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ALGEBRAICALLY DEFINED SUBSPACES
IN THE COHOMOLOGY OF A

KUGA FIBER VARIETY

B. BRENT GORDON

Let G be a semisimple algebraic group of hermitίan type defined
over Q, let £ = GR/K, where K c G is a maximal compact subgroup,
be the symmetric domain associated to G, let Γ be an arithmetic
subgroup of G, let (π, E) be a finite-dimensional representation of G
defined over Q, let Φ:= Γ \ £ , and let £ be the locally constant sheaf
over °tt associated to (π, E). Then under certain conditions on G, Γ and
(77, £) , the quotient ^ is a complex projective variety and there exists a
Kuga fiber variety Ψ*, i.e., a complex projective variety with the structure
of an analytic family of abelian varieties parametrized by °l/, such that
Ha(<%\ S) may be identified with a subspace of i/*(^~; Q). The purpose
of this paper is to show that for a certain class of nontrivial O, £ ) the
subspace of H*(f"\ Q) with which Ha{%\ <f) is identified is algebrai-
cally defined, or in other words that this subspace is contained in
H'd^; Q) for some r and a projection from W{Ψ*\ Q) to it is induced
by an algebraic class in H*(i^X *V\ Q). In particular, since the projec-
tion of an algebraic class in ϋ Γ ( ^ ; Q) is again an algebraic class, this
paper provides an answer to the question of how to define algebraic
classes in Ha(fft\ <f) for some nontrivial local coefficient systems i.

Introduction. Let G be a semisimple algebraic group defined over Q,
of hermitian type and Q-rank zero, and let Γ be a torsion-free arithmetic
subgroup of G which is Zariski dense in G even when GR has compact
factors [1] and contained in the identity component of GR. Further, let
H =s GR/K, for some maximal compact K c GR, be the symmetric do-
main associated to G, and let (σ, W,β) be a symplectic representation of
G defined over Q. In 1963 Kuga [12] showed how to associate to
(G, Γ, X, (σ, W9 β)) together with some additional data an analytic family
Ψ* of abelian varieties parametrized by the locally symmetric variety
°lί\= T\dί such that if (σ, W9 β) satisfies a certain analyticity condition
(condition (Hλ)y cf. paragraph 1A below) then Ψ~ is a complex projective
variety. Such a variety Ψ* is called a Kuga fiber variety; cf. paragraph 1C
below for more details.

One of Kuga's many motivations for studying Kuga fiber varieties
was the observation that they provide a natural algebraic-geometric reali-
zation for the cohomology of arithmetic groups with nontrivial coeffi-
cients. That is, suppose (TΓ, E) is a representation of G defined over Q
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which is contained in some exterior power Λ*(σ, W) of (σ, W). Then there
is an embedding of Ha(T; E) into i/" + z > (^; Q) which depends only on a
choice of base point in £ (Lemma ID). We call the image of Ha(T; E) in
Ha+h{i^\ Q) the representation-theoretic component of # * ( ^ ; Q) corre-
sponding to Ha(T; E). Since Ha(T; E) is isomorphic to Ha{<%\ g) where
$ is the locally constant sheaf on °U associated to (π, E)9 the same
representation-theoretic component of H*{i^\ Q) also corresponds to this
space; however, it is just a little bit simpler to state our results in terms of
Ha(T; E).

The purpose of this paper is to prove the following theorem.

THEOREM 1. Let G be a semisimple algebraic group defined over Q, of
hermitian type and Q-rank zero, let Γ be a Zariski-dense arithmetic
subgroup of G which is torsion-free and contained in the identity component
of GR, and suppose (TΓ, E) is a Q-privileged representation of G. Then there
exists a Kuga fiber variety i^ such that the representation-theoretic compo-
nent of H*(ir; Q) corresponding to Ha(T; E) is an algebraically defined
subspaceofH*(τT;Q).

Some explanations are in order. Firstly, in general a subspace
H\Ji\ Q) of the rational cohomology H*(s/\ Q) of a complex projective
variety stf is said to be algebraically defined if E\Jί\ Q) c Hr(s/; Q)
for some r and there is a projection from H\srf\ Q) to Hr{Jί\ Q)
induced by an algebraic class in H*(jtfXs*f; Q); cf. paragraph IE for
more detail. Philosophically the distinction between an algebraically
defined subspace of the rational cohomology of a complex projective
variety and the Betti realization of a motive [2, §0; 8; 14] is quite small,
but it does depend on a "standard conjecture" of Grothendieck [7] not yet
proved; again, cf. paragraph IE. In any case, if H\Jί\ Q) c Hr(s/; Q) is
an algebraically defined subspace, then algebraic classes in Hr(s/;Q)
project to algebraic classes in H\J(\ Q). Thus, remembering that Φ:=
Γ \ dί is also a complex projective variety [8], Theorem 1 provides, in certain
cases, an answer to the question of how to define algebraic classes in
H\<%\ S) (or Ha(T; E)) when £ is a nontrivial local coefficient system
associated to a representation (π; E) of G.

