
PACIFIC JOURNAL OF MATHEMATICS
Vol. 130, No. 1,1987

QUOTIENTS OF THE COMPLEX BALL
BY DISCRETE GROUPS

F. C. KIRWAN, R. LEE, AND S. H. WEINTRAUB

In this paper we systematically study varieties Q(μ), which are
compactifications of the space Q of distinct points in (P 1 ) ' given by a
sequence of "weights" μ, and which for certain μ are also compactifica-
tion of the quotient of the complex r-ball by discrete subgroups Γ(μ) of
PU(r, 1), as discovered by Deligne and Mostow.

We obtain a wealth of topological information about the spaces
Q(μ) and their desingularizations Q*(μ). In some cases we can com-
pletely describe them. Otherwise, we obtain computations of Betti num-
bers and Hodge numbers. As applications we determine the ZΛcohomol-
ogy and in many cases the (ordinary) rational cohomology of the groups

0. Introduction. In this paper we study a family of algebraic varie-
ties which arise in two ways. The first is as quotients of the ball in C r by
discrete subgroups of PU(r, 1), and the second as various compactifica-
tions of the configuration space Q of r distinct points in P1.

They were first discovered by Deligne and Mostow ([DM], [M]) where
they arose through the investigation of generalized hypergeometric func-
tions. We briefly recapitulate their work in §2 below.

We wish to study those varieties systematically. In this connection, we
find that the second viewpoint, in terms of Mumford's geometric invariant
theory [Mu], is more useful. Let N = r + 3 and let μ = (μv...,μN) be a
sequence of positive integers (which we call "weights"). Associated to μ is
a line bundle over (P1)^, and hence an r-dimensional projective variety
Q(μ) obtained by taking the semistable points with respect to the linear
action of PGL2 and then forming the quotient space in the sense of
geometric invariant theory (see §6). Q(μ) is a compactification of Q, and
the varieties of Deligne and Mostow arise as Q(μ) for μ satisfying certain
arithmetical conditions.

These varieties Q(μ) are always rational (1.11). When r = 2, and
when r = 3 and Q(μ) is nonsingular, they can be completely described
(4.1). (When r = 2 the possibilities for Q(μ) are P 1 X P 1 or P 2 with k
points blown up, 0 < k < 4. When r = 3 the possibilities are more
complicated.) In this case our work also determines the rational cohomol-
ogy of the associated discrete subgroup Γ(μ) of PU(/% 1).
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In general Q{μ) is singular, and has a desingularization β*(μ)
obtained by blowing up its singular "cusps" (1.10). The basic topological
invariants of these varieties β*(μ) are their Betti numbers and Hodge
numbers, for which we have a complete analysis (7.14). One case of
particular interest to us is that of μ = (1 1 1 1 1 1), where the three-fold
Q*(μ) coincides with the moduli space of curves studied extensively in
[LW~],[LW2].

For the singular varieties β(/x), it is natural to compute their intersec-
tion homology, which we do in (8.6). Since these singular varieties can be
identified with Baily-Borel-Satake compactifications of the space Q their
intersection homology is the same as ZΛcohomology. Thus our results
give computations of ZΛcohomology, and as far as we know the first
complete description of these cohomology groups for lattices in PU(r, 1).

We proceed as follows: In §1 we establish notation, and define and
prove some basic facts about the spaces β*(μ). In §2 we describe more
carefully the relations between these spaces and the work of [DM] and
[M], and give their conditions on μ for Γ(μ) to be a discrete subgroup of
PU(r, 1). In §3 we divide the sequences of weights into equivalence
classes, with equivalent sequences of weights having the same quotient. In
§4 we identify the quotients, in those cases where we are able to do so.
When r = 2, the quotients are complex surfaces, and these surfaces
contain particular configurations of lines. We identify these in §5. (They
are related to the configuration studied by Hirzebruch in [H].)

In §6 we begin our computation of the cohomology of β*(μ) in those
cases not dealt with in §4. (Indeed, some of the descriptions of β*(μ) in
§4 were first suggested by the computation of the cohomology of these
spaces.) Section 6 explains the connection between the spaces we study
and Mumford's geometric invariant theory (a connection adumbrated in
§1), and §7 explains the method of [Kt] and [K2] for calculating
H*(Q*(μ)), and performs these calculations. Section 8 explains how to
calculate the intersection homology of the singular variety <2(μ), though
here we leave the actual calculations to the reader.

In §9 we discuss the question of the representability of homology
classes of Q*(μ) by algebraic sub varieties.

Finally, tϊie subspace Qst(μ) of Q*(μ) is the actual quotient of the
ball by the group Γ(μ). Every point of the ball has finite stabilizer, so the
rational cohomology of Qsi(μ) is that of Γ(μ). In the cases we are able to,
we compute that cohomology in §10.

1. Preliminaries. We shall use the language and notation of [DM]
here, with some minor differences. Our results here are valid over any
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algebraically closed field k. To begin with, we have the following data:
(1.1) N > 3 an integer, S={1,...9N)
μ = (μs\s e S) a non-increasing sequence of positive integers (i.e.

μt > μj if / < j) with ΣsGSμs = d such that μs < d/2 for all 5 E S .
We call a sequence μ = ( μ 5 ) a s i n l . l a sequence of weights.
We let P = Px(A:)~and Ps = { ( ^ ) j e 5 } be the space of functions

from S to P. (We may naturally identify P 5 with P 1 X XP1, where
there are N factors in the product.) We let M c Ps be the subspace of
injective maps from S to P. The group PGL2 = J*GL2(k) acts on P 5 by

g((ys)s*s) = ((gys)*es)> w h e r e 8 G P G L 2 a c t s o n p b y Mόbius trans-
formations. This action leaves M invariant, and we are interested in
studying the quotient Q = P G L 2 \ M . More precisely, we are interested
in compactifying this quotient.

DEFINITION 1.2. A point y e Ps is called stable (resp. semi-stable) if
for all z e P, Σy(s)=zμs < d/2 (resp. < d/2).

The set of all stable (resp. semi-stable) points is denoted Mst (resp.
M s s t). We have M c Mst c Λfsst and we set Mcusp = Msst - Msi. We call a
point y e Mc u s p strictly semi-stable.

If Sλ is a subset of 5, we will let μiS^) denote Σs e 5 i μ 5 .
For each partition {Sl9S2} ofs with μ(Sj) = J/2 (/ = 1,2), the

points y in Ps with 7(5^) Π^(52) = 0 and ̂  constant on Sλ or 5 2 are
strictly semi-stable, and each strictly semi-stable point arises in this way,
from a unique partition. While the partition only depends on the un-
ordered pair {Sv S2}, we adopt the following convention:

(1.3) If {Sv S2) is a partition determining a point in Mcusp, then
£(5^) < ^(S^), where c() denotes cardinality.

