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EIGENFUNCTIONS OF THE NONLINEAR EQUATION

ΔM + vf{x,u) = OINi? 2

MEI-CHI SHAW

In this paper we consider the existence of eigenίunctions of the
boundary value problem for the nonlinear equation mentioned in the title
with vanishing boundary values on bounded planar domains.

Let Ω be a bounded domain in R2. In this paper we consider the
existence of eigenfunctions of the boundary value problem

Δw + vf(x,u) = 0 inΩ
(o.i)

U = 0 on 3Ω
where / is a continuous function in both x and u variables for all
(x, u) e Ω X /?. We assume that / satisfies the growth condition

\m

(0 2) ί/^'0) = 0

\ I/(JC, u ) | < A + B\u\meau2 uniformly in x

for some nonnegative constants A,B,m and a > 0. We note that u ^ O i s
a trivial solution for (0.1). Let #o(Ω) denote the completion of the space
of compactly supported C 1 functions on Ω under the norm

H|/7i(Ω)=

We set F(x, u) = /0" f(x, s) ds. Our main results are the following:

THEOREM 1. Let f(x,u) be a continuous function in ( J C , W ) G Ω X Λ

and f satisfies condition (0.2). For any μ > 0 such that there exists a
v e i/<J(Ω) with /Ω \vv\2 = γ < (4ir/α) and /Ω F(x, v) = μ, the eigen-
value problem (0.1) has a nontrivial eigenfunction u satisfying /Ω F(x, ύ) =
μ.

If we are interested in positive solutions, a similar theorem applies.

T H E O R E M 2. Let f(x, u) be a continuous function in ( X , M ) E Ω X J !

that satisfies condition (0.2) and the condition

(0.2') / ( * , « ) > 0 ifu>0.
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For every μ > 0 such that there exists a v e HQ(Ω) with /Ω \W\2 = γ <
4π/a and Ja F(x, \v\) = μ, the eigenvalue problem (0.1) has a positive
eigenfunction w, i.e. u(x) > 0 for all x e Ω, and / F(x, u) = μ.

Theorems 1 and 2 are related to a question raised in Hempel-Morris-
Trudinger [4]. Our approach in proving Theorem 1 is to look for critical
points of the functional Φ{u) = \j$\Vu\2 o n the surface Sμ = [u e
H&Q) I /Q .F(JC, w) = μ}. We shall prove that
(0.3) inf Φ (u) is achieved

if μ satisfies the assumption in the theorem. The major difficulty in the
proof is to show that the functional u -» I(u) = /Ω eau2 is continuous on
the subset G e = { « e #o(Ω)IIMIJϊ$(α) < 47r/α - ε] under weak conver-
gence in HQ(Ω) for small ε > 0. We note that I(u) is not continuous on
the whole space HQ(Ω) under weak convergence for any a > 0 (see
Lemma 2 and the discussion after that). This is in sharp contrast with the
case when / satisfies the stronger condition

(0.4) |/(iι)| <A+B\u\me-M'

for some constants A,B,m and p < 2. In this case (0.3) can be proved
easily for all μ > 0 such that Sμ Φ 0, since HQ(Ω) can be embedded into
the Orlicz space Lφ*(Ω) where </>(/) = elήP - 1, p < 2, and the embedding
is compact if p < 2. (See Trudinger [11] or Pohozaev [8] and for Orlicz
spaces see Krasnoselskii-Rutickii [6]). Thus if / satisfies (0.4), the func-
tional Φ is C1 and satisfies the (P.S.) condition. It follows from standard
variational method that (0.3) holds. However, when / only satisfies (0.2),
Φ does not satisfy the (P.S.) condition. We overcome this difficulty by
applying the method of symmetrization used by Moser [7] for proving the
shaφ form of Tradinger's inequality [11]. The constant 4π/a stated in the
theorems corresponds to the sharp constant in Moser's paper. Some open
questions are stated in Remark 2 at the end of this paper.

The lack of (P.S.) condition has also been the major difficulty in
many recent works on the solutions of nonlinear elliptic equations involv-
ing critical Sobolev exponents (see e.g. Aubin [1], Brezis-Nirenberg [2]).
Instead of the approach taken here, these authors used the method of best
constants in Sobolev inequality (as in [2]) or best constant in certain
isoperimetric inequalities (as in [1]). In fact, our theorems can be viewed
as two-dimensional extensions of results for i?n, n > 3, in [2].

The author wishes to express her sincere thanks to Professor Wei-Ming
Ni for suggesting this question and many helpful discussions. She would
also like to thank Professor H. Brezis for his interest and useful sugges-
tions.
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I. Proof of the theorems. For any functions u(x) > 0, we associate
a symmetrization u* of u by the requirement

m { x | w * > ρ } = m { j c e Ω | w > ρ } f o r a l l p > 0 .
u* depends on |x| only and is nonincreasing as a function of |JC|. Let R be
the radius of a ball whose volume is ra(Ω), the Lebesgue measure of the
set Ω, i.e.

m(Ω) = ί dx.
J\x\<R

We define Ω* = { JC| |JC| < R}. Clearly w* vanishes outside of Ω*.
The basic results on symmetrization are the following:

(1.1) ί \u*fdx=(\ufdx, 1 < / 7 < O O ,
•'Ω* •'Ω

(1.2) ( eau**dx= [ eau2dx,
*^Ω* *̂ Ω

(1.3) / |vw*| dx 5

Properties (1.1) and (1.2) are trivial while the proof of inequality (1.3)
can be found in many articles (e.g. Polya & Szego [9], Hilden [5]).

