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MAXIMALLY RESONANT POTENTIALS SUBJECT TO
/7-NORM CONSTRAINTS

ROMAN SVIRSKY

We prove the existence of and characterize quantum-mechanical
potentials within certain L ̂ -classes that produce maximally sharp reso-
nances. The best results are obtained in the spherically symmetric case
where it is shown that, roughly speaking, maximally sharp resonances are
caused by barrier confinement of a metastable state, although in some
cases there is interaction in the interior of the confining barrier.

I. Introduction. The question of optimizing various spectral prop-
erties of Schrόdinger operators has recently received attention in several
articles [2, 5, 6]. For example in [2] Ashbaugh and Harrell consider
(among other things) various self-adjoint realizations of H = — Δ + V(x)
(or more generally A + V(x) where A is a uniformly elliptic operator) on
bounded regions in Rn for n = 1,2,3. The potential V satisfies the
constraint ||K|| < M for fixed p(n), M but otherwise is unspecified. The
authors show the existence and analyze potentials V that maximize or
minimize eigenvalues of H. In particular such potentials are supported
everywhere in the region and are connected with their wave functions by
the algebraic relation

(1.1) | ψ | 2

for some constant c (which can be assumed equal to 1 by renormalizing ψ
if necessary). This can then be substituted into the eigenvalue equation
and will yield the following non-linear differential equation characterizing
the wave function of such an optimal potential:

(1.2) Λψ±|ψ| ( p + 1 ) / < '~ 1 ) sgn(ψ) = JEψ.

In the one-dimensional specialization (1.2) can be integrated and interpre-
ted as a problem in classical dynammics. Optimizing potentials in that
case are characterized quite explicitly.

The basic ideas in [2] can also be used to analyze potentials optimiz-
ing eigenvalue gaps or resonance widths. This paper is devoted to the
latter question. The motivation comes from quantum mechanical consid-
erations. A particle surrounded by a large potential barrier might move
inside the barrier for a considerable period of time before penetrating it
(or tunnelling through it) and escaping to infinity. The system behaves
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almost as if it were in a bound state. The effect of the penetration can
show up in scattering as a sharp resonance. Resonances can be conveni-
ently defined as nonreal eigenvalues of the complex-scaled Schrodinger
operator. The real part, E, of the resonance eigenvalue roughly corre-
sponds to the energy at which resonance is observed and the minus
imaginary part ε measures the width of the resonance in units of energy.
A sharp resonance is one with small ε, and by the uncertainty principle ε
may be inversely proportional to the lifetime of a metastable state, i.e. to
the time spent by the particle in the interior of the barrier.

While barrier confinement is known to produce sharp resonances, it is
by no means obvious that this is the only physical mechanism capable of
producing this phenomenon. This provides a motivation for the question
we are asking: to what degree sharp resonances are due to tunnelling? The
answer is that essentially barrier confinement of a metastable state pro-
duces the sharpest possible resonances although in certain situations there
are also interactions in the interior of the confining barrier.

The problem has already been studied in [6]. There we considered the
differential equation

(1.3) - d2ψ/dr2 + Vφ = k2ψ

on the interval [0, L] =) suppF. In (1.3) k2 = E - iε (£, ε > 0) is the
resonance eigenvalue, V is presumed bounded, and the wave function ψ
satisfies the Dirichlet boundary condition at 0 and the outgoing consition
at L:

(1.4) Ψ(0) = 0; ^(L) = ik.

Generalizations of (1.3), (1.4) to higher dimension were also considered in
which case the equation

(1.5) - Δψ 4- Fψ = k2ψ

holds in a bounded domain Ω c R2 or R3.
Note that one can think of the one-dimensional problem as coming

from separation of variables in a spherically symmetric three-dimensional
problem, in which case it describes S-wave resonances. We shall therefore
refer to the one-dimensional problem as the (totally) spherically symmet-
ric case. Resonances for subspaces of nonzero angular momentum corre-
spond to the outgoing condition of the form

— (L) -> ik as L -> oo

and are discussed in [11].
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In [6] we were concerned with the problem of minimizing ε within the
class of potentials