Secondly, we say that a representation (π, E) of G defined over Q is
privileged over Q, or Q-privileged, if (a) there exists a symplectic represen-
tation (σ,W9β) of G defined over Q which satisfies the analyticity
condition (Hλ) (cf. paragraph 1A) such that (π, E) is contained in some
exterior power Λ*(σ, W) of (σ, W)9 and (b) the projection from AbW to E
satisfies a certain condition, which in case GR has no compact factors is
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that the idempotent inducing this projection should belong to the subalge-
bra of EndQ(AhW) generated by the natural image therein of ΈndG(W),
where EndG(W) is the commutator algebra of σ(G) in EndQ(W). For
more details, cf. paragraph IB. Some examples of privileged representa-
tions are discussed in paragraph 3B; we mention here only that if G is a
Q-simple Q-form of a classical group, such as a unitary or symplectic
group, and GR has no compact factors, then every Q-primary representa-
tion of G is also privileged over Q.

Thirdly, we remark that the requirement that Γ be torsion-free and
contained in the connected component of GR should be thought of as
more technical than substantive, since any (Zariski-dense) arithmetic
subgroup of G will contain a normal subgroup of finite index satisfying
these conditions [21, Lemma IV.7.2]. We also observe that much of the
theory of the present paper can be carried over to the case where G has
Q-rank greater than zero. In this case °ίί and y\ as defined here, are
noncompact quasiprojective varieties, so it would be necessary to restrict
attention to the compactly supported cohomology. Alternatively, some-
times it is reasonable to compactify °lί and *f and then work with the
relative cohomology. However, we will not pursue these ideas any further
in the present work, though we hope to return to them sometime in the
future.

Finally, regarding the proof of Theorem 1 there are two key points to
be noted. Let J^ be a generic abelian variety in the family Ψ*. Then under
the natural identification of H*(^; Q) with A*(WQ) (cf. (5)), the
condition that (π, E) be a Q-privileged representation of G contained in
AbW, together with a proposition of Kuga [13, §F] (cf. (3)) about the
endomorphisms of J^, implies that E is an algebraically defined subspace
of # * ( J^; Q) such that a projection from Hb(^; Q) to E can be induced
by some combination of (the graphs of) endomorphisms of J^. The
second key point, embodied in Lemma 2B, is that an endomorphism of J*"
can be extended in a natural way to an endomorphism of y , so that the
extension of whatever combination of endomorphisms of & induces a
projection from Hb(^; Q) to E can be used to induce a projection from
Ha+h(^; Q) to the subspace corresponding to Ha(T; E\ showing that
this subspace is algebraically defined.

In order to get to the proof of Theorem 1 as quickly as possible, the
necessary definitions are collected together in §1 and discussion of exam-
ples is postponed until §3. The proof of the theorem occupies §2.

Acknowledgments. The author would like to express his most heartfelt
thanks to Professor G. Harder for suggesting that he look for a theorem



264 B. BRENT GORDON

like Theorem 1 in a special case. He also wishes to thank Professor S.
Kudla for some suggestions for simplifying the proof of that theorem.

1. Definitions. In this section G is a semisimple algebraic group
defined over Q and 3£ ~ GR/K, for a maximal compact subgroup ί c G R ,
is the symmetric space associated to G.

A. Condition (HJ. (Satake [19; 20; 21].) Let (σ, W, β) be a symplectic
representation of G defined over Q, consisting of an even-dimensional
vector space W, a nondegenerate alternating bilinear form β on W X W
and a homomorphism σ: G -> Sp( W, β), where

Sp(^, β):= {g e G L ( ^ ) I j8(gιι, gι;) = β(u, v) for all n, v e IF},

all defined over Q. The map w »-» /?(w, •) gives an isomorphism of PF
onto its dual W*9 inducing an isomorphism from End(W) to End(W*)
and an identification of (σ, W) with its contragredient (σ*, W*)9 as a
representation of G. Associated to the symplectic space (W,β) is the
Siegel space

β(w,Jw) > Ofor u,v,w e W R̂?w # 0}

of complex structures on WR, on which Sp(WR, β) acts transitively by
J >-> gJg~ι. It follows that §(W,β) = S p ί ^ R , ^ ) / ^ , for any maximal
compact subgroup Kλ c Sp(PΓR, β), can be given the structure of a
hermitian symmetric domain associated to Sp( W, β).