To prove our theorems we need the following lemma (see Coron [3]
also).

LEMMA 1. Ifuj -» u strongly in LP(Ώ), 1 < p < oo, then \uj[* -+ |u|*
a.e. Furthermore, we have |Wy|* -^ \u\* strongly in LP(Ω*).

Proof. Let λy and λ be the distribution functions for Uj and u
respectively, i.e.,

λj(s)**m{χeQ\\uj(x)\>s}9

λ(s) = m{χtΞti\\u(x)\ > s],

where m denotes the Lebesgue measure. Then each λy and λ are func-
tions continuous on the right (see Lemma 3.4 on p. 189 in Stein-Weiss
[10]). We shall prove that λj(s) -> λ(s) for each s > 0. For any ε > 0, it
is easy to see

{x\\uj(x)\ >S}-D { x | | i ι ( x ) | > * + *} n{x\\u(x) - Uj(x)\ < ε}.

Thus

(1.4) m | j c | | w 7 ( j c ) | > ί | > m { j c | | i / ( j c ) | > s + ε }

-m{m\\u{x)-Uj(x)\ > ε}.
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Since Uj -» u strongly in LP(Ώ), for any 8 > 0, we can choose j
sufficiently large such that m{x e Ω||M(JC) - Uj(x)\ > ε} < 8. It follows
from (1.4) that

λj(s)>λ(s + ε)-8.

Letting 8 -> 0, we have

lim λj(s) > λ(s + ε) for every ε > 0.
J-+0O

By the fact that λ is continuous on the right, we have lim ...^ λj(s) > λ(s).
Reversing the role of λy and λ and repeating the argument above, we
have λ(s) > l i m ^ ^ λj(s) for any s > 0. Therefore we have lim\y(s) =
λ(s) for all s > 0. It follows from the definition of symmetrization that
Iw/!*(*) "* M*( *) f°Γ every x. From (1.1) we also have

{\u\*)pdx.

Thus by the Dominated Convergence Theorem, we have \uj\* -> |M|*
strongly in LP(Q*) and the lemma is proved.

LEMMA 2. // Uj -> u weakly in HQ(Q) and there exists a constant γ0

such that ||w | |^i ( Ω ) < γ0 < 4ττ/α for every j , then we have

(1.5) ί eau" -• ί eau\

Proof. We may assume Uj > 0 and u > 0 (otherwise we replace Uj
and u by |wy| and |t/|). Since wy -> w weakly in HQ(Ω), U} -> w strongly in
L77 for all 1 < p < oo by the Sobolev embedding theorem in R2. It
follows from Lemma 1 that uj -* w* strongly in L/?(Ω*) and u* G i/^Ω*)
by (1.3). To prove (1.5) it follows from eq. (1.2) that it suffices to show

ί eOL(uJ)2 _> f e«(u*)2^

Using a change of variable t introduced by Moser [7], we set

.2

\*L=e-
R2

and

Wj(t) = 2)/ϊru*(x), w(t) = 2yfπu*(x).
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Then Wj(t), w(t) are monotone increasing on [0, oo) and Wj(t) -> w(t) a.e.
as [0, oc) since uj -» u* a.e. We also have wy(0) = 0, Wj(t) > 0. Further-
more, we have

(1.7) Γw?dt=[ \vuf\2dx9 Γw2dt=[ \vu*\2dx,
J0 JΩ* , J0 JQ*

(1.8.1) Γ ert-'A = J g y / e««>\ where,8 = £ ,

(1.8.2)

It follows from (1.3) and (1.7) that

(1.9.1) Γ wfdt< f | v w / ^ < γ 0 .

By the lower semi-continuity for the norm in HQ(Ώ) under weak conver-
gence, we have

(1.9.2) ί \w\2dt< [ \vu\2 < Urn f \vuf < γ0.
7-00

From (1.9.1) and Holder's inequality,

HMί)= / Wjdt < \ ' '

Since w (/) -» w(ί) a.e. we get

Thus we have

(1.10.1) eβwϊ-'i

(1.10.2) eβw2-'i

and /0°° e(βΎ°-l)tdt = 1/(1 - jβγ0) < oo since βy0 < 1. From (1.10.1) and
(1.10.2) and the Dominated Convergence Theorem, we have

/.OO - /.OO

f e^-xdt-> ί e^-ιdt.

