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WITT RINGS OF COMPLETE SKEW FIELDS

ANDRZEJ SίADEK

In 1982 T. Craven generalized the definition of Witt ring from fields
to skew fields. The main aim of this paper is to survey Witt rings of skew
fields complete relative to discrete valuation. We prove that if A is a
complete skew field with the residue class field E of characteristic
not 2, then the Witt ring W(A) is isomorphic to the group
ring (W{E)%(Eo))[Δl where Δ is the two-element group, %(Eσ)
is the ideal of W(E) generated by all elements of the form (1,-d),
d G [o(x)x~l; x e E'}E'2 and σ is the automorphism of E induced
by the inner automorphism x »-» πxπ'1 of A determined by the unifor-
mizer m of A. When A is commutative, then it turns out to be the well
known Springer's Theorem. The case of dyadic skew fields is also
considered. We show that if A is a finite dimensional division algebra
over a dyadic field, then every binary form over A is universal.

1. Preliminaries. Throughout this paper A will denote a skew field of
characteristic not 2. As far as terminology and notation connected with
forms over A is concerned, we use here basically those of [1, 8]. Let us
recall the most important. We shall denote by G = G(A) the factor group
Am/S(A), where S(A) is the subgroup of the multiplicative group A'
generated by squares. Of course G(A) is an elementary 2-group and it
plays the same role as a square class group in the commutative case. The
elements of G(A) will be denoted by (d), for d e A' and we shall use an
abbreviation (dv...,dn) for the element (dλ) + +(dn) of the in-
tegral group ring Z[G(A)]. Any element (dl9..., dn) is said to be a form
(over A) of dimension n.

The Witt'Grothendieck ring of A is the ring WG(A) = Z[G(A)]/J(A),
where J(A) is the ideal if the integral group ring Z[G(A)] generated by all
elements of the form (l,d) - (1 + d,d(l + d))9 for d e A\ dΦ - 1 .
The Witt ring of A is the ring W(A) = Z[G(A)]/I(A), where I(A) is the
ideal of Z[G(A)] generated by J(A) and (1, -1).

The forms φ = (av..., an) and ψ = (bv...,bn) are called isomet-
ric, written φ = ψ, if their images in WG{A) coincide. A form φ is called
isotropic if φ s ψ + (1, -1), for some form ψ.

Note that if A is a field, then the definitions presented above agree
with the usual definitions in [3].
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In this paper A will be provided with a discrete valuation v called
here just a valuation. The objects: valuation ring, valuation ideal, group of
units and residue class skew field will be denoted by O = O( v), P = P( υ\
U = U(υ) and E = E(v), respectively. The image of a e O in E will be
denoted by κ(a). We will confine our consideration to the case when E is
a field.

The main objects of our attention are skew fields complete with
respect to a fixed valuation v. Look through the fundamental examples:

EXAMPLE 1.1. Let A be a central division algebra over a local field F
and let degA = n. Then the standard valuation w of F extends uniquely
to the valuation v of A by the rule v(x) = (l/n)w(N(x)), where N:A -> F
is the reduced norm map. Moreover E(υ) is an extension of E(w) of
degree n.

EXAMPLE 1.2. Let F be a field and let σ be a fixed automorphism of
F. We write Fσ((t)) for the skew field of twisted formal power series
Σf=n att\ ai G F9 n Ξ Z, which are added in the usual way and multiplied
by using Cauchy product formula and the convention: tat~ι = σ(a), for
α e F . The skew field Fσ((t)) can be equipped with a valuation v by
putting v(f) = n if / = Σ?1ΛΛ I /

1', tfrt ^ 0. It is a routine matter to check
that E(υ) = i7.

The standard reference for information about valued skew fields and
examples presented above is Pierce's book [5].

2. Products of squares. Let v be a discrete valuation of A. In the
sequel IT will denote a fixed element of P\P2. It means that v(π)
generates the group v(A'). The correspondence u •-» πuπ'1 for w e U
induces an automorphism σ of the field E. This automorphism determines
a σ-invariant subgroup Ea = {σ(x)x~ι; x e E'}E'2 of the group £"
containing all squares. It is not difficult to check that σk(x)x~1 e Eσ, for
every x e £" and A: G Z.

Every element of 4̂ can be uniquely presented in the form uπk,
u e U and fceZ, whereas every product of squares can be uniquely
presented as uπ2k, u e (7 Π S ^ ) , /: G Z.