Now, if we fix maximal compacts K <z GR and Kλ c Sp( WR, β) such
that σ(K) c iΓ^ then σ induces a map T: 36 -> §(W,β), called the
Eichler map [12, §11.6], such that the diagram

i 1

X Λ Q(W,β)

commutes. When we wish to think of the Eichler map as associating a
complex structure on WR to a point xG ϊ we may write Jx for τ( c).

DEFINITION. When G is of hermitian type, so that X may be given the
structure of a hermitian domain, then a symplectic representation (σ, W, β)
of G defined over Q is said to satisfy condition (Hλ) iff σ preserves the
Cartan decomposition (so that the Eichler map induced by σ is holomor-
phic).
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Satake has made a study of which semisimple algebraic groups over Q
have symplectic representations which satisfy condition (H^ and what
some of those representations are; see paragraph 3A below, or [20; 21].

B. Privileged representations. Given a symplectic representation
(σ,W9β)of G,let

Cλ(G,W)\= {αe End(W)\aσ{g) = σ(g)a for all g e G, and

α/ = / α f o r a l l / G τ(3E)},

and let Ch{G, W) be the subalgebra of End(A* W) generated by the image
of Cλ(G, W) under the natural map Έnά(W) -» Έnά{AbW), where ΛbW
is the Z?th exterior power of W. In case τ(X) is contained in the linear
closure of σ(GR), which will be the case if GR has no compact factors [13,
§F], then CX(G,W) is precisely the commutator algebra of σ(G) in
End(W). However, even when Cλ(G, W) is the commutator algebra of
σ(G) in End(W), in general Cb(G,W)9 for b > 1, will be much smaller
than the commutator algebra of (Abσ)(G) in End(AbW).

The following class of representations will be of special interest to us.

DEFINITION. A representation (TΓ, E) of G will be said to be privileged
iff (i) there exists a symplectic representation (σ, W, β) of G which
satisfies condition (ifx) and a nonnegative integer b such that (π,E) is
contained in Ab(σ,W), and (ii) the projection P:Ab W -> 1? is an ele-
ment of Q(G, W). If is and P are defined over a field F containing Q,
then we may say that (TΓ, E) is privileged over F, or F-privileged.

For example, if T is an element of Q(G, W)F and i 7 contains all the
eigenvalues of Γ, then every characteristic subspace of T is privileged over
F. For the projection P:Ab W ̂ > E from AbW to a characteristic sub-
space £ of Γ is a polynomial in Γ with coefficients in F [17, Thm. 6.1],
hence P is also in Q(G, W). In particular, we deduce the following.

LEMMA. IfW- ®r

i=ι Wt as a G-module over F, then

(1) AbW~ φ AhWλ ® ••• ® Λ ^ Wr

α5 α G-module over F, and each term on the right-hand side of (1) is
privileged over F.

Proof. The decomposition (1) is clear, since the exterior product of
two disjoint G-(sub)modules is isomorphic to their tensor product. Then
the terms on the right-hand side of (1) are characterized as the Π/?f'-eigen-
spaces of the element of End(AbW) which comes from the element of
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CX(G, W) which acts as multiplication by pt on Wp where Pi,.-.9pr are
any r distinct primes. The lemma now follows from the remarks above. D

Further examples of privileged representations will be given in para-
graph 3B, below.

C. Group-theoretic families of abelian varieties. (Kuga [12], or cf. [21,
Ch. IV].) Now let Γ c G be a torsion-free arithmetic subgroup which we
assume to be Zariski-dense in G even if GR has compact factors [1]. Let
Λ c W be a Z-lattice of maximal rank such that

(2) σ(Γ)Λ = Λ and )8(Λ,Λ)cZ.

Then the quotient ^ : = Γ \ ( $ X (WR/Λ)),
 w h i c h i s well-defined by (2),

is a C°°-torus bundle over %:= Γ \ £, where the projection φ : ^ - > ^ is
induced by the natural projection X X (W^/K) -> 3L Moreover, the
fibers of φ can be given the structure of polarized abelian varieties: For
when Fx:= x X WR/A, with JC e 3£, is endowed with the complex struc-
ture Jx and the polarization β, it follows from (2) that the abelian variety
(Fχ9Jχ9β) is isomorphic to (Fy{x), / γ ( J c ) ,β). Then φ~\u) may be unam-
biguously identified with (Fx,Jx,β) whenever x e 36 is a preimage of
u e ̂ , and ̂  may be called a group-theoretic family of abelian varieties.