Thus from (1.8.1) and (1.8.2) we have proved (1.6) and the lemma also.
We note that by modifying an example of Moser [7], one can

construct a sequence up \\Uj\\2

Hι{ςi) = C > Am/a, u} -> u weakly in HQ(Ω)

but /Ω eau* does not converge to /Ω eaul. In fact, let g(s) = min(s, 1) and
wn = {Cng{t/n\ then | |WJ|^ ( Ω) = /o° ™ldt = c a n d

ί e

aul = Γ00

 eβ
wn-f > Z*00

 e

cβn~tdt =
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Thus / Ω e α M " -> oo. But un has a subsequence which converges to some
function u e //Q(Ω) weakly and jΩeau2 < oo. It is unknown if one can
improve Lemma 2 to include the case when γ 0 = Am/a.

LEMMA 3. Let Ψ(u) = /0 F(JC,U). // wy -> w weakly in Hl(Ώ) and
there exists a constant γ 0 such that ||wy | |^i(Ω) < γ 0 < Am/a for every j , then
we have

(1.10) Ψ(uj) -> Ψ(iι),

(1.11) Ψr(wy) -> Ψ'(iι) in ̂ ( Ω ) * ,

i.e., /or βί ery ϋ G /^o(^)> w e ̂ α ϋ e

(1.12) f f(x,uj)v^ ί f(x,u)v.

Proof. By (0.2), we have

\F(x,u)\=\£f(x,s)dx

ds

<A\u\+B\u\m+leau\

For any ε > 0, there exists a constant C such that \u\m+ι < Cιeεu2 for all
u. Thus |F(JC, u)\ < Q e ( α + ε ) M 2 for some Q > 0. Choosing ε so small such
that γ 0 < Am/(a + ε), then from Lemma 2, we have

ί

By the Dominated Convergence Theorem, we have proved (1.10).
To prove (1.11), we note that for any nonnegative numbers α, β and

q, p > 1 such that 1/q + \/p = 1, we have aβ < {l/q)aq + (l/p)βp.
Thus

, , ) H | / ( , , ) Γ | r
From (0.2), for any ε = 0, there exists a constant C2 such that

We choose # close to one and ε so small such that γ0 < Am/q(a + ε). It
follows from Lemma 2 and the Dominated Convergence Theorem

f
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Since /Ω \v\p < oo for all p < oo by the Sobolev embedding theorem in
JR2, (1.11) follows from (1.12) and the Dominated Convergence Theorem
and the lemma is proved.

Proof of Theorem 1. We can finish the proof of the theorem easily. Let

By assumption SμΦ 0 and 2c0 < 4τr/α. There exists a minimizing
sequence Uj e HQ(Q) such that / |Vwy | 2 -» 2c0. We may assume there
exists a constant γ0, 2c0 < γ0 < 4τr/α such that ||t/y | |^i ( Ω ) = / |Vwy | 2 < γ0

for all j . Thus we can find a u e /fo(^) such that a subsequence of uj9

still denoted by uj9 converges to ύ weakly in HQ(Ω). From Lemma 2 we
have /Ω F(x, wy) -> /Ω jp(x, ίi). Thus ϋ <= Sμ and ϋ Φ 0 since /(x?0) = 0.
From the lower semicontinuity of Φ under weak convergence in //Q(Ω),

we have Φ(w) < limy_^ooΦ(wy) = c0, which implies Φ(δ) = c0 and (0.3) is
established. By Lemma 3 we have that Φ is a C1 function on the subset

G =

under the strong convergence in Hl(ti). It is trivial to check that Φ is C1

on JΪQ(Ω). Thus ύ is a critical point of functional Φ under the constraint
Sμ. It follows from standard variational argument that one can find a
Lagrange multiplier v such that ύ satisfies the equation

Δίi + vf(x,ϋ) = 0

in the weak sense and Theorem 1 is proved.

Proof of Theorem 2. Let w+= max(u,0) and consider the set S =
{u e #o(Ω) I /Ω F(x, u+) = μ}. Then by assumption in Theorem 2, Sμ Φ
0 . Considering the functional Φ(w) = | / Ω |Vw|2 restricted to the set Sμ.
Then the same arguments as in the proof of Theorem 1 will show that
infM€Ξ£ Φ(w) is achieved by a function δ ε ^ and ύ Φ 0. There exists a
v Φ 0 such that tί satisfies

(1.13) Δδ + vf(x,u+) = 0.

Integrating (1.13) with u, we have from (0.2)

o.

Thus ι̂  > 0 and Δίi < 0. From the maximum principle, we have ύ > 0 on
Ω and ύ satisfies

Δtί + vf(x,u) = 0.
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Since ύ Ψ 0, by the strong maximum principle, ύ > 0 on Ω and the
Theorem is proved.

REMARK 1. Regularity of the solution: the function ύ obtained above
is in i/g(Ω), but by a standard boot strap argument one shows that it is
smooth in the interior and up to the boundary (as 3Ω permits).

REMARK 2. Open questions: since Moser's sharp result includes the
constant γ = 4π/a, it may be possible to improve Theorems 1 and 2 to
include the case when γ = 4τr/α. Trudinger [11] has also pointed out that
a nonexistence result similar to the Pohozaev theorem may also hold for /
which does not satisfy condition (0.2).
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