SjQ) = {V: V> 0, suppFc 0, \\v\\* < M)

for a fixed domain Ω c R+, R2 or R3 and a large fixed number M. All
such potentials are exteriorly dilation analytic as defined in [4, 10] with
dilation taking place outside a ball containing Ω, and equations (1.3), (1.4)
and (1.5) are equivalent to the operator eigenvalue problem for the
complex-scaled Hamiltonian. An optimal potential is called maximally
resonant and denoted by Vp

In the totally spherically symmetric case a quite detailed description
of such a potential was obtained. In particular, it was proved that it can
only equal M on its support which consists of a finite number of closed
intervals (barriers). Moreover, the last barrier stretches all the way to the
right most point of Ω = [0, L], This shows that maximally sharp reso-
nances are due at least in part to barrier confinement of a metastable
state. Another property of a maximally resonant potential is the fact that
the intervals on which it is supported are characterized by the sign of
Im ψ | in the sense that Im ψ\ > 0 on the support and Im ψ| < 0 outside
of the support of V$ in Ω.

This paper extends the results in [6] to the class of potentials

Sp(Q) = {V: V > 0, suppFc Ω, | |F | | ^ < M)

for p > 2 if n = 2 or 3 and p > 1 if n = 1. Moreover, in the latter case
we also consider the class

= < V: positive bounded Borel measures in Ω with / V(dx) < M

All such potentials are once again exteriorly dilation analytic with
respect to a dilation taking place outside any ball containing Ω. It turns
out that for every p maximally resonant potentials exist within the classes
Sp(Ω) and just as in the case of p = oo, the sign of Imψ| determines the
intervals on which they are supported. However, unlike the previous case,
each maximally resonant potential is now a smooth function characterized
by a nonlinear second order differential equation that contains the corre-
sponding wave function as the inhomogeneous term.

The results are somewhat different when p = 1. In this case elliptic
functions arise. We shall discuss this in the last section.

Π Existence of maximally resonant potentials. The existence proof

closely follows that in [6] with only minor changes. Since it very much
depends on compactness arguments, we first prove the existence of
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maximally resonant potentials within those producing resonances in a
fixed energy range.

Thus given C and D satisfying 0 < C < D < oo for every allowed p,
we define classes

(2.1) S^D)(ίi) = Sp{Ώ)n{V: C < E(V) < D)

where C and D are chosen so that S^CfD) is not empty.

THEOREM ILL For fixed Ω, M, p, C, D, let ε# = inf{ε(K):
S^ C D ) (Ω)}. Γ/zew ί/ze infimum is attained, i.e. there is V% e Sj c z > ) (Ω)

that ε( F#) = ε# and moreover ε# > 0.

REMARKS.

(1) Just as in [6] there is no guarantee of uniqueness.
(2) We shall prove the theorem under the assumption p > 2. As one

can see from the proof it works for every such p and is independent of
dimension n as long as n < 3. The proof for 1 < p < 2 is similar and can
be found in [11].

Proof. Let Ωx be an arbitrary finite ball containing Ω. Let {Vn) be a
minimizing sequence of potentials, i.e. ε(Vn)lεt. Let {ψw} and {k^} be
sequences of associated eigenfunctions and eigenvalues, respectively.

Now we start extracting subsequences. First of all, by the compact-
ness of [C, D], there is a subsequence of {k^} that converges to some
limit k£. We may also normalize {ψn} such that HΨJIOQ = 1. It then
follows from

that {ψ^} is bounded in W^i^i). By Rellich's Theorem, {ψrt} is com-
pactly embedded into C(Ω1), so we can pass to a subsequence converging
uniformly to some limit ψ#. Finally, by the Banach-Alaoglu Theorem, we
can extract a subsequence of {Vn) converging weakly in Lp(Ωι) to some
limit Vt Moreover, H F ^ < M and V% > 0.

