

We say that a PL fibration E -> B is nice if there exists a nice PL

manifold bundle <?-> B and a f.p. c-map <o-> E. The map r will be

referred to as a resolution of the fibration.

p r0

PROPOSITION 6.4. Lei E -> Δn bea nice PL fibration and let £0-^ E\ ΘΔ

Z>£ # resolution. Then {stably) there exist a PL map φ: Δ —> Δ swc/z
φ 19Δ = id αftd α resolution S'-> Er {Er = fibered product of φ and p) such

that r = r0 ewer 3Δ.
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Proof. By choosing a collaring of 3Δ in Δ we can write Δ = Δ o U (3Δ

X [0,1]) such that 3Δ X {0} = 3Δ0 and 3Δ X {1} = 3Δ. Define φ: Δ -> Δ

to be any PL map for which φ((x, /)) = (x, 1), for all (JC, t) e 3Δ X [0,1].

Then the fibered product E' -> Δ is still nice and it agrees with £ | 3 Δ

over each 3Δ X {t}. We define <?|3Δ = $0 and r = r0 over 3Δ, and we

define <?|Δ0 -» ISΊΔQ to be any resolution. Using Lemma 6.2 we can find

a resolution <?|(3Δ X [0,1]) -> £"|(ΘΔ X [0,1]) which agrees with the

choices already made over 3Δ X {0} and 3Δ X {1}. These choices all

piece together to give our desired resolution <?-> E'. D

Proof of Theorem 2. Let E -> Δ" be a PL fibration which is a nice PL

manifold bundle over 3Δ. Our goal is to (stably) find a PL fibration over

Δ X [0,1] which agrees with E over Δ X {0}, which agrees with £ | 3 Δ

over each 3Δ X {/}, and which is a nice PL manifold bundle over

Δ X {1}. This will suffice to establish Theorem 2. Our strategy for doing

this involves an induction on the integer n, but in order to carry out the

inductive step we will need a somewhat stronger result. Specifically we
p

will establish the following statement. In it, E -> B is a PL fibration for

which E and B have been triangulated so that p takes each simplex of E

linearly to a simplex of B.

Pn: If dim B = n and Bo is a subcomplex of B for which E \ Bo is a nice

PL manifold bundle, then {stably) there exists a PL map φ: B —> B such

that φ I Bo — id, φ is simplex-preserving, and the fibered product of φ and p

has a resolution which is the identity over Bo.

To see how Pn implies Theorem 2 let E -> Δ" be a PL fibration which

is a nice PL manifold bundle over 3Δ. Using Pn there exists a PL map φ:

Δ -> Δ, φ |3Δ = id, such that the fibered product E' of φ and p has a

resolution $-> Ef which is the identity over 3Δ. Then E' = E over 3Δ

and the mapping cylinder C(r) is a PL fibration over Δ X [0,1] from S to

Ef which equals E \ 3Δ over each 3Δ X {/}. Since φ 13Δ = id there exists a

PL homotopy Φ: A x / ^ A from φ to the identity rel 3Δ. The fibered

product of Φ and p gives us a PL fibration over Δ X / from Er to E

which equals E \ 3Δ over each 3Δ X {t}. These two PL fibrations piece

together to give our desired PL fibration over Δ X [0,1] whose 0-level is E

and whose 1-level is S.

Turning to the proof of P it is obvious that Po is true, so all we have
p

to do is establish Pn_λ => Pn. For this we are given a PL fibration E -> B,

dim B = n, and a subcomplex Bo of B for which E\B0 is a nice PL
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manifold bundle. Using the inductive hypothesis there exists a PL map

φ 0 : 5 " " 1 U ί 0 -* ί"" 1 U 5 0 such that φo\Bo = id, φ 0 is simplex-pre-

serving, and the fibered product of <p0 and p\(E\Bn~ι U BQ) has a

resolution which is the identity over Bo. Extend φ 0 to a simplex-preserving

PL map φ 1 : B -> B. The fibered product of φλ and p is a PL fibration

Eλ^> B such that Eλ \Bn~ι U Bo has a resolution ^ -> £ x which is the

identity over Bo. Since E | Δπ -> Δπ is simplicial it follows from §2 that

J?|Δ" has a resolution, for all π-simplices Δ* in B. This implies that

Ex IΔ" also has a resolution.