On M s s t we define a relation - by y ~ y' if and only if

(1.4) (i) y, y' G Msi and are in the same orbit of the action of PGL2,

(ii) y9 yf G Mcusp and the partitions determining y and yf

coincide.

We set

(1.5) Qssi = MSJ - , β s t = M s t/ ~ , β c u s p = M c u s p/ ~

each with its quotient topology. Note Q c β s t c <2sst? and in fact Q is a
Zariski open set in β s s t. The elements of <2cusp are uniquely determined by
their partitions, and so β c u s p is a finite set (which may be empty). We
shall call q e Qcusp a cusp. We have:

(1.6) Qsst is a projective variety, with dim^β s s t == r = N - 3.
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(1.7) Qssi is non-singular if and only if either (? c u s p = 0 , or else for

all q G <2cusp, if {Sl9S2} is the partition determining q, then c(Sλ) = 2.

The only singular points of Qssi are the cusps not satisfying this condition.

The above is all proven in [DM], following [MF]. We shall refine 1.7

in 1.10 below.

DEFINITION 1.8. Let μ = (μs)s(Ξs
 a n ^ μ' = ( μ ' J s e s be two se-

quences of weights. We call μ and μ' equivalent if they have the following

property. For all subsets S~ of S~ μiSJ < d/2 (resp. = d/2, > d/2) if

and only if μ'iSJ < d'/2 (resp. = d'/2, > d'/2).
The following is then immediate:

(1.9) If μ and μ' are equivalent sequences of weights, then β s s t

defined with respect to μ' may be identified with Qsst defined with respect

to μ, with identification restricting to the identification of cusps in each

space determined by the same partition.

PROPOSITION 1.10. Let (?* t be the non-singular variety obtained from

Qssi by blowing up each singular q e β c u s p . // π: β* t -» β s s t is the

blowdown map, and q is determined by a partition { Sτ, S2}, then ττ"1(^) =

X

Proof. For ease of notation, let us assume that Sλ = {1, . . . , π } ,

S2= {n + 1,. . . , N). Let m e Λfcusp be the point (0,0,. . . , 0, oo, . . . , oo)

(n zeroes and N — n infinities) which projects to q. In order to blow up

q, we must replace it by the set of lines in Mst which pass through M,

modulo the action of PGL 2 . Thus

\ { ^ = (*i, , **,** + !, ^N) \™' e **

where the action of A:* on the right is the usual action

( z 1 , . . . , z n , w w + 1 , . . . , w j V ) / = (zit9 ..,znt,wn+n...9wNt)

which identifies points which are on the same line.

The condition m' e M s t means that not all the zt can be zero, and

not all the Wj can be oo. Since we are interested in a neighborhood of m

we can assume that the z7 are near zero and the w are near oo, so that in

particular z- Φ Wj.

In order to analyze the quotient we may, after acting on m' by a

suitable element of PGL 2 , assume that zx = 0 and wn+1 = oo. Then we

must further divide out by the subgroup of PGL 2 which fixes 0 and oo,

which we may identify with k*. Thus
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Note, however, that the action of A:* on the left is given by

λ(0,z 2,...,zΛ,oo,wΛ + 2,...,κv)

= (O, λz 2 , . . . , λzn, 00, λ"1wπ+2,..., λ " 1 ^ ) .

Since for any w, υ e k* we may simultaneously solve λt = w, λ~ιt = υ,
it readily follows that ττ~\q) = Pn~~\k) X PN~n~2(k), as claimed.

PROPOSITION 1.11. For any sequence of weights μ satisfying conditions
(1.1), Q*(μ) is rational.

Proof. Q is a Zariski open set in β*(μ). Also,

ρ = P G L 2 \ M = P G L 2 \ { ( z 1 , . . . , z / 7 } | z / ^ z }

= {(oo, 0,1, z 4 , . . . , zN) I zf Φ zjy z Φ 0,1, oo}

which, under the projection onto the last N — 3 coordinates, may be
identified with a Zariski open set in (P 1 )^" 3 . Hence <2*(μ) is birationally
equivalent to (P 1 )^" 3 , and so is rational.

2. The work of Deligne and Mostow. In this section we briefly
recall the appearance of the varieties <2sst in the work of [DM] and [M].
They showed that in the case k = C they arise as follows:

Let λ = 2/xyd, and consider the path integrals, for / > 2 and

Fi(zl9...9zN) = / Yl(u - zX^du when zx = oo
Jzt i = 2

N
= / Π ( u ~~ zi) ι du when all z, are finite.

J-7 1 = 1

(Note we may pass from the first of these to the second by a Mόbius
transformation.) It turns out that there are (r + 1) linearly independent
integrals among these. Of course, these integrals are not yet well-defined,
as they depend on the choice of a path of integration. Thus by choosing
such an independent set we obtain a multi-valued map from M to
C r + 1 — {0}. The action of PGL2 on M multiplies each of these integrals
by the same factor, so we obtain a multi-valued map from Q = PGL2 \ M
to P r , or, more precisely, a well-defined map from the universal cover
Q, /: Q -> P r . This map / is equivariant under the action of π^Q)
by covering translations, and so gives a map π^Q) -> Ant(PN~3) =
PGL(N — 2) with image Γ. If μ satisfies condition INT below then Γ is
discrete in PU(7V - 3,1) c PGL(7V - 2), in which case Γ has a funda-
mental domain for its action on a ball 5 + in P ^ " 3 and Qst = B+/T. In
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fact, the action of Γ extends to the closure B+ of B+ (in an unusual
topology) and β s s t = B+/T.

In case μ satisfies a weaker condition Σ INT below then a variation
of the construction applies: Let Qf be the subset of Q consisting of the
image of points J / G P S with y(i) Φ y(j) for i,j<=Sv so that the
symmetric group Σ = Σw, n = c{Sλ), operates freely on Q\ The quotient
β ' / Σ plays the role of Q above, giving a discrete subgroup ΓΣ of
PU(iV - 3,1). (In case μ satisfies INT as well this construction gives a
diagram

βsst = B+/T

ϊ
Qsst/Σ = B+/TΣ

with ΓΣ/Γ = Σn.) However, in this case Qst will only be a F-manifold, i.e.
will have finite quotient singularities.

(2.1) INT: For all i Φ j e S such that μι + μy < d/2, 1 -
2(μi 4- μj)/d is the reciprocal of an integer.

(2.2) Σ INT: There is a subset Sx of S with μ, = μy for all iΦje Sx

with μi + μy < rf/2, with 1 - 2(μi + μβ/d the reciprocal of an integer if
either i or j is not in 51? and 1 - 2(μ + μy)/d the reciprocal of a
half-integer if both i and j are in Sx.

(In Tables I and II below the size of the symmetric group Γ is obvious
from the entries.)

Deligne and Mostow also derive the following condition for Γ to be
arithmetic in PU(7V - 3,1).