If, in addition, G is of Q-rank zero, then % and Ψ* are compact ([2]
or [18]), and if furthermore G is of hermitian type, then °ίί can be
embedded as a complex projective variety [10]. And finally, if (σ, W, β)
satisfies condition (H^ as well, then oΓ, too, can be embedded as a
complex projective variety in such a way that φ: y"-> °ll is holomorphic
([12], or cf. [21, Ch. IV]). When all these conditions are met, the group-
theoretic family of abelian varieties Ϋ* is called a Kuga fiber variety.
Various properties of Kuga fiber varieties have been studied by Kuga and
his students (among others); see [14] and the bibliography there. Here we
merely remark that when u is a generic point of ^ , then there is a natural
isomorphism

(3) End^DβQsφ,^,

see[13,§F].

D. Representation-theoretic components. In this paragraph we make
some observations about the cohomology of a group-theoretic family of
abelian varieties (although everything we will say in this paragraph can be
applied to the more general situation of a torus bundle over a locally
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symmetric space). We assume only that Y and <% are compact. Then the

following lemma is implicit in [14, (1.3.3)]; however, some comments

concerning its proof will help to establish our notation.

LEMMA. // E is a G-inυariant subspace of l\bW defined over Q, for

some b > 0, then there exists an embedding of Ha(T; E) into Ha+b(ir; Q)

which depends only on a choice of base point in £.

DEFINITION. When (π, £ ) is a representation of G defined over Q

which is contained in Λ^(σ, W) for some b > 0, then the image of

Ha(T\ E) in Ha+h(Y\ Q) will be called the representation-theoretic

component of i / * ( ^ ; Q) corresponding to Ha(T; E).

Proof of lemma {sketch). Given a base point J G I , say x = K when

36 <-> G^/K, with ΓJC =: u e ^ , there is an identification

(4) 771(^,w)<:>Γ

obtained by letting y e Γ correspond to the class in π ^ ^ , u) of the image

in ^ of a path in 36 joining x to y(x). Similarly, identifying the

underlying topological space of J^:= φ-1(w) with W R / Λ and taking the

origin of WR as a base point, Hγ(^\ Z) may be identified with Λ. Then

Hλ{^\ Q) is identified with Λ <8> Q = WQ, and

(5) Hh(^; Q) <^ Ah WQ

for b > 0, recalling from paragraph 1A that W* may be identified with

W. With these identifications, the action of TT^.U) on Hh{^\ Q)

coincides with the Λ^σ-action of Γ on l\hWQ. Moreover, since £ is simply

connected, <% is an Eilenberg-Mac Lane K(T, l)-space so

(6) Ha(T; ΛbW) - Ha(W; #V*(Q))

where Rhφ*(Q) is the locally constant sheaf over ^ί associated to the

action of T Γ ^ , U) on Hb{&\ Q).

As the inclusion of E in AbW induces an inclusion of Ha(T; E) into

Ha(T; AbW), to prove the lemma it will suffice to find a subspace of

Ha + b(Y; Q) which is naturally isomorphic to Ha{%\ i?6φ*(Q)) For

m e Z, let θm: Y-^ Ψ* be the "stretching operator" [14, §1.2] induced by

the map (x, w) »-» (JC; mw) onX X (W^/A). Then H\i^\ Q) decomposes

into a direct sum

(7)
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of the simultaneous eigenspaces

= m* for all m e Z}

[14, §1.3]. In addition, the stretching operators θm commute with the
differentials ds, for s > 2, of the Leray spectral sequence for φ: y-> ^ ,
implying that this spectral sequence degenerates at the £2-term. But
if<a'6>(^"; Q) is naturally isomorphic to the <s-th graded component of
Ha+b(ir\ Q) for the fiber weight filtration giving rise to the Leray spectral
sequence, and therefore, by the general theory (cf. e.g. [6, §3.5]), it is
naturally isomorphic to E£b = Ha(°U\ i?V*(Q)) τ h u s
(8) H<a>h\r; Q) - Ha(T; AbW)

and the lemma follows. D

E. Algebraically defined subspaces (after Grothendieck [7, p. 196]).

DEFINITION. When si is a smooth (complex projective) algebraic
variety, a subspace H\Jΐ\ Q) c H\si\ Q), for some r, is said to be
algebraically defined iff there exists an algebraic cohomology class Ξ e
H*(s/Xjtf; Q) such that a projection # ' ( J / ; Q) -> H\Jί\ Q) is ob-
tained by lifting a class from Hr( si\ Q) to H*( s/X sί\ Q) via the first
projection, cupping with Ξ, and taking the image in Hr(s/; Q) under the
Gysin homomorphism associated to the second projection.

