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EISENSTEIN-SERIES ON REAL, COMPLEX, AND
QUATERNIONIC HALF-SPACES

ALoYS KRIEG

The real, complex, and quaternionic half-spaces are introduced in
certain analogy with the Siegel half-space. The modified symplec-
tic group acts on the attached half-space in the usual way. At first
properties of these half-spaces considered as symmetric spaces are
derived. Then a fundamental domain with respect to the modified
modular group, which consists of integral modified symplectic matri-
ces, is constructed. The behavior of convergence of the corresponding
Eisenstein-series is determined carefully. The Fourier-coefficients of
the Eisenstein-series are calculated explicitly, whenever the degree is
sufficiently small.

Introduction. The present paper deals with half-spaces, which are
built in analogy with the Siegel half-space, and the corresponding non-
analytic Eisenstein-series. The roots can be traced back to C. L. Siegel’s
paper “Die Modulgruppe in einer einfachen involutorischen Algebra”
[30]. A special case of these investigations is considered and contin-
ued by the examination of the Riemannian geometry as well as the
attached Eisenstein-series.

To be more precise, throughout this paper let F stand for R, C or
H, where H is the skew-field of real Hamiltonian quaternions. Just as
in [16] let r = r(F) = dimg F and denote the standard basis of F over
Rbyl=e,...,e. Givena=37,_a;e; €F, a; €R, put Re(a) := q
and let a — a = 2Re(a) — a denote the canonical conjugation in F.
Then A", resp. A € Mat(n;F), means that 4 is an n x n matrix with
entries in F and 4’ denotes the transpose of 4. The letter 7 is reserved
for the identity matrix and O for the zero matrix of appropriate size.
GL(n; F) stands for the group of units in the ring Mat(n; F).

The half-space #(n;F) consists of all Z € Mat(n; F) such that Z +Z
becomes a positive definite Hermitian matrix. Thus i#(n;C) equals
the Hermitian half-space, which was investigated by H. Braun [3].
But the remaining cases are related, because % (n; H) can always be
embedded into the Hermitian half-space of degree 2n.

The attached modified symplectic group MSp(7n;F) consists of the
automorphs of the symmetric matrix Q = (91), I = I, having the
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signature (n, n) and acts on #(n;F) in the usual way. The real mod-
ified symplectic group was already investigated by C. L. Siegel [28],
M. Koecher [14], III, §1, and H. Maa@ [23] in different contexts. Con-
sidering the symplectic group

(0.1) Sp(n;F) = {M € Mat(2n;F); M JM = J},
0 I
= , I =1IM,
(% )
as in [16], one has
-1
el o)M . <e21 0) — Qofn-
(0.2) (0 I Sp(n;C) 0 I Sp(n;C).

MSp(n;F) is obviously conjugate to the indefinite unitary group
U*(2n,F) in [34], p. 377, and to O(n, n), U(n, n), resp. Sp(n, n), if
F =R, C, resp. H, in Helgason’s notation (cf. [8], p. 340).

Nevertheless the notion of modified symplectic group may be jus-
tified by the connection with C. L. Siegel’s paper [30]. Consider
F = R, H and an arbitrary R-involution : of Mat(n;F). According
to [1], X, Theorem 11, there exists F € GL(n;F) such that F =+F
and

i(X)=FXF! for X € Mat(n;F).

In this general situation C. L. Siegel [30] defined the symplectic group
Z. In our notation we gain

-1
(F O>Sp(n;F)(F 0) if F = E
03 z=]\o1r 0o 1)
(F O)MSp(n;F)(F O) ifF = —F
0 1 0 I

The special case F = H, n = 1, F = (e3) was recently treated by
E. Kahler [10].