(2.3) ARITH: Assume the highest common factor of (μs)s^s *s o n e

(Otherwise, first divide the μs by this factor.) Let (x) denote the frac-
tional part of x, i.e. (x) = x — [x].

If d is even, then for all A with 1 < A < d/2 - 1, (A, d/2) = 1,

Σ (2Aμs/d)=loτN- 1.
seS

If d is odd, then for all A with 1 < A < d/2, (A, d) = 1,

Σ(2Aμs/d)=\oτN-l.

3. Classification of the weights. Now we begin the analysis of the
varieties β s s t . The first step in the analysis is to divide the sequences of
weights into equivalence classes. From 1.8, this is a routine (but lengthy)
computation, and the results are to be found in Table I (for N = 5) and
Table II (for N > 5). In both tables N denotes the number of weights, μ
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TABLE I

N.m μ oon oos Σ A/NA

~5Ϊ ϊ 1 1 1 1 - -
2 2 2 2 1
4 3 3 3 2 NA
4 3 3 3 3
5 5 5 5 4
6 5 5 4 4 NA
6 5 5 5 3 NA
8 5 5 5 5 Σ
8 7 7 7 7 Σ NA

10 7 7 7 5 Σ NA
10 9 9 6 6 Σ NA
14 9 9 9 7 NA

~52 5 5 2 2 2 - -
6 5 3 3 3 Σ
7 7 4 4 2
8 7 3 3 3 NA
9 9 2 2 2

13 9 6 6 6
14 11 5 5 5
14 13 3 3 3
19 17 4 4 4
23 22 5 5 5
34 29 7 7 7

5.3 6 3 3 3 1
7 4 4 4 1
8 5 5 5 1

11 8 8 8 1

~SΛ 8 3 3 3 3 - - Σ~
9 3 3 3 2 Σ

10 5 3 3 3
11 7 2 2 2 Σ
22 11 9 9 9 Σ
26 19 5 5 5 Σ

Σ
Σ

Σ
Σ
Σ
Σ

NA
NA

NA
NA
NA

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

8

2

2
3

3
5

3
7

4

5

5

7

5

1

2
3

2
4

3
5

3

2

3

6

5

1

2
3

1
1

2
4

2

2

2

5

3

1

1
2

1
1

2
4

2

2

1

3

3

1

1
1

1
1

2
4

1

1

1

3

-

4

3

3

1

2

1

2

1

-

-

—

Σ

—

-

-

Σ

-

NA

NA
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TABLE II

N

6

6

6

6

6

6

6

6

6

6

6

6

6

7

7

7

7

7

7

7

8

8

8

8

8

9

9

9

10

10

11

12

3

5
6

5

3

3

5

5

7

1

2

3

4

4

36

7

5

2

3

4

4

5

I8

3

3

4

2

3

4

2

3

2

I12

3

en
 

en

5

1

3

2

3

5

1

2

2

3

4

2

7

2

I6

3

2

3

I7

2

3

2

2

2

I8

2

I9

I1 0

3

en
 

en

5-

1

3

2

1

3

1

1

2

2

1

25

I5

2

2

I5

2

I6

I6

2

I7

I8

3

3
3

3

1

1

1

1

3

1

1

2

1

1

I 4

I 4

I5

I6

3

3
3

3

1

1

1

1

3

1

1

2

1

1

1

3
2

3

1

1

1

1

3

1

1

1

1

1

00Λ

-

—

-

5

3

3

4

1

-

1

-

1

-

-

-

5

-

1

2

-

7

-

-

1

1

-

-

-

-

-

-

-

oo,

-

—

-

-

-

-

-

-

10

6

4

3

6

-

-

-

15

8

6

10

-

35

30

20

15

46

42

28

98

84

210

462

Σ A/NA

Σ
Σ

Σ

Σ

Σ

NA

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ
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the sequence of weights, oon the number of non-singular cusps and oos the
number of singular cusps (so that Qst is compact if ooM + oos = 0, and
Qsst is non-singular if oô  = 0). Also, the column headed Σ is blank if μ
satisfies INT, but is labelled Σ if it satisfies Σ INT but not INT, and the
column A/NA is blank if μ satisfies ARITH, but is labelled NA if not.

Because of the many elements of several of the equivalence classes in
Table I, we have numbered the equivalence classes 5.1-5.13 and will refer
to a sequence of weights being of type 5.m. In Table II we have used mn

to denote a sequence of n values of m.
Finally, these tables are arranged so that for a given N, the compact

quotients are first, followed by the non-singular quotients. Subject to this
restriction, the equivalence classes are listed in lexicographic order.

4. The structure of Q(μ). We let Q(μ) be the variety previously
denoted by Qssv where the criteria for stability and semi-stability are with
respect to the sequence of weights μ. We let Q*(μ) be the non-singular
variety obtained by blowing up the singular cusps of Q(μ).

We shall now completely analyze the structure of Q{μ) in those cases
where it is non-singular, with the exception of the cases ΪV = 7, μ = 36 2
or 7 7 25. We remind the reader that our results here are valid over an
arbitrary algebraically closed field (of any characteristic).

THEOREM 4.1.

(i) If μ is of type 5.1, Q(μ) is P 2 with 4 points blown up.
(ϋ) If μ is of type 5.2 or ίΓ.9, Q(μ) is P 2 with 3 points blown up.

(iii) If μ is of type 5.5 or 5.13, Q{μ) is P 2 with 2 points blown up.
(iv) ifμ is of type 5.7, Q(μ) is P Γ X P1.
(v) If μ is of type 5.3 or 5.10, Q(μ) is P 2 with 1 point blown up.

(vi) Ifμ is of type 5.4, 5.6, 5.8, 5.11, or 5.12, Q(μ) is P 2 .
(vii) β(3 3 3 3 3 1) is a P 1 bundle over (P 2 with 4 points blown up).

(viii) Q(5 3 3 3 3 3) = Q{β 3 3 3 3 2) is a (P1 bundle over P 2 ) with 4
points blown up. This space can also be described as P 3 with 5
points blown up.

(ix) Q(5 5 5 3 3 3) is P 1 X P 1 X P 1 with 3 points blown up.
(x) Q(3 3 3 111) is P 1 X P 1 X P1.

(xi) β(7 5 3 3 3 3) is Q(5 3 3 3 3 3) with one P 2 blown down.
(xii) β(3 11111) is P 3 .

(xiii) Q(5 2 2 1 1 1) is P 3 .
(xiv) β(5 31111) is P 3.
(xv) Q(5 2 I5) is P 4 .

(xvi) £(5 I7) is P 5 .
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Proof. We shall only prove cases (vϋ)-(xi) here. Cases (i)-(vi), with
N = 5, are less interesting, and (xii)-(xvi) are special cases of 4.2 below.
We denote a point in (P 1) 6 by (z x,. . ., z6).