To describe the nature of Ξ more fully, let AZ(s/X sί\ Q) denote
the Q-algebra generated by the set of all irreducible closed subvarieties in
si X si of dimension equal to that of si, where multiplication is defined
by Q-linearly extending the usual composition of algebraic correspon-
dences and the diagonal serves as identity. Then the fundamental class
map C •-> cl(C), for C C J / X J / , extends to a Q-linear map from
i Z ( j / X ^ / ; Q) to ^ * ( J / X si\ Q). Thus an algebraic class Ξ inducing a
projection Hr(sf; Q) -> H\Jt\ Q) as above is the fundamental class of
an idempotent in AZ(s/X si\ Q). Such a class in H*(s/X sί\ Q), or any
idempotent in AZ(s#X si\ Q) representing it, may be referred to as an
algebraic projector.

REMARK. A subspace H\Jί\ Q) c H*(ji; Q) is said to be motivic,
or more precisely in the context of complex projective varieties, the
Betti realization of a motive, if there exists an algebraic projector in
H*(siX si\ Q) inducing a projection from i/*( J / ; Q) to H\Jt\ Q) [3,
§0; 9; 15]. The obstruction to showing that an algebraically defined
subspace is motivic is that it is not known whether H\srf\ Q), as a
subspace of H*(s/; Q), is motivic. This would follow if the Kϋnneth
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components of the diagonal class in ί ί*( j/Xj/ ; Q) were known to be
algebraic, which is one of Grothendieck's "standard conjectures" [7].

2. The proof. Let G be a semisimple algebraic group defined over Q,
of hermitian type and Q-rank zero, let Γ be a Zariski-dense arithmetic
subgroup of G which is torsion-free and contained in the connected
component of GR, and suppose (TΓ, E) is a Q-privileged representation of
G. Then by assumption there exists a symplectic representation (σ, W, β)
of G defined over Q which satisfies condition (Hλ) such that (τr,E) is
contained in Λb(σ, W) for some b > 0. Furthermore, since Γ is arithmetic
and contained in the identity component of GR, there exists a lattice
Λ c W which satisfies the conditions (2) [21, §IV.7, Remark 2]. Therefore
we may associate to the data (G, Γ, (σ, W, β), Λ) a Kuga fiber variety f,
as in 1C, such that Ha+b(ir; Q) contains a representation-theoretic
component corresponding to Ha(T; E), as in ID. Now we wish to show
that this component is algebraically defined.

A. LEMMA. #<"•*>( I T ; Q) is algebraically defined.

Proof. For m e Z, let Θw c Ϋ~X V be the graph of the stretching
operator θm defined in 1C; in particular Θx is the diagonal. Then when

π
- mb

is an algebraic projector which induces a projection from Ha+b(ir; Q) to
H<a-b\ir 9 Q). For the factor (ma+b-J - mb)-\ma+b-J®ι - Θ J of Σm

kills off the summand #O>*+*-»(^; Q) in the decomposition (7) while
acting as the identity on H<a^b\^; Q). D

B. The key lemma. Now let & be a generic fiber of ^ , as in ID.
Then via the identification (5) the representation space E may be identi-
fied with a subspace of Hb{ &\ Q).

LEMMA. TO each a e CX(G, W) one may associate algebraic cycles

ψ(α) e AZ{&X &\ Q) am/ Ψ(α) e ^ Z ( ^ X ^ Q) m racΛ a way that
there exists a Q-algebra isomorphism Φ from the subalgebra
QIΨίQG, »0)] ofAZ(^X &\ Q) generated by the image of ψ cwto ί/κ?
subalgebra Q ^ Q G , W))] ofAZ(lTX T\ Q) generated by the image of
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Ψ with the property that Ψ = Φ <> ψ. Furthermore, if & e Q[Ψ(CΊ(G, W))]
is any algebraic projector which induces a projection from Hb(^; Q) to E,
then Φ ( ^ ) is also an algebraic projector which induces a projection from
//<*.*>(TT; Q) to the representation-theoretic component of H"*0^; Q)
corresponding to Ha(T; E).