Now for every / e Q 0 ^ ) and each n

Letting n -> oo we find that in the sense of distributions

Thus Vt e s ; c D)(Ω)
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It remains to show that ε# > 0. Suppose ε# = 0. Then either E$ > 0 or
k$ = 0. If E$ > 0, this would imply by the usual argument of dilation
analyticity that k$ is a positive embedded eigenvalue of the self-adjoint
realization of the problem. Embedded positive eigenvalues however are
impossible for the potentials under consideration [3, 7, 9].

The other possibility is also easily ruled out: if k£ = 0, then ψ#

satisfies

without complex scaling. In particular,

0 = (ψ#, -Δψj) +(ψ#,Kβψ#) = f |vψ#|2</x + (ψ#,F#ψ#) > 0

contradiction. D

Now in order to show tht existence of maximally resonant potentials
in Sp(2) (for every p) we let C | 0 and D f oo and prove that at least in
the totally spherically symmetric case there are no sharp resonances in
either low or high energy regimes. Thus we need an idea of how small ε
can be for fixed L and M, the length of the support of the potential and
its L^-norm, respectively. The simplest case is that of a square barrier of
length L and height M (i.e. when p = oo). In that case one can easily
find a resonance with width ε = O(cxp( — L]fM)). This shows that when
these two quantities are sufficiently large there are indeed very sharp
resonances. The following proposition shows that in the totally spherically
symmetric case, ε cannot be too small when the energy E is either very
high or very low.

PROPOSITION Π.2. Every resonance with ε < max(l/2L2,1/L3) satis-
fies π2/4L2 < E < CM2L2~2/p, where the constant C can be chosen
arbitrarily close to 1 by choosing M or L sufficiently large.

REMARKS. (1) For the proof of the lower bound see [6]. The upper
bound on E is obtained using a variation of parameters argument. For
details see [11].

(2) The proof of the lower bound uses the fact that ψ G Cι[0, L) and
thus we cannot immediately extend it to the case p = 1. However, as we
show in the last section any maximally resonant measure in Sλ(ίl) has to
be absolutely continuous in [0, L). That would imply that even in this case
the bound remains valid.
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COROLLARY Π.3. In the totally spherically symmetric case if M and L
are sufficiently large, there exists a potential F# in every Sp(Ώ) for 1 < p <
oo that is maximally resonant for the entire energy range 0 < E(V) < oo.
Moreover, τr2/4L2 < E(V$) < CM2L2~2/p where the constant C can be
taken arbitrarily close to 1 by choosing Lor M appropriately large.

III. Characterization of maximally resonant potentials. Now that
the existence of maximally resonant potentials has been proved, the next
step is to attempt to characterize them. We remark that just as in the case
p = oo potentials under consideration are relatively form compact with
respect to the exteriorly complex scaled free Hamiltonian. Thus reso-
nances associated with F# are all finitely degenerate and can accumulate
only at 0 or oo. They will always be nondegenerate in the totally
spherically symmetric case and in general we shall restrict ourselves to
characterizing those maximally resonant potentials whose resonance ei-
genvalues are nondegenerate.

The basic idea is to perturb the maximally resonant potential V%

slightly by appropriate functions and analyze the first order change in k%.
This method will characterize not only the global minimum of the
functional ε(V) but other local extrema as well. Thus, just as in [6] we
make the following

DEFINITION. For any fixed Ω, M and /?, 1 < p < oo, the potential V%

is locally maximally resonant for the set Sp(Ώ) if it has a resonance
eigenvalue k2(V$) such that for sufficiently small δ,

ε(F#) = nύn{ε(F): K e ^ ( Q ) , \\V- V%\p < δ and

\k2(V)-k2(Vt)\<δ}.

The definition is similar when p = 1. If p > 2, the basic formula for
the first order change in k$ corresponding to the small perturbation of F#

by a bounded function P supported in Ω (F# -> F# + λP for small
λ e R ) i s

(3.1) * ί _ A ^ .

where ψ# is the exteriorly complex scaled wave function and a =
1//R" Ψ̂  dx is independent of P [6]. When 1 < p < 2 Formula (3.1) is
only slightly modified by putting everything in the language of quadratic
forms [11]. (We shall drop the subscript θ in the future).
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We shall now consider the case p > 2 (or p > 1 when n = 1). The
remaining case p = 1 is considered separately in the last section. Suppose
now for some fixed Ω, M and p, V% is maximally resonant in Sp(Ω).