THEOREM 2.1. J/^4 zs complete with respect to v and chari? Φ 2, the

following conditions are equivalent:

(i) we [ / Π S ( 4
(ii) u ^ Uand κ(u) e 2?σ,

(iii) u ^ U and u is a product of three squares.
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Proof, (i) =» (ϋ). Let us assume that « e ί / and u = a\...a2

n, where
al9...9an e A\ We induct on n. For n = 1 the assertion is obvious, so
assume « > 1. If uλ = (axa2)

2a\...a2

n, then uλ & U and ι/x satisfies the
inductive assumption. Clearly κ(u) = κ(uu{ι)κ{u^) and so that the induc-
tive step would be done it suffices to show that κ(uu{1) e Eσ. Let
ax = xπk, a2 = yn\ where x j e ί / and &, / e Z. Then

K ^ - 1 ) = κ(a2al(aιa2)~2) = K ^ ^ f - 1 ^ ! " 1 )

= κ(xπkxπkyπιπ~kx~1π~ιy~ιπ~kx~ι)

(ii) => (iii). Suppose w e U and /c(w) = a(/c(x))ic(jc~1)/c(>'2) =
κ(77\x7r~1jc~1y2)> for some x, y e ί/. Consider the polynomial Φ = X2 —
u(x~ιπ)2π~2 in O[X]. The polynomials κ(Φ) and /c(Φr) are relatively
prime and κ(Φ)(κ(x'ιy)) = 0. By HenseΓs Lemma (cf. [5, p. 324]) there
exists z G O such that /c(z) = κ(x~ιy) and Φ(z) = 0. Then u =
z2ir2(x-V)-2.

(iii) => (i). Obvious. D

REMARK 2.2. It is worth noticing that if Eσ = E'2, then (iii) of the
previous theorem can be replaced by (in7) u e U and u is a square.

COROLLARY 2.3. Under the assumption of Theorem 2.1 the correspon-
dence uττk •-> (κ(u),k + 2Z) determines the group isomorphism G(A) ->
£ /£σXZ/2Z. D

COROLLARY 2.4. £eep ί/ie assumption of Theorem 2.1. Lei w, w be units
and let sx = xπ2k, s2 = ̂ τr2/, where x9 y e £/ n 5(^4) α«J A:, / e Z. ΓΛew

(i) // ŵ ! + ws2 Φ 0, ίΛe« (WΛ1! + ws2) is equal to (u)9 (w) or
(ux + wy) when k < /, k > I or k = /, respectively.

(ii) (w^ + W77\s2> is equal to (u) when k < I and to (wπ) otherwise.D

Corollary 2.3 describes the group G(A) only if char is Φ 2. If A is &
finite dimensional division algebra over a local field, then we can manage
the problem of G(A) without excluding that offensive case of characteris-
tic 2.

PROPOSITION 2.5. Let A be a central division algebra over a local field F
and let dim^A < oo. Then the group homomorphism N*: G(A) -> G(F)
induced by the standard norm map N: A -> F is an isomorphism.
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Proof. The map N* is an epimorphism, because N(A') = Fm (cf. [5,

p. 341]). Now assume that N(v) = x2, x e F\ Let JC = N(w), w ^ A\

Then TV(ί ) = Λ^(w2). In our case the Reduced Whitehead Group SKλ =

kerN/[A \ A'] is trivial (cf. [2, p. 64]), so υw~2 e[A\A']. The element v

is a product of squares, because [A\ A'] c S(A). We have just proved

that N * is a monomorphism. The proof is finished. D

3. Witt ring of a complete non-dyadic skew field. In this section we

assume that the characteristic of the residue class field E is different from

2.

Any form φ over A decomposes as φ = (ul9 . . . , yn) +

<τr>(w l 9 . . . , wm>, where ul9..., «Λ, w x,..., wm e ίΛ

PROPOSITION 3.1. Le/ φ = ψ + ( π ) p , I = T + (π)κ, where ψ, p, T

and K are forms with entries in U. If ψ and £ are anisotropic, then φ = ξ if

and only if ψ = τ and p = K.

Proof. If φ is isometric to ξ9 then by [1, Lemma 4.10 and Remark

4.11b] there exists a sequence of isometric forms φ = ψ 0 + (π)p0, ψx +

<τr)p 1 , . . . ,ψ 5 + (π)ρs = ξ such that φ, (φ z := ψz + (ττ)pi) is obtained

from φi_1 as follows: exactly one binary subform of φt_v say (av a2), is

replaced by (a1sι 4- a2s2, a1a2(a1s1 4- a2s2)), for some svs2 G S(A) U

{0}. Taking 5 as small as possible, by Corollary 2.4(ii), we have to avoid

changes of binary forms, which are of the form ( M , W ) , where w, w e [/.