Proof, Upon identifying Cλ{G,W) with End(^) ® Q as in (3), we
may define ψ: Cλ{G,W) -> AZ{&X J ^ Q ) as the Q-linear extension to
C\(G, fF) of the map that associates to an α e End(^) its graph ψ(α) in
, f x ^ . Similarly Ψ(a) may be defined, for a e Cλ(G,W) leaving Λ
invariant, as the image in "Γx Ψ* of the graph of (x, w) •-> (JC, α(w)), for
(x, w) e £ X JFR, and extended Q-linearly to all of Q G , JF). Then Ψ(a)
is indeed an algebraic cycle, as any a e CX(G, W) commutes with all σ(γ)
for γ G Γ and all / e τ(9£). And since ψ (resp. Ψ) is an isomorphism of
Cλ(G,W) onto its image QIΨίQG, JF))] (resp. Q l t ί Q G , »F))]), there
does exist a Q-algebra isomorphism Φ such that Ψ = Φ ° ψ, as indicated
in the following diagram.

End(jF)®Q ^

^ Az(rxr,Q)

Now for α G CX(G, W) it also follows that ψ(α) induces an endomor-
phism of Hh(&\ Q) which corresponds via (5) to the endomorphism
which a induces on t\bW. But then Ψ(a) induces an endomorphism of
//<*•*>(τΓ; Q) which corresponds via (8) to the endomorphism a induces
on Ha(Γ; Λb W\ and the lemma follows. D

C. Proof of Theorem 1. Let a -> a': End(W) -> End(Λ* W) be the
natural map. As E is a privileged constituent of AbW, there is a
projection P: Λ^W -> E of the form P =/?(α(,. ..,α^.) for some poly-
nomial p with coefficients in Q and some al9...9ar in Cλ(G,W).
But then & := piψiaj,...,ψ(αr)) in i Z ( ^ X # " ; Q) is an algebraic
projector which induces a projection from Hb(^\ Q) to E. There-
fore the composition of Φ ( ^ ) with Σ w is an algebraic projector in
AZ(iΓx -jT; Q) which induces a projection from Ha+b(i^; Q) to the
representation-theoretic component corresponding to Ha(T; E). D

3. Examples. When considering the applicability of Theorem 1 two
questions immediately arise: Which symplectic representations (σ, W,β)
of what semisimple algebraic groups G defined over Q satisfy condition
{Hλ)Ί And what are the privileged representations of those groups?
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A. Groups and representations satisfying condition {Hλ). Satake [20] has
studied the first question and answered it under the additional assumption
[20, Part III, eqn. (9)] that the symplectic representation (σ, W, β) comes
from an absolutely irreducible representation of one absolutely simple
factor of G. He also showed [19, Thm. 2] that this additional condition
holds when GR has no compact factors, if (σ, W) is assumed to be
primary over Q to begin with. However, if (σ, W) is any representation of
G over Q admitting a symplectic structure (with which it satisfies (Hλ)),
then it has a decomposition into Q-primary components each of which
itself admits a symplectic structure (with which it satisfies (H^)) [20, §2.1].
So it suffices to consider only Q-primary representations (σ, W). On the
other hand, as far as condition (i^) is concerned, we may assume without
loss of generality that G is simply connected as an algebraic group.
Furthermore, under the assumption that (σ, W) comes from an absolutely
irreducible representation of one absolutely simple factor of G, it is
enough to consider only Q-simple G, for the extra assumption implies that
σ is nontrivial on only one Q-simple factor of G [20, §7.1]. With these
assumptions, then, Satake concludes [20, §8.1] that the Q-simple algebraic
groups possessing a symplectic representation satisfying condition (HJ
are of the form G = Λ/yqίGi) for some totally real algebraic number field
F and some absolutely simple, simply connected algebraic group Gx over
Fof type (I), (II), (III.l), (III.2), (IV.l) or (IV.2).

As for what Q-primary symplectic representations of these groups
satisfy the above assumptions as well as condition (Hλ)9 Satake shows [20,
§8.3] that in addition to the "standard solutions" in the first four cases,
where (σ, W) is equivalent to some number of copies of RF/Q(PI), with pλ

equivalent over F to the identity representation of G1? there are also
"nonstandard solutions" for the groups of type (IV.l), (IV.2) and (Γ), and
these are all. For further details, see [20].