A perturbation V^-* V$ + λP will be called admissible iff the per-
turbed potential remains in Sp(Ω), i.e. \\Vt + XP\\p < M and F# + λP >
0. There will be several such admissible perturbations. Using Formula
(3.1) for each of them will yield the basic relation between ψ# and F#

which is the analog of (1.1) in the self-adjoint case. Our first result is

PROPOSITION III.l. Either \\V^\p = M or otherwise ψ# = 0 on supρF#.

REMARKS. (1) The support of V% is defined as for generalized func-
tions and not in the classical sense.

(2) It follows from above proposition and the unique continuation
property [7] that if \\V^\p < M9 then suppF# is a nowhere dense set. While
we cannot rule out the possibility that in higher dimensions maximally
resonant potentials might be supported on such a set, we conjecture,
however, that this does not occur. It is also clear that in the spherically
symmetric case one must have \\V$\\p = M: if ψ#(r0) = 0 for some r0 > 0,
then on the interval [0, r0] we have a self-adjoint problem with Dirichlet
boundary conditions at the end points. This forces ε = 0 which con-
tradicts Theorem ILL Thus the nodal surface of ψ# in the spherically
symmetric case is of measure zero. Moreover, we show below (cf. Proposi-
tion III.3) that in the spherically symmetric case suppF^ consists of a
finite number of closed intervals and thus nowhere dense sets are ruled
out.

Proof. We will only sketch the proof since it is similar to the one in
[6]. Suppose \\V#\\p < M. Let T be a small set in supply. The perturbation
V$ -> K# 4- λχτ is then admissible for small λ. Formula (3.1) implies that
Im αψ2 = 0 on supp V which in turn implies ψ = 0 on supp V. D

THEOREM III.2. Let V* denote a maximally resonant potential in
for some fixed Ω, M and p. Then

(a) lmaψp/Vg~ι = c > 0 a.e. on Y = suppF#. Moreover, c > 0 un-
less ψ ΞΞ 0 on Y.

(b) Imαψ^ < 0 outside supply in Ω.
In particular Imαψ^ > 0 on Y and ImαψJ < 0 on the complement of Y in
Ω.
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Proof,

(a) Let Γ2, T2 c suppF# be two small sets of equal Lebesgue measure
centered at yx and y2 respectively. For small real λ let

(3.2)

where ηλ = η^λ, Tv T2) is chosen so that H^λ)!^ = \\Vt\\p < M. One can
easily show by expanding the integral for ||F(λ)||£ that the last con-
dition is insured iff for almost every yv y2

 e suppF#, Vι(λ) ->
vζ~\y\)/vζ~\yi) as λ -> 0 and the sets 7\ and T2 converge to their
centers yλ and y2.

Substituting (3.2) into (3.1) we get:

dχ = - I m α ψl(yΛ) - Λ.—rΨl(Vi) = 0.

This implies that a.e. on supp V$

Im aψl
(3.3) —^ = const = c.

To show that c > 0 we notice that F# -> F# + λχΓ i is an admissible
perturbation for λ < 0. Using (3.1) once again we find that

λ = = 0

 tt

If we assume that c = 0, then Imαψ| s 0 on suppF# and this once again
would imply ψ# = 0 on supp F#.

