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FULL ANALYTIC SUBSPACES
FOR CONTRACTIONS WITH RICH SPECTRUM

SCOTT W. BROWN

It is shown that contractions with sufficiently rich spectrum have
special kinds of invariant subspaces. These subspaces are analogous to
the Hardy space H 2 when viewed as an invariant subspace for the
contraction of multiplication by z on L2 (of the circle).

1. Introduction. This paper deals with the invariant subspace struc-
ture of certain contractions on a separable Hubert space Jf. If S is an
operator on JF of norm one, then the left essential spectrum of 5, ole(S),
is called dominating in the unit disc if almost every point of the unit circle
(with resepct to arc length measure) is a nontangential limit of a sequence
from σle(5f). Throughout this paper, it will be assumed that S is a
completely nonunitary contraction (i.e., ||SΊ| < 1) with σle(S) dominating
in the unit disc. A closed invariant subspace, ^ , for S will be called full
analytic, if S and ό? together satisfy two properties. The first is that S? is
vector space isomorphic to a subspace of the vector space, H(U), of all
functions analytic on the open unit disc, U. The second is that if y e Sf is
associated with fy(z) e H(U) under this isomorphism, then Sy is associ-
ated with zfy(z) G H(U), so fSy(z) = zfy(z). The main result of this
paper, Theorem 2, gives that S has a closed invariant subspace that is full
analytic.

The phenomenon of full analytic invariant subspaces occurs fre-
quently in analysis. The classical example is displayed by the bilateral
shift and the Hardy space H2. Even more generally, every subnormal
operator has a full analytic subspace as was shown recently by Olin and
Thomson in [7] (the domain of analyticity has to be appropriately altered).
One can find a simpler proof of this result for just normal operators in
Chapter IX of [3]. The result of this present paper, although it does not
subsume the subnormal or measure theoretic results concerning analytic-
ity and vice versa, was clearly suggested by the work of Olin and
Thomson.

The main tool to be used is that of matricial factorization as devel-
oped by Bercovici, Foias, and Pearcy in [1]. They used these results
together with J. Langsam [2] to prove (among other things) that the
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operator S as described above is reflexive. Since the work of [1] does not

fit precisely to what will be used here, a full development of the factoriza-

tion needed will be given.

Olin and Thomson used their analytic results in [7] to show that every

subnormal operator is reflexive. In this article, the cycle will be completed,

and the reflexivity result of [2] will be obtained for S via the analyticity

result of Theorem 2. The work of Julian Sheung [9] suggests that there

may be a theorem which covers simultaneously the analytic and reflexivity

results of [2], [7] and those presented here. However, any attempt to find it

may not be worth the effort, since the analysis of [9] shows how difficult

things can get.

The basic set-up is as follows. The reader is referred to [5] for a more

detailed description, although the notation used here more closely follows

that of [4]. Let sf be an ultraweakly closed subalgebra of SS(J^). The

predual of sf, a quotient space of the space of trace class operators, will

be denoted by tf. If A ^ si and C e ^ , then A evaluated (as a linear

functional) at C is represented by [τ4](C). If x, y e 3tf, then x % y will

represent that element in # defined by [̂ 4] ( x 0 j ) = (Ax,y) for all

A e srf, where ( , ) is the inner product used on $?.

From here on it will be assumed that si satisfies two properties. All

results will be stated in terms of such an algebra si, its predual # , and a

particular operator T e si. The connection between si and S will be

given shortly.

The first property satisfied by si is that of being dual algebra

isomorphic to H00. This property is now outlined. Details can be found in

[4] and [5]. Let m be Lebesgue arc length measure on the unit circle. The

weak* (or σ(L°°(m), Lι(m))) closure in ^(m) of the polynomials will be

denoted H°°. Now H°° has a weak* topology endowed on it from this

structure. It will be assumed that there is a map Γ: (//°°,weak*) ->

(si, weak*) that is a homeomorphism, onto, an isometry, and an algebra

isomorphism (i.e., Γ is a dual algebra isomorphism). Throughout this

paper T will denote T(z) where z is the identity function on the unit

circle.

The second condition to be placed on si is somewhat technical. It

will be assumed that given any C G ? o f norm k, there exist sequences

{xt)T=ι and {yx}^°=1 in 3tf of norm {k such that

(1) xι ® yt -> C in norm in #,

(2) xi: ® s ~> 0 in norm for any fixed s e Jίf,

(3) s <8> yt -» 0 in norm for any fixed s e Jίf.

If S is an operator as stated above, then the ultraweakly closed

algebra J& generated by the polynomials in S has both of these properties
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(see [5] for details). Under the isomorphism, Γ, that arises naturally in the
development of [5], Γ(z) = S. So T = S in this particular situation, and
any results given below for T apply directly to S as well. In fact, all of the
results of this paper hold any time s/ has property A K Q (see [10],
Proposition 6.1 and Definitions 2.7 and 2.8).