(vϋ): Let π: (P 1) 6 -» (P 1) 5 be projection on the first 5 coordinates. It
is easy to check that π descends to a map

π: β(3 3 3 3 3 1) -* β ( l 1111)

which is a P 1 bundle (as z6 may be chosen arbitrarily without destroying
stability), and Q(l 11 11) is P 2 with 4 points blown up by part (i).

(vϋi): Again consider the map π: Q(β 3 3 3 3 2) -> Q(6 3 3 3 3)
= Q(2 1 1 1 1 ) induced by π. Again it is easy to check that the inverse
image of a stable point in Q(2 1 1 1 1) is P 1 (as z6 may be chosen
arbitrarily). There are four cusps. The situation at each is the same, so it
suffices to check that cusp q determined by the partition {{1,2}, {3,4,5}}

π~l{<l) = {(zι,...,z6)\άtherz1 = z2oτz3 = z4 = z5}.

Let Vx be the subset of H~\q) consisting of points with zx = z2, and
V2 be the subset consisting of points with z3 = z4 = z5. First note that

V1ΠV2 = PGL2\{(z,z,w,w,w,w) e ( P 1 ) 6 ^ , ^ , ^ distinct}.

(The restriction on z, w, and u is due to the requirement of semi-stability.)
Since under the action of PGL2, any 3 distinct points in P 1 are equivalent
to any other 3 points, Vx Π V2 = {(0,0,1,1,1, oo)} is a single point.

Now consider V2 = PGL2 \ {(z1? z2, w, w, w, z6) \ zi Φ w, zl9 z2, z6 not
all equal}. (Again, the restrictions are due to the requirement of semi-
stability. Henceforth, we will state this sort of restriction without com-
ment.)

We may use the action of PGL2 to send zλ to 0 and w to oo, whence
we must take the quotient by the subgroup of PGL2 fixing 0 and oo,
which we shall identify with k*. Thus

V2 = k*\{(0, z1?oo, oo,OD, z 6 ) | z 2 * cc,z6Φ oo, (z 2 , z 6 )# (0,0)},

and so V2 = P1.
As for Vx = PGL2\{(w,w>,z3,z4,z5,z6)|z. Φ w, and z3, z4, z5, z6

not all equal}, we may use the action of PGL2 to send w to oo and z3 to
0. Thus

,oo,0 ,z 4 , z 5 , z 6 ) | z 4 ^ oo, z5Φ oo,

z Φ α ) , ( z 4 , z 5 , z 6 ) ^ (0,0,0)},

and so Vx = P 2 .
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Hence π~ι(q) is the one-point union of P 1 and P 2 . One can check
that the P 2 can be blown down to a point, giving π~ι(q) = P1, and that in
the neighborhood of q one still has a bundle structure, so Q(6 3 3 3 2)
= Q(5 3 3 3 3 3) is as claimed.

For the second description, consider the subset U c Q(6 3 3 3 3 2) of
points with zi Φ zλ for i > 1. Then

U = PGL2 \{(z1 ?..., z6) Iz ιΦ zx for / > 1, at most 3 of z 2 , . . . , z6 equal}

= k* \{(oo, 0, z 3,. . ., z6) I at most 2 of z 3 , . . . , z6 equal to 0,

at most 3 of z 3 , . . . , z6 equal}

= P 3 -([0,0,0,1] U[0,0,1,0] U[0,1,0,0] U[l,0,0,0] U[l, 1,1,1]).

The space £ ( 6 3 3 3 3 2 ) is covered by U and sets Vlj9 j = 2,..., 6,
where Vlj denotes the set of points where zx = Zj. Clearly all the Vλj have
the same structure, so it suffices to consider V12:

Vl2 = PGL2\{(ιv,>v,Z3,z4,z5,z6)|z/ Φ w,

and z3, z4, z5, z6 not all equal}

= A;* \{(c», ex),0, z4, z5, z6) I zt Φ oo, (z4, z5, z6) Φ (0,0,0)} = P 2 .

One can check that a neighborhood of Vλj has the structure of a
blow-up, so Q(6 3 3 3 3 2) is as claimed.

(ix): Let U c Q(5 5 5 3 3 3) be the subset of points with z1? z2, and
z3 distinct. Then

U = V G L 2 \ { ( z l 9 . . . , z 6 ) \zτ Φ z 2 Φ z 3 Φ z 1 ?

(z4,z5,z6) Φ (zi9zi9Zi) i = 1,2, or 3}

= {(0, l ,oo,z 4 ,z 5 ,z 6 ) | (z 4 ,z 5 ,z 6 )# (0,0,0),(1,1,1),(00,00,00)}

= P 1 X P 1 X P 1 -((0,0,0) U ( l , l , l ) U(oo, 00, 00)).

The space β(5 5 5 3 3 3) is covered by U and F 1 2 , F 1 3 , F 2 3 , where Vtj

denotes the set of points where z, = zJm Clearly, Vu, F 1 3 , and F 2 3 all have
the same structure, so it suffices to consider Vn:

Vl2 = P G L 2 \ { ( w , w , z3,z4,z5,z6) I z t Φ w,

and z3,z4,z5, z 6 not all equal}/PGL2

, o o , 0 , z 4 , z 5 , z 6 ) | z z . ^ o o , ( z 4 , z 5 , z 6 ) # (0,0,0)} = P 2 .

One can again check that a neighborhood V12 has the structure of a
blow-up, so Q(5 5 5 3 3 3) is as claimed.
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(x): Let U be the subset of β(3 3 3 1 1 1) with zl9 z2, and z3 distinct.
Using the action of PGL2, we may let

where ~ is the relation of 1.4, which we must consider in this case as
Q(3 3 3 1 1 1) has cusps.

This relation implies that points with z4 = z5 = z6 = 0 must be
identified to a point (and also = 1 or = oo), but this has no effect as
such a condition already defines a single point. Hence we see that

ί / = P 1 X P 1 XP 1 .

Now we must consider points not in U. Let V23 be the points with
z2 = z3. Again, such points are strictly semi-stable, and so define a cusp
determined by the partition {{2,3}, {1,4,5,6}}, which is the same as the
cusp defined by z4 = z5 = z6 = 0 considered above, and similarly for
points with zλ = z3 or zx = z2. Thus Q(3 3 3 11 1) is as claimed.

(xi): Consider the identity map i: (P 1) 6 -» (P 1)6. The map i descends
to a map /: Q(5 3 3 3 3 3) -> Q{1 5 3 3 3 3) which is not the identity.
However, it is easy to check that the inverse image of any stable point of
β(7 5 3 3 3 3) is a single point of Q(5 3 3 3 3 3).

This leaves us to determine i~\q), where q is the (unique) cusp of
Q(l 5 3 3 3 3), determined by the partition {{1,2}, {3,4,5,6}}. Then

Γι{q) = PGL2\{(w, w9 z3, z4, z5, z6)\zt Φ w9 not all zt equal}

= fc*\{(oo,oo,0,z4,z5,z6)|z, Φ oo, (z4,z5,z6) Φ (0,0,0)}

so β(5 3 3 3 3 3) is obtained from Q(Ί 5 3 3 3 3) by blowing up a point,
and the result follows.