(b) If 7\ still denotes a small set in the support of V$ centered at yλ

and Sλ small set of equal Lebesgue measure in the complement of the
support in Ω centered at zl9 then the perturbation

(3.4) V(λ)=Vs + λ(χSi-η2χTi)

(where η2 = η2(λ, Tl9Sλ) is chosen so that \\V(λ)\\p = \\V$p£ M) is
admissible if λ > 0. One can show just as before, that η2 -> 0 as λ -> 0,
and Formula (3.1) will then yield the remaining part of the theorem. D

In the rest of the paper we consider only the totally spherically
symmetric case. We have shown that just as for p = oo, the sign of Imαψ|
(or Im ψJ if we normalize ψtf so that a = 1) determines the set on which
Fg is supported. Moreover, arg ψ is a monotone increasing function for
any resonance wave function:

< 3 5 )



MAXIMALLY RESONANT POTENTIALS 365

(for the proof see [6].) These two facts combined show that maximally
resonant potnetials in Sp(Ώ) for all 1 <ρ < oo (just a s f°Γ P = °°)
possess the 'switching property'. By this we mean that the potential
switches on and off as soon as argψ has increased by π/2. More
precisely:

PROPOSITION III.3. // V% e Sp(Q) for any 1 < p < oo is maximally
resonant and spherically symmetric, then Y s supp V$ is a finite union of
disjoint intervals. That is for some integer N > 1, there are points

0 < rx< r2< <r2N< L

for which, if we let B(j) = [r2j_vr2J] and G(j) = [r2p r2J+1], then
supp Fg s Y = UyLi 5(y). /« addition, we have lower bounds on the lengths
of B(j) and G(j) for allj except (i) when] = 1, i.e, rx = 0 or (ii) j = N
when the associated interval or gap includes the point L:

For the proof see [6].

DEFINITION. We call the intervals B{j) the "barriers," and the
intervals G(j) the "gaps".

The above proposition shows that the switching property is common
to all spherically symmetric maximally resonant potentials in S^Ω) for all
1 < p < oo. However, what is peculier to the case p = oo is the discon-
tinuity and two-valuedness of Vp As we show next, for each 1 < p < oo,
each maximally resonant potential in Sp(ΐl) has a smooth representative
in the interior of its support.

THEOREM III.4. In the spherically symmetric case, V$ has a continuous
representative in [0, L). Moreover, V^^ C°°{B(j)) for all 1 <j<N,
where B(j) == (r2J^r2J).

Proof. Relation (3.3) shows that in the interior of every barrier

Vf-1 = \ ImβψJ.

The continuity of Ftf on B(j) for any 1 <j<N follows immediately by
the continuity of ImαψJ. Moreover, discontinuities cannot occur at the
boundary, i.e. at points {/ , }?£Ί (with the possible exception of r2N = L,
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where the potential is switched off automatically). For Imαψj[ > 0 on
B(j) and ImαψJ < 0 on G{j\ so Imαψ2(r,) = 0 for all 1 < i < 2N. But
also

~Γ = c> 0.

Hence Vg~ι(rj) = 0.
To prove the second part of the theorem, we substitute F# =

[(1/c) Ima\pl]ι/(p~l) into the eigenvalue equation.

l . . . l 1 ^ - ^ .

It follows now that V% G C°°(B(j)) for any 1 < y < TV by elliptic regular-
ity. D

Formula (3.3):

Imαψ2 = cVP~ι

gives the relation between the optimal potential and the imaginary part of
its wave function. Can one find a relation between F# and ψ# itself rather
than its imaginary part? The answer is yes but unlike (1.1) for the
self-adjoint case it is not an algebraic relation (when p > 1) but a
differential equation.

PROPOSITION III.5. // F# is a maximally resonant potential in Sp(ίl)
for some 1 < p < oo and ψ# is its wave function, then they are related via
the second order nonlinear differential equation

(3.6) 4ε«ψJ = £[cV{-1] - l[(l - I ) F , - 2k^[cV^} + const

that holds on each B(j). Moreover, unless r2N = L e B(N), V» satisfies the
boundary condition at the end points of each barrier V$(r2J_1) = V^(r2J) = 0.

Proof. For uncluttered notation we drop the subscript %. We start

differentiating (3.3) remembering that

ψ" = (V- k2)ψ.

Thus we find

2Imαψψr = (d/dr)[cVp-ι\,

(*) 2[lmαψ/2 + Imαψψ"] = 2[lmαψ/2 + \ma{V - k2)

= {d2/dr2)[cV?-1}.
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Now

lma(V- k2)ψ2 = Ima(V - £)ψ 2 + Imα(/ε)ψ2

= ( F - £ ) I m α ψ 2 + εReαψ2 = (F - E)[cVp-1) 4-εReαψ2.