2. Factorization. We will state and prove the specific form of the
factorization that will be needed. Only one row of a matrix factorization
will be developed. The proof given here is essentially that of [1] re-
organized, and it can be expanded to given a full matricial result for the
algebra si (although the results of [1] apply to more general settings than
that used here). The approach given in this note is compartmentalized in
order to allow a smoother introduction of a needed modification.

Let /°°(Jf) denote the Banach space of all bounded sequences

{*,-}f-o c * w i t h n°rm given by ||U}f=oll Ξ supfMJJLo. Let l\V)
denote the Banach space of all sequences {CJ^LQ C # with norm given
by ll{C,.}ll?/-i = ΣjixllC ll < oo. If a e /°°(^), then a(i) will represent
the /th term of α, i.e., a = (α(0),α(l),α(2),...). Likewise if γ e l\C),
then γ = (γ(l),γ(2),γ(3),...). For n = 0,1,2,..., define Tn:
/°°(J>f)by

for all a e 1^(3^). For n = 1,2,..., the same symbol, Tn, will represent
an operator Tn: l\<g) -» l\<€) given by

For c0, cv...,cne R + , let B^(co,cv...,cn) denote {α e Tn(l">(jr)):

\\a(i)\\ < Cj for / = 0 , 1 , . . . , n). Note that if α e Bjp(c0, cv ...,cn) then

a(j) = 0 for all j > n. For kx, k2,...,kn^R+ let Bv(klf k2,..., kn)

denote {γ e Tn(l\V)): \\y(i)\\ < k, for / = 1,2,,...,«}. Let if(Jίf) =
U~=1(Γ,,(/°°(JT)). Finally, define Λ: if(Jίf) -• l\V) by

Λ ί x . Λ . ^ . .Λ. ) = (Λ β ^ . x ® ̂ 2 , . . . , J C ®^B,.. .)
for (x,yvy2,...)(Ξlf(Jίr). The symbol Γn will only be used in
Lemma 1 below, so there should be no confusion of Tn with the opera-
tor T. F o r M c j f and ε > 0, let (M: ε) s {β e /»(JT): (j8(0), w) = 0
and ||/3(0) ® m|| < ε for a l l m e M } .

LEMMA 1. Let n = 1 ,2, . . . .// α e Tn(l°°(Jίf)), and kv k2,...,kn(Ξ

R + , α«J M w any fixed finite subset of Jf, and ε > 0, ί/ze« ίΛe closure in

l\V) of

Λ(o + ( ^ ( ^ + ^2+ ••• +kn,{k~ι,{Γ2,...,Jk~n) n(M:ε)))

contains Λ ( α ) + B<#(k1, k2,..., kn).
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Proof. Assume that the lemma is true as stated for some n = 1,2,...
We will show that the statement is true when n is replaced with n + 1. So
let a £ Tn+ι(l°°(Jίf)) and let γ e Λ(α) + B<#(kv k2,..., k n + ι ) . Choose
any ε > 0, and any finite set M a 34?. We have Tn(y) e Λ ( 7 » +
Bv(kv k2,...,kn).Soby the induction hypothesis there exists

n((MU{a(n

with

jβ)-7;γ||<e/5.

Using the second stated property for the algebra s/, choose x, y e
with

| | ε / 5 , and

l", and (χ,/8(0)> = 0, and

ε/5(« + l) for y = 1,2,...,» + 1, and

j 8 ( 0 ) ) ® . H | < e / 5 and (x ,0,0, . . . ,0, . . . ) e ( M : 4 ε / 5 ) .

Set

Now

α(0) + β(0) + x) ®{a{n + 1) + y))

x ®(α(2) + 0(2)),..

||Λ((ΓBα) + j8) - Γπγ|| + ||x ® y +(α(0) ® α(n + 1)) - γ(/i

ε ε ε ε
+ + +

We are done since

β' e B jr(v'A:1 + / : 2 + ••• + f e n + 1 ,{k[,{F2,.. .,{k^[) n(M:ε)
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If C G # and ^ 6 j / , then it is possible to define AC G ̂  by
[&4](C) for all £ G J / . NOW let JΓ denote {C e if: 4ΠC = 0

for some π = 0,1,2,...}. Recall T = Γ(z) G J / . It is easy to verify using
Γ that JΓ is norm dense in #.

In the following theorem, the result obtained by just observing
statements (i) and (ii) gives the standard factorization result fitting this
situation (again see [1] for the complete matricial form of the result). This
by itself is sufficient to yield analytic subspaces, except that there is no
guarantee that the map associating each J G ^ (see Theorem 2) with
fv G H(U) is one to one. Statements (iii) and (iv) below involve a result
that will later be used to establish the needed injectivity.