THEOREM 4.2. Let μ be a sequence of weights such that μλ 4- μN > d/2
(and hence μλ + μi > d/2 for all i = 2,...,N). Then Q(μ) = PN~\

Proof. Assume first that μλ + μ2 > d/2. Then zx Φ z2, so using the
action of PGL2 we may let zx = oo, z2 = 0, whence

Q(μ) = k*\{(ao90,z39...9zN)}/~ .

If μ1 + μN > d/2 then there are no strictly semi-stable points, so the
relation - of 1.4 (ϋ) does nothing, and stability requires ztΦ oo,
i = 3,. . . , N9 and (z 3 , . . . , zN) Φ (0,..., 0) so Q(μ) is P * " 3 .



QUOTIENTS OF THE COMPLEX BALL BY DISCRETE GROUPS 127

If /ϋt1 + /jt/ = d/2 for i = N (and similarly for other values as well) we
have a non-singular cusp determined by the partition {{1,JV},{2,...,
N — 1}}. While this cusp can be represented by points with zλ = zN9 it
can also be represented by points with z2 = = zN_x and distinct
from zx and zN, which we may take distinct from each other, i.e. by a
point {(oo,0,. ..,0, z^)}. These points have already been considered in
the previous paragraph, and they are already equivalent under the action
of k* to a single point, so this case changes nothing.

Finally, if μλ + μ2 = d/2, we have a cusp determined by the partition
{{l,2},{3,...,iV}}, so it has a representative of the form
{(oo, 0, z,..., z)}, and the argument is as above.

5. Configurations of lines in surfaces. We have determined the
structure of all of the surfaces in 4.1. There are natural configurations of
projective lines on these surfaces: On the surface Q(μ) there are projective
lines Δzy = {zι? = zy} whenever μi + μy < d/2. (Note that if Q(μ) con-
tains Δ ίy and ΔΛ/ with /', j9 k, I distinct, they intersect in a double point,
while if Q{μ) contains Δ/y , ΔJk9 and Δik with /, j \ k distinct, they intersect
in a triple point.) In Figure I (i)-(vi) we shall draw these configurations. It
is routine to verify that they are correct.

Although each case (i)-(vi) of 4.10 may involve several equivalence
classes of sequences of weights, the configurations do not depend on the
equivalence classes, but only on the appropriate case of 4.1. What differs
among the equivalence classes is the number and location of the cusps,
which are always triple points.

We number the cases in Figure I below to correspond to the cases of
4.1. We denote the line Δ/y by if. Thus a triple point is denoted ijk. The
cusp situation is as follows (with the same numbering):

(5.1)
(i) μ of type 5.1—no cusps

(ii) μ of type 5.2—no cusps
μ of type 5.9—1 cusp, the triple point 345

(iii) μ of type 5.5—no cusps
μ of type 5.13—1 cusp, the triple point 245

(iv) μ of type 5.7—3 cusps, the triple points 145, 245, and 345
(v) μ of type 5.3—no cusps

μ of type 5.10—2 cusps, the triple points 245 and 345
(vi) μ of type 5.4—no cusps

μ of type 5.6—4 cusps, all of the triple points
μ of type 5.8—3 cusps, the triple points 234, 235, 245
μ of type 5.11—1 cusp, the triple point 234
μ of type 5.12—2 cusps, the triple points 234 and 235
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23

45 15

15

23 34
15

(V)

23

15

25

35

45 14 24 34

\

\

(iv)

45

35*/

(Vi)

FIGURE I (i)-(vi)

(In (i) open circles denote no intersection.)

Diagrams such as those in Figure I are not complete without specify-
ing the self-intersection of the lines therein. Rather than labelling the hnes
in the diagrams, we do that here (with the same numbering):

(5.2)
(i) all lines -1

(ii) 34, 35, 45 are 0; all others are -1
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(iii) 45 is 1; 14,15, 23 are - 1 ; all others are 0
(iv) 45 is 2; all others are 0
(v) 15 is - 1 ; 23, 24 34 are 0; all others are 1

(vi) all lines 1.

REMARK 5.3. From these diagrams it is easy to see the blow-ups
(vi) -> (v) -» (iii) -> (i) -> (i) (as well as (iv) -> (iii))—compare 4.1.

REMARK 5.4.The configuration (vi) of lines in P 2 is the configuration
Aλ{6) of Hirzebruch [H]. This configuration was used in [H] to produce
examples of surfaces with c\ = 3c2. If the technique of [H] is applied to
configurations (i)—(v), exactly the same surfaces are obtained.

6. Geometric invariant theory. It was observed in [DM] 4.6 that the
quotient Q(μ) has the following description in terms of Mumford's
geometric invariant theory [MF].

For each s e S let iτs: P
s -> P be the projection of P 5 onto the sth

factor. Let Ls be the pullback via πs of the tangent bundle 0(2) on P and
let

This line bundle Lμ admits a natural PGL2 action. The stable and
semi-stable points of Ps defined at 1.2 are the same as those defined in
[MF] for this action, and Q(μ) is the same as Mumford's projective
"quotient" variety.

The associated variety Q*(μ) can also be described as a quotient as
follows.

For each partition {Sl9S2} of S with μ(SΊ) = μ(S2) = d/2, let
^{Si*Si} ̂ e *ke subvariety of Msst consisting of all γ e Λfsst such that γ is
constant on both Sλ and 52. Then the Z^s^ are disjoint nonsingular
closed sub varieties of Msst. Let Z be their union and let p: M* -» Msst be
the blow-up of Λίsst along Z. Let M*t be the complement in M* of the
proper transform of Mc u s p in M*. The action of PGL2 on Msst induces an
action on M* which preserves M*v

LEMMA 6.1. The stabilizer in PGL2 of γ e Ms* has order 2 if
γ ^ P~X(Z) and has order 1 otherwise.

Proof. The only element of PGL2 which fixes three distinct points of
P is the identity. Hence PGL2 acts freely on Msst — Z and hence on
Ms* — ρ~\Z). The stabilizer of any γ e Z is C*, and in an appropriate
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coordinate system this acts on the normal to Z at γ as

( u l 9 . . . , u n _ l 9 υ l 9 . . . 9 υ N _ n _ ι ) -» ( t u l 9 . . . , t u n _ l 9 1 ' \ 9 . . . 9 Γ ι v N _ n _ 1 )

where γ e Z^Si^ and n = c{S^). In the associatedprojectiverepresenta-
tion the stabilizer of a point (w, υ) is {± 1} unless u = 0 or υ = 0. In the
latter cases (u,v) represents a point in the proper transform of Mc u s p.
Therefore the stabilizer in PGL2 of each γ e ρ~ι(Z) Π Ms* has order 2.