So (*) becomes

2[lmαψ/2 + ( F - E)[cVp-1} + εReαψ2] = —2\cVp-ι\.

After we differentiate one more time and simplify, we find that

Integrating the last relation and solving for 4εRe aψ2 we find:

= - ^ [ c F ' - 1 ] - 2 I 2 - - J F - IE \\cVp~ι) 4-const

and

*4εlmαψ2 = i4ε[cVp~1].

Adding these two equations yields (3.6). In particular, when p = 2,
(3.6) becomes

4εαψ2 = cV" - [W - 4k2) cV + const. D

REMARK. If V% is a maximally resonant potential in Sp(Q) for fixed
L, M and p can it also be maximally resonant in some other class Sp*(Ω)
for p' Φ p and M' Φ M? The answer is no, which can be easily seen from
Relation (3.3): suppose F# is maximally resonant in Sp(Q>) and 5^(0),
and \\Vt\\p = M and | |F # | | ; = M'. Then by (3.3) ( I m α ψ ^ / F / " 1 = c and
(ImαψJ)/^ '"" 1 = c'. Hence, K/" '̂ = const which implies F# = const
since /?' Φ p. But then Imαψ| = const on suppF#. This constant has to be
zero since ImαψJ = 0 on the boundary of the support of V$. We have
thus once again arrived at a familiar contradiction.

We close this section with the figure depicting a typical maximally
resonant potential in Sp(Q) for some fixed p, 1 < p < oo. The gaps G(j)
are the closed intervals on which Imαψ| < 0. The barriers B(j) are the
closed intervals where ImαψJ > 0. Inside the barriers the potential F# is a
smooth function connected with its wave function through the
second-order non-linear equation (3.6). The question of how many times
the switch occurs remains open. We expect that the same situation holds
here as in the p = oo case. The potential will switch on inside the outer
barrier if the resonance wave function has a sufficiently small modulus
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over a given region (see Formula (3.5).) In this case, the wave function
resembles an excited state of the associated problem with some self-ad-
joint boundary condition at L. Moreover, we expect that when the
resonance width is small, resonances are localized near and asymptotically
in one-to-one correspondence with the bound state energies of the related
self-adjoint problem. The reason for this conjecture is provided, for
example, in [1]. The sharpest resonance seems to be generally associated
with the ground state eigenfunction, and its potential contains a confining
barrier but no other pieces.

vt

FIGURE 1

The relation between the argument of the resonance wave function
and the on and off intervals of the maximally resonant potential.



MAXIMALLY RESONANT POTENTIALS 369

IV. Case p = 1. In this last section we discuss the remaining case.

In the proof of Theorem II.1 we use the duality of L^-spaces for p > 1.

Since for p = 1 the space L*(Ω) is not a dual of any space, we do not

define Sλ(ίl) as the ball or radius M in Lι(Ώ). Rather, we define SΊ(Ω) to

be the set of non-negative Borel measures on Ω of total mass at most M.

Thus5Ί(Ω) c C(Ω)*.