THEOREM 1. Given γ G l\^) and ε, > 0, i = 1,2,..., there exists
a e l°°(Jίr) with

(i) (α(0) ® α(2ι - 1)) = γ(i) for i = 1,,...,
(ii) ||α(2i - 1)|| < /| |γ(i)| | + ef. for i = 1,2,...,

(iii) (α(0) β α(2ι)) e ̂ Γ/or / = 1,2,...,
(iv) { α(2i): i = 1,2,...} norm Jeπ^e in the unit ball of Jff.

Proof. Let {ri}™=ι be any countable dense subset of the unit ball of
Jίf. The proof will consist of finding a certain sequence {«w}^=1 c l°°(Jt?)
for which {«„(*')}5?= i is Cauchy for each / = 0,1,2, This sequence will
be defined by induction, and its "adherent" point a will turn out to
satisfy the statement of the theorem. We assume without loss of generality
thatEJiA < <*. Let ks = ||γ(/)||, / = 1,2,....

To begin the induction define βλ G l\<g) by βλ = ( γ ( l ) , 0,

By Lemma 1, choose άλ G B^{yfk[, yfk[) with

(Λ(α1)- iβ1)G^(

Next choose Rλ<^ Jf with

Set αx = (α1(0),α1(l),r1,0,0,...) and set jβx = (γ(l), ̂ , 0 ,0 , . . . ) . We
have

Now suppose that av α 2 , . . . , an G /°°(^) and i?l9 i? 2 , . . . , Rn G
have been chosen so that
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The procedure for choosing α n + 1 and Rn+1 will be given. Set

A, + 1 = ( γ ( l ) , J R 1 , γ ( 2 ) , J R 2 , . . . , γ ( « ) , J R n , γ ( « + l ) ,0 ,

By Lemma 1 choose

such that

and

Now choose Rn+1 e Jί with

Set

and

So

and

Also

βn+ι =

4 + 4

h h £»

P 2 P 2 P 2

ε ε ε

' 4 » + i ' ' 42> 4 2 ' 4

I) for/ = 1,2,..., n.

, Λ 2 , . . . , γ ( π 4- 1),

4 '

P 2 P 2

4 4

2 ' 2
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For each z = 0,1,2,..., set a(i) = l i m w ^ ^ a n ( i ) . It is clear that this

limit exists when i = 0, since (α r t + 1(0) — αΛ(0)) _L («y(0) — aj_ι(ϋ)) for

7 = 2 , 3 , . . . , n. It is also trivial to show that the limit exists for i = 1,2,...,

and that ||α(2z - 1)|| < y^" 4- εf . By definition of each /?„, n = 1,2,...,

it follows that (i) and (iii) hold. Condition (iv) has also been met. We are

done.

REMARK. It is actually possible to choose α(0) arbitrarily close to any

preassigned vector x e Jίf provided that one is willing to give up the

inequality of (ii) in the statement for the indices i = 1,2,..., n where n

depends on ||x — α(0)||. (The inequality of (ii) will still hold for all other

indices). To show this, first note that JC ® x e # is arbitrarily close to a

vector C E ^ which is cyclic under the action of T on # . Then there exist

x', J E / with || x — jc'H arbitrarily small and x' ® y = C. For any given

n = 1,2,... choose polynomials pv /; 2 , . . .,/; B such that

for / = 1,2,..., Λ. Then set yt = (Pi(T))*y for / = 1,2,...,«, and set

Then αw satisfies * provided i?1? R2,...,Rn are chosen appropriately.

Now run the induction process from here (i.e., *) on out. If n is chosen

sufficiently large, then ||JC — α(0)|| can be made as small as desired.

3. Full analytic invariant subspaces. Next the main theorem will be

given. Its proof has been simplified using a suggestion made by H.

Bercovici.

THEOREM 2. The operator T E i has a nontriυial closed invariant

subspace that is full analytic.

Proof. For n = 0,1,2,..., define Cn to be that unique element in <$

for which [Tm] (Cn) = 8mn where 8mn represents the Kronecker delta. Set

For / = 1,2,..., set ε / + 1 = 1//. Set εx = 1. Apply Theorem 1 to obtain

(*> JΊ> yv y2> yίΓ )e /°°(^) with x 0 yi+ι = ( i / / 2 ) ς . for / = 1,2,...,

and | | 7 / + 1 | | < / ( l / / 2 ) + 1// = 2/z, and j c β ^ = Co, and j c β / e ^ 1

for / = 1,2,..., and {}V}/ î dense in B^>.
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Now let .$*= J/JC, and let P: 3P-* Sf be the orthogonal projection.
For / = 1,2,... define yl+ι = P(/ 2^ / + 1), and define yλ = Pyv For 7 e ^
define a function /v on t/ by

/ , ( * ) = Σ ϋ s Λ + i ) * 1 for all z e l Λ
/ = 0

This series converges for all z e U since

limsup|(>>, j ^ ) ! 1 7 ' < limsupH^+JI171 < limsup||/2j.+1 | |

< limsup^/'l17' = 1.