B. Some privileged representations. The next problem is to look for
Q-privileged representations of the groups on Satake's list which are
contained in the exterior powers of symplectic representations satisfying
condition (Λx). In this section we will restrict attention to symplectic
representations (σ, W, β) such that the linear closure of σ(GR) in End( WR)
contains the space τ(3E) of complex structures on WR. For under this
hypotheses, which is satisfied when GR has no compact factors [13, §F],
Cλ(G, W) is precisely the commutator algebra of σ(G) in End(W). Then
using classical invariant theory, when G is a Q-form of a classical group
we have the following result.
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PROPOSITION. Let G be a simply connected semisimple algebraic group,

simple over Q, of the form G = Rp/QiG^ for some totally real algebraic

number field F and some simply connected absolutely simple algebraic group

GΎ over F of type (I), (IΠ.l) or (HI.2) such that GR has no compact factors.

Then every Q-primary representation of G is privileged over Q.

Proof. We give the proof for G of type (III), as the proof in case G is

of type (I) is quite similar once the conjugate-identity representations are

taken into account. Let σ = RF/Q(P\), where p\ is equivalent to the

identity representation of Gx over F. We will show that for a given

Q-primary representation π of G there exist positive integers m and b

such that 77 is (equivalent to) a privileged constituent of Ab(mσ) over Q.

To begin with, we claim that it suffices to show that an absolutely

irreducible component p of 77 is a privileged constituent of Ab(mσ) (over

some field) for some b and m. For by [20, §1.1] we may assume that

where p := kp is an absolutely primary component of 77 and {τ 1 ? . . ., 77}

is a set of representations for Gal(Q/Q)/{τ e Gal(Q/Q) | (p ' ) τ ~ p'}

Now if p is a privileged constituent of Λ6(mσ), then p' is a privileged

constituent of Ab(kmσ), for this latter contains kAb(mσ) as a privileged

constituent by Lemma IB. Likewise (p')τ ' is a privileged constituent of

{Ah{kmσ))τ\ which equals Ah{kmσ) since σ is defined over Q. Using

Lemma IB again, we therefore conclude that 77 is a privileged constituent

oίAh(klmσ).

Thus it remains to show that an absolutely irreducible component p

of 77 is privileged. Let [F:Q] =• s; then over a sufficiently large field,

G — Gx X X G5, where each Gi is an absolutely simple algebraic group

Galois-conjugate to Gv with Gλ defined over F. Furthermore σ ~

r( Θ/

s

==1 σ,-), where σz = σ/ ° pι with σ/ an absolutely simple representation

of Gt equivalent to the identity representation, p;. G -> Gt the projection

map, and r a positive integer (the square root of the dimension of the

division algebra over F which enters into the definition of Gλ). Then p,

being absolutely irreducible, will be of the form p~p1°/?1<8> ®p 5 °p 5 ,

for some absolutely irreducible representations pi of Gi9 for 1 < / < s. On

the other hand, for any s-tuple (bv ..., bs) of natural numbers such that

Σb; = b, the representation Ab(mσ) - Ab(mr(®^=1σi)) contains a privi-

leged constituent of the form A^imrσJ 0 ®Abs(mrσs), which in turn

contains a privileged constituent of the form σf b ι Θ <8>σ5®̂  whenever
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bt < mr for all 1 < i < s. Here we have repeatedly used Lemma IB and

the observation that if two G-submodules U and V of some G-module

contain only {0} in common then U A V and [/ Θ V are isomorphic as

vector spaces and G-modules. Now the main theorem of classical invariant

theory (cf. [22]) asserts that if V is a standard (identity) representation of

a classical group G\ then E n d G ( F / Θ " ) is generated by the natural image

therein of E n d G ( F ' X X V). Applying this to each σ?b* and taking

the product over 1 < i < s, it follows that End G (F) , where V denotes the

space of σ®bl ® ®σ®b% is generated by the restrictions to V of the

elements of Cb(G,W)9 where W is the space of mo. Since σf^1

<8> <δσ®6j is privileged, it follows from this that every constituent of

σ®bχ Θ <8> σ®bs is also privileged. In particular, by choosing (bl9...9bs)

appropriately and m sufficiently large, the given representation p is

privileged, as required. D

COROLLARY. Let G be a simply connected semisimple algebraic group

over Q, simple over Q and of Q-rank zero, having the form G = -RJΓ/Q((7I)