LEMMA 6.2. 77ιe quotient PGL 2\M s* t is the geometric invariant theo-
retic quotient ofM*t by PGL2 and is a projective variety. It is non-singular
and is naturally isomorphic to the blow-up β*(μ) of Q*(μ) at the nonsingu-
lar cusps.

Proof. This is a special case of [K2, 6.9].

7. The computation of i/*(β*(μ)). In this section we shall consider
only the case k = C. Our aim is to compute the cohomology (except for
the 2-torsion) of the complex variety g*(/x).

In the last section we gave a description of β*(ju) in terms of
geometric invariant theory, and this means that we can use the general
procedure described in [KJ to investigate its cohomology. For the con-
venience of the reader, instead of describing the procedure of [KJ in
general and then applying it to our special case, we shall analyze the
special case directly without overt reference to [KJ.

Let F be any field of characteristic different from 2. For any topo-
logical space A let P(A) denote the Poincare series of A with coefficients
in F. That is,

If a group G acts on A let PG(A) denote the equivariant Poincare series

PG(A)= I

where Hl

G denotes equivariant cohomology (cf. [AB] §1 or [Kt] §2).

Throughout this section the group PGL2 will be denoted by G, and all
cohomology will be with coefficients in F.

By Lemma 6.2 the blow-up Q*(μ) of β*(μ) at all the nonsingular
cusps is isomorphic to G \ M*t. Therefore

(7.1) P ( β * ( μ ) ) = P ( G \ M i ) - m(t* +••
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where m is the number of nonsingular cusps. By Lemma 6.1 the order of
the stabilizer in G of every point of M*t is either 1 or 2. This implies that

(7.2) P{G\M*t) = PG{M*t)

since the characteristic of F is different from 2 (cf. [K1], 5.6 and 8.14).
Recall that M* is the blow-up of Λfsst along Z and that M*t is the

complement in M* of the proper transform of Mc u s p. A point γ e M s s t

belongs to Mc u s p if and only if there exists some Sλ Q S with μ(Sλ) = d/2
such that γ is constant on Sv The proper transform of Mc u s p in Λί* is the
disjoint union of the proper transforms, Γ(5Ί) say, of the sets

{γ I γ constant on Sλ}

for Sλ c S with μ(5x) = d/2.
Each T(Sλ) is nonsingular and has codimension c(Sλ) - 1 in M*. Let

B be the Borel subgroup of G = PGL2 represented by upper triangular
matrices. Then

where Y(Sλ) is the proper transform of the set of γ e Msst such that
y(s) = oo for each s e Sv This implies (see [AB] §13) that

(7.3) HgiTiS^ssHjiYiSj).

However, B is homotopy equivalent to its maximal reductive subgroup
C*, so

(7.4)

Moreover, Y(Sλ) retracts onto its intersection Z(S1) with the exceptional
divisor p~ι{Z) in M*, and Z(Sι) is isomorphic to projective space of
dimension N — ciSj) — 2 and is fixed by C*. Therefore

(7.5) H**(Y(SX)) = H**{Z(S1)) ^ H iZiSj) X Jϊ*(2?C ).

The representation of C* on the normal to Y(SX) (and hence a fortiori on
the normal to TXŜ )) at any point of Z(S1) is scalar multiplication by the
character t -> t2.

The subvarieties {T(SX) \Sλ c S9μ(Sτ) = d/2} together with Ms*
form a smooth stratification of M*. Since

(7.6)

the fact that C* fixes Z(S1) pointwise and that its representation on the
normal to T(Sλ) at any point of Z(Sι) is primitive for any odd prime
implies that this stratification is equivariantly perfect over the field F of
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characteristic Φ 2 ([AB] 1.9 and 13.4). In other words its equivariant
Morse inequalities are all equalities, or equivalently

(7.7) PG(M*) = PG{M*t) + Σt2{c(Sι)~1)PG(T(Sι))

where the sum is over all subsets Sx c S satisfying μ(SΊ) = d/2. By (7.5)
and (7.6) this implies that

(7.8) PG(MS*) = PG(M*) -

Now M* is the blow-up of Msst along the disjoint union of the
subvarieties

Z{SιS2} = { y € Msst I γ constant on Sλ and S2}

for all partitions {Sv S2) of S such that μ(Sλ) = d/2. Each Z{SifSi] is
isomorphic to C* \ G and so its equivariant Poincare series is P(BC*) =
(1 - ί 2)" 1 . Therefore

(7.9) PG(M*) = PG(Msst) + Σ(t2 + ' -W2("~3))(l - ^ 2 )" X

where the sum is over all partitions {Sv S2} with μ(SΊ) = d/2.
It is easy to check that

-c(Sι)-2\ __ (2(c(S1)-l)prpN-c(S2)-2\\

x pc(s2)-2\

Therefore from (7.8) and (7.9) we obtain

(7.10) PG{M*t) = PG(Mssi) + E [ ^ ( P c ( 5 l ) " 2 X PC ( S 2 )~2) - ( 1 -

where the sum is over all partitions {Sv S2} of S with μ(SΊ) =

Now for each Sx Q S with μ(Sλ) > d/2, let Γ(5Ί) be the set of all
γ £ P s such that there exists x e P satisfying γ(s) = x for all s e Ŝ .
Then

where

y ( S j = { γ G P 5 | γ ( ^ ) = ooiff j e ^ } ̂ C ^

Thus T(Sλ) is nonsingular of codimension c{Sλ) - 1 in P 5 and

Moreover, YiSJ retracts onto the point γ given by y(s) = oo if s G Sλ

and γ(^) = 0 otherwise. This point is fixed by C*. The representation of
C* on the normal to T(Sλ) at γ is primitive (this time for all primes).
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Thus the argument used above shows that Msst together with the subvarie-
ties (Γ(S'1)|S'1 c S,μ(Sλ) > d/2} form a smooth stratification of Ps

which is equivariantly perfect. Hence

(7.11) PG(Msst) = PG(PS) - ΣtWS0-D(ι _ ,2)-i

where the sum is over all Sx c S with μ(Sλ) > d/2.
Finally by Proposition 5.8 of [K2] and the fact that PGL2 is homo-

topy equivalent to its maximal compact subgroup we have

(7.12) PG(PS) = P(PS)P(BG) = (1 - t2)N(l - ί 4)" 1.

From (7.1), (7.2), (7.10), (7.11) and (7.12) we obtain the formula

(7.13) P(β*(μ)) = (1 + t2)N{\ - t4yl - Σ t2^-V(l - t2)'1

u,n

where the first sum is over the partitions {Sv S2} of S which define an
unstable point (/x(S'1) > d/2) or a nonsingular cusp (μiSJ = d/2 and
ciSJ = 2), and the last sum is over the partitions {Sl9S2} defining a
singular cusp (μ(SΊ) = d/2 and c ^ ) > 2).

The reader may verify that the right hand side of (7.13) is a poly-
nomial of degree 2(N — 3) in t which satisfies Poincare duality.