As we have already noted, in one dimension any K G S ^ Ω ) is

relatively form compact with respect to -d2/dr2 on [0, oo) with the

Dirichlet boundary condition at 0. Thus from now on Ω Ξ= [0, L], the

Hamiltonian H = — (d2/dr2) + V is defined as a sum of quadratic forms

by the KLMN Theorem [9]. The measure V is associated with a quadratic

form by the formula

V(f,g)=ί fgV(dx).
Jίl

An argument similar to the one in Theorem II. 1 proves the existence

of a maximally resonant potential F# in S^Ω). The characterization of F#

is along similar lines as for p > 1. The only difference is that a priori

V% = V£c θ V£c 0 F/P, where F#

ac, F#

sc and F/ p denote the absolutely

continuous, the singular continuous and the pure point measures respec-

tively. Once again we perturb F# slightly and study the effect of the

perturbation on the first-order terms. Just as before, a perturbation is

admissible if the resulting measure remains in 5Ί(Ω). For example,

(4.1) V%-*V% + λ ( χ Γ ι ( r ) - X r » ) Tl9 T2 c suppF-

and |7\| = \T2\9 where \Tt\ denotes Lebesgue measure on the set is admissi-

ble for small λ iff supp F#

ac Φ {0} . Analogously for some singular

continuous measure

(4.2) F # ^ F β

is admissible for small λ iff supp VIC Φ { 0 } , and

(4.3) Vt->V% + λ(8{r - a ) - δ ( r - b ) ) 9 a9b e s u p p F / ? ,

is admissible for small λ iff suppF#

pp contains more than one point.

Obviously one could also use

(4.4) **-»** + λ (xτi ~\Ά \S(r ~ a))9 etc.

Either supp F# consists of only one point or at least one of perturba-

tions above is admissible. In the first case it is trivial to show that

V# = Mδ(r — L), i.e. the most resonant δ-function is one with the maxi-

mal weight supported at the right most point—a hardly surprising result.
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Let us now assume that supp F# contains more than one point. While
we do not prove that this second possibility holds rather than the first
one, the numerical evidence suggests that this is indeed the case. We have
the following analog of Theorem III.2.

THEOREM I V.I. // F# is maximally resonant in SΊ(Ω) and suppF#

contains more than one point, then

(4.5) (a) ImαψJ = c > 0 on suppF#;

(4.6) (b) ImαψJ < con the complement of supp of F# in Ω.

Proof. The most general assumption is that F# contains all three parts.
Then using perturbations (4.1), (4.2) and (4.3) and Formula (3.1) (or its
quadratic form analog) we show that

Imαψ^ = cx on suppF#

ac, Imαψjj = c2 on suppF#

sc and

Imαψ| = c3 on suppF#

pp.

Moreover, cγ = c2 = c3 = c which can be easily seen by using a perturba-
tion like (4.4).

To show that c > 0 we observe that

is an admissible perturbation for λ < 0.
To prove (b) let Sλ be a set in the complement of supp F#

ac such that
I Si I = |7\|. Then the perturbation

is admissible iff λ > 0. Relation (3.1) implies that (b) holds in the
complement of F#

ac. To complete the proof of (b) we repeat the same trick
with the set S2 in the complement of suppF#

sc and the set S3 in the
complement of supp F#

pp.
All that is left to show now is that c > 0. Suppose c = 0. Then

Imαψjj = 0 on suppF#, but this can only occur at a finite number of
points. (Otherwise, there is an accumulation point r0 at which we can
differentiate to obtain ψ#(r0) = 0; then once again we have a self-adjoint
problem on the interval [0, r0] which forces ε = 0 and this is impossible).
So if c = 0, then ImαψJ < 0 on [0, L] and Imαψ^ = 0 on suppF#. But
this contradicts (3.5) according to which arg ψ# is monotonically increas-
ing. D
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COROLLARY IV.2. SuppF^ c [0, L]. In particular, 0 <£ suρρF r

Proof. This follows immediately by observing that ImαψJ(O) = 0 <
c. D

REMARK. It follows from (3.5), (4.5) and (4.6) that the switching
property is modified. We can still say that F# = 0 on the sets where
Imαψ^ < 0. However, the potential does not switch on at the points
where Imαψ| changes sign from minus to plus. The first possible point at
which the switch can occur is when Imαψ| reaches c.

We are now going to exploit Relation (4.5) firstly to rule out singular
continuous and pure point measures on [0, L) and secondly, to obtain
more information about V£c.

PROPOSITION IV.3. For any maximally resonant V% e SX(Ώ)
(a) suppFflPP n [0, L) = 0 and
(b)suppF#

s cΠ[0,L]= 0 .

Proof, (a) Suppose that F#

pp contains an isolated δ-function supported
at some point r0 e (0, L). Then Imαψ|(r0) = c and Imαψ| < c in some
small neighborhood around r0. So

( l m α ψ | ) / ( r o - ) > 0 and (lmαψj)'(ro +) < 0.