Thus in each step the binary form to be changed must be a subform of

ψ /_ 1 or ρ/_1. It means that ψ 0 = ψs and p 0 = p5. The proof is finished. D

By the above Proposition it is necessary to answer the question about

the isometry of forms with entries in U.

P R O P O S I T I O N 3.2. // ul9...9 un9 wl9...,wn e U9 then (ul9...9un) =

(wv...,wn) if and only if (κ{uλ\ ..., κ(un)) = (κ(wx)9..., κ(wn))

(mod 3ί(E σ )), where 3 ί ( £ σ ) is the ideal in W{E) generated by all forms

Proof. Consider in Z[G(A)] the element

Γ:= (u,w) - (usλ + ws2,uw(usι + ws2))9

where ^ , 5 2 e 5(^4) U {0}, w^ + ws2 Φ 0. By Corollary 2.4, if T

is not 0 in Z[G{A)\ then there exist xl9 x2^ U Π S ( ^ ) such that Γ =
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(u9w) — (uxλ + wx2,uw(ux1 + wx2)).Then

κ(T):= (κ(u),κ(w)) - (κ(us1 + ws2), κ{uw{us1 + ws2)))

is equal in Z[G(E)] to

+ ((κ(uxι), κ(wx2)) — (κ(κ*i) + κ(wx2), κ(uw)(κ(uxι) 4- κ(wx2)))).

By Theorem 2.1, κ(T) determines in W(E) an element of %(Eσ). Lemma

4.10 and Remark 4.11b of [1] gives us the implication => .

Now assume that <K(MX), . . . , Jc(nn)> = (κ(wi), , κ(wn)>
(mod 9ί(£ σ )). Thus, by Theorem 2.1, we have

(κ(Ul),...,κ(un)) - (κ(Wι),...,κ(Wn)) = Σ <κ
/ = 1

(in W(E))9 where d^UCi S(A), x, e U. Then

s (κ(w1),...,/c(wj> + ( ^ ( x ^ J ^ . ^ K ί x ^ J )

Using the Piece Equivalence Theorem and going with the binary changes

up to A it is easy to show that

< ! < ! , . . . , ! ! „ > + ( x l 9 . . . 9 X k ) = ( w l 9 . . . , W n ) + ( x l 9 . . . 9 X k ) .

The cancelation law gives us (uv...,un) = (wv...,wn). The proof is

finished. D

Immediately from Proposition 3.1 and Proposition 3.2 we obtain the

main result:

THEOREM 3.3. If A is complete with respect to a descrete valuation v and

charE(v) Φ 2, then the Witt ring W(A) is isomorphic to the group ring

(W(E)/(X(Eσ))[Δl where Δ is the group of order 2.

Proof. If Δ = {1, g}, then the correspondence

(ul9...9un) + < i r > < W i , . . . , w n >

-> (κ(uι)9...9κ(un)) + g < κ ( w 1 ) , . . . , κ ( w j ) ,

u^Wj &U9{ul9...9un)9{wl9...9wn)

anisotropic, determines the isomorphism W(A) -> {W(E)/%{Eσ))[Δ]. D
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COROLLARY 3.4. // charF Φ 2 and σ e Auti% then W(Fσ((t))) =

REMARK 3.5. Theorem 3.3 is a generalization of Springer's Theorem

(cf. [3, p. 145]) from fields to skew fields.

REMARK 3.6. D. B. Shapiro and D. Leep [7] define the relation of

G-equivalence denoted by ~ . In this section one can find out between

lines the proof of the following fact: forms ( u l 9 . . . , un) and (wl9..., wn)

with entries in U are isometric if and only if

Thus the relation of ^-equivalence admits cancelation and by [7, Lemma

1.9] Eσ is a group with so called Piece Equivalence Property.

Now let us go on to the case of local skew fields. We mean a local

skew field as a complete skew field with finite residue class field. Skew

fields presented in Example 1.1 are local skew fields.

THEOREM 3.7. If A is a local skew field and the residue class field E of A

has characteristic different from 2, then the Witt ring W(A) is isomorphic to

the group ring W(E)[Δ], where Δ is the group of order 2.

Proof. Notice that if E is finite, then Eσ = E *2, for every σ G Aut E.

Thus $ί(Eσ) = {0} and the result follows from Theorem 3.3. D

COROLLARY 3.8. // A is a finite dimensional division algebra over a

non-dyadic local field F, then W(A) = W(K), where K is a maximal

subfield of A, which is an unramified extension of the center of A.