THEOREM 7.14. Let μ be of any sequence of weights satisfying 1.1. Then
(i) Hi(Q*(μ); Z) has no odd torsion, for any i;

C
(iii) H2i(Q*(μ); Z[|]) has rank b2i for any i where b2i is the coefficient

oft2i in the right hand side of 7.13 {see Table III);
(iv) In the Hodge decomposition of Hι(Q*(μ); C), the (p, q)-cohomol-

ogy Hp*q = 0 unless p = q.

Proof. The fact that the formula 7.13 is valid for any field of
characteristic different from 2 implies that i/*(<2*(μ); Z) has no odd
torsion, (ii) and (iii) follow immediately from 7.13, while (iv) follows from
the last remark of §14 of [KJ.

Using formula 7.13 it is then routine to compute the Poincare
polynomials, and hence the even betti numbers b2i.

The answers are to be found in Table III, for all cases not covered by
Theorem 4.1. (Recall that Q(36 2) and Q(l 7 25) are compact and hence
non-singular; in all other cases Q(μ) is singular.)
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2 2 I 8 1 108 242 396 396 242 108 1
3 I 9 1 94 214 308 308 214 94 1
2 I 1 0 1 221 496 806 1016 806 476 221 1
I 1 2 1 474 991 1618 2410 2410 1618 991 474 1

In the case μ = 1 1, the betti numbers were computed in [KJ in
case N odd (when there are no cusps) and in [K2] in case N even. The
answer is

Ncven: Z>2/= ίjN~ *) + 1 ( ^ 2 ) ( ; ) , i * (N - 4)/2.

As a practical matter, in using 7.13, it is only necessary to compute
*(/0) UP through dimension N - 3, as Poincare duality then yields

the remaining terms.

REMARK 7.15. By (1.11), Q*(μ) is rational. It is then a classical
fact that Q*(μ) is simply-connected and it is shown in [AM] that
H3(Q*(μ); Z) is torsion-free (and hence, when Q*(μ) is a three-fold

; Z) is torsion-free for all /.)

REMARK 7.16. If a finite group G acts on a space X and if F is a field
of characteristic prime to the order of G, then H*(X/G; F) = H*(X; F)G,
the subspace of elements fixed by G. Thus the formulas of this section
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may be used to compute the cohomology of Qξ(μ) if the Poincare
polynomials therein are replaced by the Poincare polynomials of the fixed
cohomology under the action of Σ, and the summations in (7.7)-(7.13)
over various subsets of {1,..., N] are taken over various Σ-orbits instead.
We leave these computations to the reader, except for the following ones
(which are the only complicated cases in which QΣ(μ) is a F-manifold):

(7.17) If μ = 36 2 (and Σ = Σ6) or μ = 7 7 25 (and Σ = Σ5) then the
even betti numbers of QΣ(μ) are b2i = 1,2,3,2,1 for i = 0,..., 4.

8. Intersection homology. It is also possible to calculate the dimen-
sion of the rational intersection homology (with respect to the middle
perversity) groups of the singular variety Q(μ). Of course this is the same
as calculating the dimension of the corresponding rational intersection
cohomology groups IH\Q(μ)).

Throughout this section, all (co)homology, singular or intersection, is
to be taken with rational coefficients.

Let E be the exceptional divisor of the blow-up TΓ: β*(μ) -> <2(μ).
Let U be an open neighborhood of E in β*(μ) which is isomorphic to the
normal bundle to E in Q*(μ). Let U = ττ(ί/^which we may assume to be
a union of disjoint open contractible neighborhoods of the singular cusps
inQψ.

Since U is nonsingular we have

for all /.

Since U has isolated singularities and dimension N — 3 we have

IH^U) s H'(U) = 0 for/>ΛΓ-3

and

IHN-\U) = lm(HN-\U- β s c u s p) - HN-\U)) = 0

where Qs c u s p is the set of singular cusps in Q{μ) ([CGM, 2.28]).
By [CGM, 5.1] there are natural embeddings

IHt(Q{μ)) ^ IH,(Q*{μ))

for i < N — 3. These induce suqective maps

IH'{Q*(μ)) - HiQ(μ))

for i < N — 3, and hence by Poincare duality embeddings

IHiQ(μ)) -»IH'(Q*(μ))

for i>N - 3.
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Since ΪJ Π p~ι(Q%t) is isomorphic to U Π Qst and is nonsingular we
have Mayer-Vietoris sequences for ordinary and intersection cohomology
as follows for i > N — 3:

- Hi-\Ur\Qn) - H'(Q*(μ)) - H'(U) + H'(Qst) - H>(U n QΛ) -

I! T II ||
i) IH'(Qst) -» IH'(UnQst) -»

o

From this it follows that

(8.1) dim/#'(ρ(μ)) = dimi/'(ρ*(μ)) - dim#'(£/) + dim/#'

= dim#'(ρ*(μ)) - dimH\E)

for / > N - 3.
By 1.10 the exceptional divisor E is the disjoint union over partitions

{SltS2} of S with μ ^ ) = d/2 and c(5j) > 2 of P c ^ ) - 2 x p«(%)-2.
Therefore for i > N — 3 the dimension of IH'(Q(μ)) is equal to the
coefficient of V in the series

p(Q*(μ)) -

u, n s

with the same conventions as before for the sums Σ, and Σu „. If / is odd
this coefficient is zero, and if i is even it is

(8.2) Σ [N ~ λ) - 4 P a r t i t i o n s {Si'Si} ofSlμiSj > d/2,
\ J I

c{Sx) < i/2 + 1}

-c(partitions {SΊ,^} otS\μ{Sx) = d/ί\.

It follows by Poincare duality that if / < N - 3 then

(8.3) dim IH^Qiμj) = dim /if ^-^" ' ' (βίμ))

= Σ (N 7 M - ^partitions {51?52} of 5|/x(^) > d/2,

c(Sx) < N - ί/2 - 2}

-c{partitions {5Ί,52} of S\μ(S) = d/2).
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Alternatively using Poincare duality for Q*(μ) and E we have the

formula

(8.4) dimIH^Qiμ)) = dim# f"(β*(/ι)) - d i m t f 1 ' " 2 ^ )

for i < N — 3. From this we see that if i < N — 3 then the dimension of

IHi(Q(μ)) is equal to coefficient of tι in the series

t2)N(i -14)'1 - Σ
u, n

When i < N — 3 is even this coefficient is given by

(8.5) Σ ( N ~ 1 ) - Φ a r t i t i o n s {Sl9S2} of SlμiSj > d/2,

The reader can check that the two formulas 8.3 and 8.5 do indeed

agree.

Thus we have proved

THEOREM 8.6. The dimension of the ith intersection homology group of

Q(μ) is 0 if i is odd and if i is even it is

Σ [N 7 1 ) - c{partitions {51?52} ofS^S^ > d/2,
j<min(i/2,N-3-i/2)\ J >

c{Sx) < min(i/2,N- 3 - ί/2) + 1}.