Also ψ'(r0 -f ) - ψ'(r0 - ) = βψ$(rQ), where β is the coefficient of the
δ-function. Multiplying both sides of the last expression by αψ#(r0) and
taking imaginary parts we obtain:

0 > Imαψ#ψ^(r0 +) - Imαψ#ψ^(r0 - ) = j8Imα^(r 0 ) = βc> 0

contradiction.
If we now have a sequence of δ-functions supported on a Cantor-like

set or a δ-function embedded in F#

ac or F^sc, the proof proceeds similarly.
(b) Suppose F#

sc =£ 0. Then ImαψJ = c on some perfect set F which is
of Lebesgue measure zero and nowhere dense. We can always differentiate
on such set by considering sequences of points of F. Thus after second
differentiation we obtain:

ImαψJ.2 + Imαψ^ψjf = 0 a.e. [F#] on suppF^.

Hence, for almost every r e [0, L) (with respect to F#), Imαψ#ψ^ is
defined as a function. On the other hand, multiplying both sides of the
Schrόdinger equation by αψ# and extracting the imaginary parts we
obtain
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The right hand side is determined pointwise a.e. [F#], so the left hand side

has to be. Hence, V*c = 0. D

REMARK. The argument in part (a) of the proposition does not rule

out a point measure supported at L, since we know nothing about

Im αψ^(r) for r > L.

Hence, now we can identify F# on [0, L) with an ^-function. Further

analysis of F# becomes a special case of the results for p > 1. In

particular Imαψ| = c is a special case of (Imαψ^/F^ 7 " 1 = c for p > 1.

The differential equation (3.6) turns into a simple algebraic relation that

holds on supp F#

ac:

(4.7) 2εαψjj 4- cV% = const.

Let us denote this constant by A. Equation (4.7) can be differentiated

further yielding our final result.

THEOREM IV.4. (a) On supp Vp ψ# satisfies the non-linear Schrodinger

equation (4.8) below.

(b) Let f = -4(E + (ReA)/2c) and F# = ί ( F # + £/6). Then V%

satisfies Equation (4.10') for the Weierstrass P-function.

Proof, (a) For convenience we drop the '#' sign. From (4.7)

V==A _2εa 2

c c τ

Substituting this into - ψ " + Fψ = A:2ψ we find:

(4.8) - ψ "

or multiplying by ψ" and integrating:

(4.8') - iψ'2 4- \\± - k*y - fcψ
4 = const.

(b) We start by differentiating (4.5) and substitute for ψ" from the

Schrodinger equation in the same way it was done in Proposition III.5.

After several steps we arrive at the equation

(4.9) V" - 6VV + 4(E + D^V = 0

with Dλ = (Re^4)/2c. Note that V can be thought of as a traveling wave

solution of the K dV equation

wt = βwwr - wrrr
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where W(r, t) = V(r - ζt) provided that ζ = -4(E + DJ > 0 [8]. Equa-
tion (4.9) can be integrated, then multiplied by V and integrated again.
We then obtain:

(4.10) (V)2 = 2V3 - 4(E + D j F 2 + 2D2V + 2D3.

Here D2 and D3 are constants of integration. Now let F = aV + Z>, where
we choose constants <2 and b so that F satisfies the equation for the
P-f unction:

(4.10') {V'f = 4F 3 - g2V - g3.

Substituting αF + ZJ into (4.10) we easily find that a = 2; b = §(2? + Dj)

-f/6;

4 2
g2 = — (E + Dλ) — D2 and

F is indeed a P-function provided that Δ = g\ — 27g| Φ 0. In princi-
ple D2 and D3 are just constants of integration and they can always be
chosen so that Δ Φ 0. If however we let D2 = 2)3 = 0, then Δ = 0 and
instead of being an elliptic function V{r) = (ζ/2) csch2(/|Γ/2)r) provided
ξ > 0 and F(r) = - f/ l sec^/ 1 1 ?/2)r) if f < 0. D
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