Next we show that PT*yt = yi_ι for any fixed / = 2,3, Now for
m = 1,2,...,

So x (8) PT*Jj_= x (8) £._!. Or x 0 (PΓ*^ - y.^) = 0. Since PT*yt -
j ) M G y = ^3c? it follows that PT*yt = j)^!.

Using the fact that has just been verified in the preceding paragraph,
it is easy to show that fTy(z) = zfy(z) for all y e <? and z e [/.

Next it has to be shown that the map y -* fy is one to one. First of
all, for each λ e ί/ there is yλeSf such that ( j , j λ> = fy(λ) for all
j E y . I n fact for λ e ί / ,

It is easily seen that if λi; -> λ G [/, then j λ -> j λ in norm. This implies
that if (5 /}°l1 c ^ is a bounded sequence with fSj -» 0 pointwise on ί/,
then / -^ 0 uniformly on compact subsets of U.

Now suppose j e y , with /̂  identically zero on U. Then there exists
a sequence of polynomials {Pj}JL\ with Pj(T)x converging to y in norm.
However, fPj{T)x = /?.£ and j^, ( T ) x -+ fy pointwise, so pj -» 0 uniformly
on compact subsets of U. Now suppose that ||^|| Φ 0. A contradiction will
be found. It can be assumed without loss of generality that | | j; | | = 1.
Choose ι0 = 1,2,... such that || y — y[ || < 1/10 (recall the y[ were found
using Theorem 1 earlier). There exists a positive integer m such that
Tmx <S> ylo = 0. Choose j 0 so large that

pJo = zmp + q where j9 and q are polynomials with
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and

(2) \\PJQ{T)X - y\\ < 1/10 (so \\Pjo(T)x\\ < 2).

Then by (1)

pJo{T)x) βy;o\\ = | | ( r > ( 7 » 9y;0+(q(T)x) 9y;o

Thus by (2), \\(pJo(T)x) 9y\\ < 3/10 since \\y - y!Q\\ < 1/10, and thus
\\y <g> y\\ < 4/10 also by (2). This is impossible since \\y Θ y\\ = \\y\\2 = 1.
The proof is complete.

REMARK. The theorem can be easily amended using the remark made
after Theorem 1 to show that the element x which generates the full
analytic subspace can be chosen arbitrarily close to any given element in
the Hubert space.

It should be noted that in certain cases it is highly desirable to find
maps y -> fv which are not one to one for which fTy(z) = zf. For if T is
invertible, then {y: fy = 0 on U) is closed and invariant for T and T~ι.
The existence of such subspaces is directly connected to the invariant
subspace problem for operators that have the same norm and spectral
radius [6].

Finally the reflexivity results of [2] will be shown to follow from
Theorem 2 above for the operator T. The proof uses ideas similar to those
established for subnormal operators in [8].

THEOREM 3.The algebra s/ is reflexive.

Proof. It has to be shown that if AJί c Jί for all Jί c 3? invariant
under J / , then A e j / . The proof of Theorem 2 can be amended to show
that 01 = {x ^Jίf: srfx is full analytic) is norm dense in 3^. If x e ^ ,
then six is invariant under A. It is not hard to show that there exists

H°° with f(T)y = Ay for all y e JZX. If it can be shown that given
any xx e 2% we have f(T)y = Ay for all y e s/xl9 then by the density of
9t it will follow that A = f(T) on all of Jtf.

So consider s/(xx 4- x), and set B = A - f(T). Then B(x + xλ) =
Bxv Now there exists some g e H°° with g{T)y = By for all y e s/χv

So Bxλ = B(x + xλ) = g(T)xλ G jtf(x + χλ). Therefore there exists a
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sequence { />, }°li of polynomials with

Pi(T)(x + xx)-> g(T)Xl

in norm. This equation shows that pi(T)Bx1 -> g(T)Bxx in norm, so

Pi -* S pointwise on U. This equation also gives pi(T)g(T)(x + JCX) ->

g( JΓ)!?.*! in norm. So pi(T)g(T)x -> 0 in norm. But J/JC is full analytic
s o PiS ~* 0 pointwise in U. This means g = 0, and therefore that B = 0

on J/Λ J. The result follows.
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