REMARK 8.7. This computation is a special case of a general procedure

for computing the intersection Betti numbers of the geometric invariant

theoretic quotient of a nonsingular complex projective variety by a reduc-

tive group action described in [K3].

9. Algebraic cycles in β*(μ). Let us fix μ, set g* = β*(μ), and

let D = Q* — Q. Then D is a union of components of complex dimen-

sion JV — 4.

THEOREM 9.1. Let F be afield of characteristic not equal to 2. Then the

inclusion D -> Q* induces epimorphisms on homology with coefficients in F

in dimension less than or equal to N — 4 and in dimension 2(N — 4)

( = codimension 2).
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Proof. We have the exact sequence of the pair

Hi+1(Q*> D) -* Ht{D) -> H,(Q*) - # , ( β , D)

and the equality H^Q*, D) = H^'^XQ) from Alexander duaUty.
By the argument of [LW2, 4.15] H\Q) vanishes for i > N - 3,

yielding the first part of theorem, and H\Q) has rank {N

2

2) — 1-
For the second part of the theorem, the relevant part of the exact

sequence is

so we need only show

rank(i/2(;v_4)(Z>)) = rank(#2 ( Λ f_4 )(β*)) +

by Poincare duality.
Let us examine the terms in the expression for P(Q*) up through

dimension 2. We see

p(δ ) = (l - ^ [ ( I + r 2 ) ^ 1 - Σ't2 + Σ[(i +12) - i]l +

where Σ'M M is taken over all unstable or semi-stable pairs (i.e. all {ι, y}
with μ7 + juy > J/2) and Σ5 is taken over all singular cusps (determined
by subsets Sλ of S with μ(5Ί) = d/2, c(5Ί) > 3).

This gives the expression for the second betti number

62 = 1 + ( # - l ) - q + c2

where cλ is the number of summands in Σ'UtΛ and c2 the number of
summands in Σs.

Then there are (%) — cx pairs {/', j) with μf. + μy < J/2. Thus D has
(^) — cx + c2 components, so we obtain

as required.

CONJECTURE 9.2. The inclusion D -> β* (or D -* g | ) induces epi-
moφhisms in homology in all dimensions < 2(N — 4).

10. Group cohomology. In this section we consider the rational
cohomology of the groups Γ(μ) in the case where Q(μ) is either compact
or has only nonsingular cusps, and in the additional case μ = l l l l l l ,
where we use an entirely different method.
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In any case, H*(Γ(μ)) = H*(Qst(μ)). However, if Q(μ) is compact
then H*(T(μ)) = H*(Q(μ)), whereas if Q(μ) has oon nonsingular cusps,
H*(T(μ)) = H*{Q{μ) - oon points).

The cohomology then follows immediately from Table I, and Theo-
rem 4.1, in all cases except μ = 36 2 or 7 7 25, and these last two are
covered by Table III. Similarly, when Q(μ) is non-singular, we may
compute the rational cohomology of ΓΣ(μ) by using (7.15).

We now specialize to the case of μ = 1 1 1 1 1 1. Then the space
Q*(μ) has been extensively studied under a different guise—as the Igusa
compactification of the Siegel space of degree two and level two [G],
[LWj], [LW2]. We shall use the work of [LW2] to get some finer informa-
tion, and in particular to determine the homology of Qst (1 1 1 1 1 1).

THEOREM 10.1. Let F be a field of characteristic not equal to 2. Then
rank HXQsi{l 1 1 1 1 1);F) = 1,0,6,5,1,9 for / = 0,...,5 and is 0 for
i> 5.

Proof. Let D = Q* - β, and C = β* - QsV We consider the exact
sequence of the pair (<2*, C). Let us recall the results of [LW2]:

In [LW2] C was called the union of the Humbert surfaces and D was
called the union of the boundary and Humbert surfaces. The group Σ 6,
the symmetric group on six elements, acts on Q* by permuting the
coordinates. If we let {S l9S2] be partitions of {1,...,6} with μ(St) =
c(S,-) = 3, the components of C are indexed by such partitions. Letting
Δo = {{1,2,3}, (4,5,6}} and denoting the corresponding component of
C by Co, then using the results of [LW2] we have, in the interesting
dimensions 2 and 4:

H4(C) - H4(Q*), H2(C) - H2(Q*)

Indp(τ) -* Indp(τ) + F9 IndP(τ + σ ) ^ IndP(τ) = r + F.

Here T denotes the trivial representation, IndP the induced represen-
tation from P (the stabilizer of Δo) to Σ 6, and σ the one-dimensional
representation in which the permutation (14)(23)(56) is multiplication by
- 1 . (This gives the action of P on H2(C0)—this element switches the two
factors in Co = P 1 X P1. The representation F is the representation of the
same name in [LW2], 3.1.5.)

We first show that the inclusion of each of the representations
Indp(τ) is a monomorphism. Consider the map on H4. For each partition
Δ = {{/, j \ k},{i\ / , k'}} let tA be the intersection of the component CΔ

with the union of the components Δ y and Δ ,y,, so t0 represents the
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component of H2(C0) acted trivially on by P. The intersection number of
the component CD with tA is the sum of the self-intersections of (CΔ Π Δ/y)
in Δ y and (CΔ Π ί^Vf) in Δ / y , which is -1 + -1 = -2 by [LW2], 2.3.4.
Since the different components of C are disjoint, this gives a pairing of
the two copies of IndP(τ) which has determinant (-2)10 and is hence
nonsingular.

Hence it remains to determine the map IndP(σ) -> r + F. An easy
calculation (using Frobenius reciprocity) shows Indp(σ) does not contain
r, so it remains to determine whether the map to F has non-zero image
(as it will then be onto i% since F is irreducible). As F is self-dual we
instead evaluate the image against F. A typical element of F is / =
3({1,2} + {1,3} + {1,4} + {1,5} + {1,6}) - Σ{ι, j). If s0 represents a
generator of the representation σ, we may take so = (C0Π Δ12) - (C0Π
Δ4 5). Taking the intersection of s0 with the sum of the components Δ 7

indexed by /, we find the answer is -2. (Note (Co (Ί Δ12) Π Δ12 = 0 as
this is the self-intersection of (Co Π Δ12) in Co = P 1 X P1, but (Co Π Δ45)
Π Δ12 = 1 as this is a transverse intersection—in fact the intersection of
the two generators of H2(C0). Similarly for Δ13, and the intersection is
empty for Δ14, Δ15, and Δ16.) The theorem then follows readily.

REMARK 10.2. By comparison with [LW2] we may identify
/Γ(g s t ( l 1 1 1 1 1)) as representation spaces of Σ 6, under the obvious
action. For i = 2,3,4,5 they are respectively the representations with
Young diagrams [6] + [51], [51], [6], [42].
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