Applying Proposition 6.4 to each Δw we can find a PL map φ 2 :

B -> B such that φ 2 | 5 n ~ 1 U i?0 = id, φ 2 is simplex-preserving, and the

fibered product E2 -* B of φ 2 and p1 has a resolution S -* B which

extends the resolution ^ -> £ x 1I?""1 U i?0. Thus φ = φ ^ is our desired

simplex-preserving map and $ is our desired resolution of φ and p. D

7. Proof of Theorem 3. Our proof of Theorem 3 is modeled on the

proof of Theorem 2, so we will first have to show how the tools that were

used there can be appropriately modified. The first tool, which is estab-

lished in Lemma 7.1, is a modification of Theorem 1. Then in Lemma 7.2

we establish a modification of Lemma 6.1 which avoids the "niceness"

assumption that was needed there.

LEMMA 7.1. Let n > 0 and ε > 0 be given. For any compact polyhedral

pair (Y, N)9 where N is a compact PL manifold, there exists a δ > 0 so

that if M is a compact PL manifold for which N c dM is PL collared in M

and r, s: Δw X M -> Δ" X Yaref.p. c-maps such that r = s on (3Δ X M)

U (Δ X N) and d(r, s) < δ, then (stably) there is af.p. c-homotopy r ^ s

X M ) U ( Δ x i V ) which is also an ε-homotopy.

Proof. One way to prove this result is to repeat the proof of Theorem

1. Another way to do it is to use the relative version which arose during

the course of the proof of Theorem 1. It is this latter approach that we

adopt. Define M = M U (N X [0,1]) and Ϋ = Y U (N X [0,1]), where

the sewings identify N with N X {1}. We can trivially extend r and s to

f.p. c-maps ? , ί : A x M - ^ A x f which are equal on (3Δ X M) U (Δ X

N X [0,1]) and which are still δ-close. By the relative version of Theorem

1 there exists a small f.p. c-homotopy r — s rel(3Δ X M) U (Δ X N X

{0}). If we identify N X [0,1] with a collaring of N in Af, then we obtain

an identification of M with M so that NX {0} in M is identified with N

in M. Thus f and s become maps from Δ X M to Δ X Ϋ.
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Let u: Ϋ -> Y be the c-map obtained by collapsing-out the [0,1]
factor in N X [0,1] and then consider the maps

(id X u)f, (id X u)s: A x I ^ A x Γ .

By the above c-homotopy r — s, there exists a small f.p. c-homotopy
(id X ύ)f s (id X w)ί rel(3Δ X M) U (Δ X iV). Finally by using the col-
laring of N in M it is easy to see that there exist small f.p. c-homotopies
(id Xu)f ^r and (id X u)s ^ s rel(ΘΔ X M) U (Δ X JV). D

LEMMA 7.2. Let (Eo> B X N) ^ B and (Ev B X N)-> B be PL

manifold bundles rel N9 let (E, B X N) -> B be a PL fibration rel N9 and
let r0: Eo -» E, rλ: Ex-+ E be f.p. c-mάps such that r0 = rλ = id on
B X N. Then for every ε > 0 there {stably) exists a f.p. PL homeomor-
phism h: Eo -> Ex such that h = id on B X N and d(rλh, r0) < ε.

Proof. Following closely the proof of Lemma 6.1 it will suffice to
consider only the case B = {point}. Recall that the key to the proof of
Lemma 6.1 was the fact that EQ, Ev and E could all be embedded in Rm

so that Eo and Ex are nice. Once everything was inside Rm, PL unknot-
ting of polyhedra was used to construct an isotopy that moved Ex into Eo

so that the Stable Controlled Λ-Cobordism Theorem could be applied.
Unfortunately, in our situation the given manifolds are not neces-

sarily nice, so we will need a replacement for the ambient space Rm. Since
we are allowed to stabilize it follows that (Eθ9N) and (EVN) are
ordinary Λ-cobordisms. Thus by the invertibiltiy of A-cobordisms [13, p.
208] we may assume that Eoa N X [0,1] and Ex c N X [0,1], where
N ΞΞ N X {0} in N X [0,1]. Moreover we may assume that E c N X [0,1].
Now using the ambient space JV X [0,1] in place of Rm we may proceed
as in the proof of Lemma 6.1. D

REMARKS (1) It follows from the above proof that if we are addition-
ally given a compact subpolyhedron B' of B for which r0 = rx over B\
then the homeomorphism h can be constructed to additionally satisfy
h = id over Bf.

(2) It is also easy to see that C(h) -> B X [0,1] is a PL manifold
bundle rel JV.

Proof of Theorem 3. Armed with Lemmas 7.1 and 7.2 we are now able
to easily modify the proof of Theorem 2 in order to obtain a proof of
Theorem 3. D
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