for some totally real algebraic number field F and some simply connected

absolutely simple algebraic group Gx over F of type (I) or (III.2) such that

GR has no compact factors, and let (π,E) be any Q-primary representation

of G. Then for any torsion-free arithmetic subgroup Γ of G there exists a

Kuga fiber variety V such that Ha(T; E) may be identified with an

algebraically defined subspace ofH*{ ^" Q). •

EXAMPLE OF TYPE (III.2). Suppose GQ is the group of units of norm 1

in a totally indefinite quaternion algebra B over a totally real number

field F of degree s over Q. Let 0 be an order in B, and Γ a torsion-free

subgroup of finite index in the group of norm 1 units of Θ. Also let σ

denote the representation of G given by left multiplication on B. Then for

each m > 1, one may put a symplectic structure β on Bm := B X - XB

(m times) which takes integral values on Θm X ΰm. Therefore the quotient

rΓ := Γ\36 X ((Bm Θ Q R)/&m) can be given the structure of a Kuga

fiber variety where X, the symmetric domain associated to G, is isomor-

phic to a product of s complex upper half-planes. Over a sufficiently large

field G ~ SL2 X XSL2, and σ - 2 Θ/ = 1 σ7, where each σ, is 2-di-

mensional and all factors of SL2 except the / th are in the kernel of σz.

We claim that every representation-theoretic component of

H*(i^\ Q) is algebraically defined. To prove this, it suffices to show that

every constituent of Ab(mσ) is privileged, for any b with 0 < b < 4ms. As
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before

Λh(mσ) ~ 0 Ab^

Let p x denote the standard 2-dimensional representation of SL2. Then the

problem is reduced to showing that the commutator algebra of

(Λc(2mp1))(SL2) in the endomorphisms of the space of that representa-

tion is generated by the image therein of the commutator algebra of SL2

acting diagonally on 2 m copies of (the space of) ρv However, as in

Lemma IB, as an SL2-module Ac(2mpι) is a sum of pieces of the form

Λ q Pi ® * * ®ΛC 2mp1 ? where cx + + c 2 m = c with 0 < c3 < 2. Each

of these pieces in turn is isomorphic, as an SL2-module, to pfc', where cf

is the number of Γs occurring among (cv..., c2m). But, as is well-known

[22], the commutator algebra of SL2 in the endomorphisms of the space of

pfc' is generated by permutations of the factors. Since all these permuta-

tions are induced by permuting 2m irreducible factors of 2mp1 ? every

constituent of pfc is privileged and the claim is established.

C. A remark on algebraic cycles. In [16, §1] Millson describes a very

general method of constructing "higher weight cycles" in torus bundles

over locally symmetric spaces. If i is an element of order 2 in GQ, then it

induces an involution on the symmetric space H whose fixed points are

denoted 3Et. The image (Si of 3£t in °ίl = Γ \ H is called a special cycle. Let

Γ£ denote the 6-invariant elements of Γ. Then when V is a ΓΓstable

oriented rational subspace of W with a ΓΓinvariant orientation, the image

Γ(ι, V) of 3Et X VR in iT := Γ \ 3E X (WQ/A) is a special cycle of higher

weight. Moreover, if dίL has codimension a in 36 and V has codimension

b in W, then the fundamental class cl[Γ(ι,F)] of Γ(ι,K) in H*(iT; Q)

will in fact lie in H^b\r Q) [16, Thm. 1.1]. Now suppose G, Γ, fF, etc.

satisfy all the conditions for Ψ* to have the structure of a complex

projective variety. Then whenever dct is a hermitian domain holomorphi-

cally embedded in X, and F is /^-stable for all x G 36 ί ? it follows that

Γ(^,F) is a subvariety of y . Therefore the component of cl[Γ(^,F)] in

any representation-theoretic component of / / ^ ^ ( ^ Q) is an algebraic

class in that component.

Subvarieties of the form T{ι, V) were considered in [5] (see also [4]) in
the special case where G was a Q-form of SL2(R) X SL2(R) of Q-rank

zero. There a Kuga fiber variety iΓ was constructed whose middle

cohomology HAk+2(ir\ Q) contained an (unique) algebraically defined

representation-theoretic component HAk+1(Jί\ Q) corresponding to
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H2(T; E), where E is the space of p2k ° pλ ® p2k ° p2, with p2k being the
symmetric tensor representation of SL2 of degree 2 k and pt being the
projection onto the ith factor for / = 1,2. Then a suitable collection of
Γ(*, V) were constructed and a special case of Theorem 1 implied that the
components in HAk+2(Jί\ Q) of the fundamental classes cl[Γ(t, V)] of the
T(ι, V) were algebraic. Then harmonic differential (2k + 1,2k + 1) forms
on y representing these classes in HAk+1(Jί\ Q) were constructed, their
pairwise intersection multiplicities (cup products) were computed, and it
was shown, in the manner of Hirzebruch and Zagier [8] and Kudla [11],
that the generating function for these intersection numbers was a modular
form of higher weight, cf. [5] for more details.
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