Proof. The residue class fields of K and A coincide. The result

follows from Theorem 3.7. D

4. The dyadic case. Methods applied in the previous section are

useless when the residue class field E of a skew field A has characteristic

2. To find a way to describe W(A) in the dyadic case we have to abandon

comparisons of W{A) with Witt rings of fields connected in some way

with A. The right way is to investigate the behaviour of binary forms over

A.
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DEFINITION 4.1. Let (1, a) be a form over A. Define

DA(1, a) = {Sl + as2eA *; sl9 s2 G S(A) U {0}}

and

Df(l,a) = { c e i ί § ; ( l , f l ) s <c, d), for some d G Λ '}.

In the commutative case the sets defined above coincide. In the
general case one can only prove that both contain S(A) and DA(19 a) is a
subset of Df(l9 a). It can happen that these sets differ. However, it turns
out that D£(l,a) is a subgroup of A* generated by DA(19a) (for more
details see [8]).

Throughout this section we assume that F9 the center of a skew field
A, is a finite extension of the 2-dic field Q2 and 1 < dimF^4 < oo.

LEMMA 4.2. // K is a maximal subfield of A, that is F c K c A and
[K:F] = degΛ, thenK'S(A) c X>*(1, α), for every a <Ξ K\

Proof. Let us consider the homomorphism /': G ( ^ ) -> G(A) induced
by the inclusion KcAΛi [F: Q2] = m and deg^ί = n9 then \G(F)\ =
2 m + 2 , whereas \G(K)\ = 2 n w + 2 (cf. [4, Th. 3.18]). Since, by Proposition
2.5, |G(^4)| = IGίF)!, the homomorphism i cannot be a monomorphism
and for a e if' we have 1)^(1, β) = U{ jDί(l, cα); c e keri} D Jί, where
X is the subgroup of Â ' generated by U{ Dκ(l9 ca); c G ken'}. Every set
Dκ(l9 ca) is a subgroup of K' of index 2 and 1^(1, ca) Φ Dκ(l9 da) for
cK'2Φ dK'2, so X = K. D

LEMMA 4.3. If Aλ is a subalgebra of A and deg^4 = 2deg^41? then the
center Z(Aλ) of Aλ is equal to F{{d\ for some d G F\ F'2 and A βlS(A) =
N-\DF(l9-d)).

Proof. The first part of the statement follows from Double Centralizer
Theorem [5, p. 231]. Now denote by Nι:A1 -> Z(Aτ) = Fλ the norm map
of Av Both, N and Nl9 are epimoφhisms and N^A = Λ ^ / F ° ^ I (c^ [6> P
298]). By Proposition 2.5 we have

h -d)). D
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Now we can describe the Witt ring W(A). We shall do it in terms of
the family of all sets D*(l9 a), a e A \

THEOREM 4.4. If A satisfies the assumptions made in this section, then
every binary form over A is universal, that is D*(l,a) = A\ for every
a G A\

Proof. Let degA = / 2k, where / is odd and k is a non-negative
integer. We use induction on k. First suppose k = 0. Let K be a maximal
subfield of A. By Lemma 4.3, it suffices to show that K'S(A) = A \ Let
a G Am and let deg A = 2s + 1. Then <z = NiaXaNia'1)) and
N(aN(a~1)) = N(a-λ)2s G F# 2 . By Proposition 2.5, we have aN(a~λ) G
S(Λ) and then α G F'S(>4) C A"S(Λ).

Now assume k > 1. We have to show that 6 G Z)f(l, α), for every
β,Z>Gy4 . Let α,Z>GΛ\ Take deF\F'2 such that N(a)9N(b)e
DF(19 -d). Choose in A & subfield Fx = F{y[d). It is possible by a slight
modification of the argument used in [5, Ex. 4a, p. 341].

The centralizer Ax of Fλ in A is a subalgebra of A and d e g ^ =
/ 2k~ι. By Lemma 4.3 and Proposition 2.5, elements α and b belong to
A *ιS(A). Thus, by the inductive assumption, we have b G Djf(l, a). D

REMARK 4.5. Although Theorem 4.4 describes only behaviour of
binary forms over 4̂, it is not difficult to describe the Witt ring W(A). In
the language of so-called quadratic schemes (cf. [9]) algebra A determines
a radical scheme and W(A) can be easily constructed in the category of
abstract Witt rings with help of products of indecomposable radical Witt
rings. Moreover, there exists a field L such that W{A) is isomorphic to
W(L).
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