The Riemannian geometry and the description of the geodesics can
be pointed out along the lines of Siegel’s classical work [29], where
the case F = C is due to H. Klingen [12]. If dZ denotes the matrix of
differentials, then

ds? = Ltrace(Y~'dZY"'dZ +dzy~'aZ'y™"), Y:=L(Z+7)

proves to be a positive definite quadratic differential form. The mod-
ified symplectic transformations become isometries. Thus #(n;F)
endowed with ds? turns out to be a Riemannian globally symmet-
ric space of the noncompact type, which is irreducible except for
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F =R, n = 1, 2 and which fails to be Hermitian, whenever F =R, n #
2, resp. F=H, n > 1.

#(1;C) equals the right half-plane in C. Moreover #(1;H) be-
comes a model of the four-dimensional hyperbolic space, which was
recently treated by E. Kahler [10]. Kaihler’s paper was the starting
point of these investigations. The present paper arose from the at-
tempt of combining Kahler’s approach with the investigations of
Eisenstein-series on the three-dimensional hyperbolic space by J.
Elstrodt, F. Grunewald and J. Mennicke [6] as well as with Siegel’s
methods. Therefore this paper can also be understood as an extension
of [6].

Choosing a special order for F = R, C, H, namely Z, the Gaussian
integers and the quaternions of Hurwitz, the modified modular group
is defined to consist of all integral modified symplectic matrices. By
means of the Euclidean algorithm a simple set of generators of the
modified modular group can be determined. Following the classical
procedure as in the case of the Siegel half-space, a fundamental do-
main is obtained, which has a cusp only at infinity.

The last two paragraphs deal with the corresponding non-analytic
Eisenstein-series. Let I', denote the modified modular group and I'$°
the subgroup of all matrices, whose C-block equals 0. Given Z €
#(n;F)and M €Ty set Yy = $(M(Z)+M (Z)'). Then the Eisenstein-
series is given by

EX(Zs)= )Y (detYy), Zex(mF),
M: Te\T,

and converges locally uniformly in Z and s. The abscissa of absolute
convergence equals Re(s) = ;‘,- -d, where d denotes the dimension of
the real vector space of all skew-Hermitian matrices. One can define
a modified Siegel ¢-operator and obtains the same result, namely

EF(,5)|s¢ = EF_,(-5),

as known from the classical case.

The investigations of ER(.,s) by H. MaaB [23] are extended and
partially strengthened. The Eisenstein-series ES(-, s) were also exam-
ined by G. Shimura [27]. But one has to distinguish carefully between
EH(. s) and the analytic Eisenstein-series on the half-space of quater-
nions in [16], since the domains of definition are completely different.
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Moreover coincidences between different classes of symmetric
spaces for “small” values of n (cf. [8], p. 351-353) correspond to iden-
tities between the associated Eisenstein-series. Therefore Eisenstein-
series on the upper half-plane in C as well as Eisenstein-series for
GL(4;Z) (cf. [31]) come to light.

Finally the Fourier-expansions of Eisenstein-series are investigated.
Just as in the case of the Siegel half-space, one cannot expect explicit
formulas for arbitrary degree. But if the degree is sufficiently “small”,
the explicit description of the Fourier-coefficients succeeds. As one
can expect from the upper half-plane (cf. [19], [20]), resp. the three-
dimensional hyperbolic space (cf. [6]), resp. from Eisenstein-series for
GL(n;Z) (cf. [31]), the Fourier-coefficients involve the modified Bessel
function and certain weighted divisor sums.

Although a great deal of work can be done along the lines of classical
patterns, one has to be cautious with the analogy. On several occasions
the cases F = Ror F = H or even n = 1 have to be treated in a different
way. Thus an explicit description might be useful.

The author would like to express his gratitude to Professor Dr. M.
Koecher for his encouragement and helpful advice, as well as to Pro-
fessor Dr. J. Elstrodt and Professor S. Raghavan for their suggestions.

1. Real, complex, and quaternionic half-space. Considering the sym-

metric matrix
0 I
= , I=10,
¢ (1 0)

we define
MSp(n; F) := {M € Mat(2n;F); M QM = Q}

and call MSp(n;F) the modified symplectic group of degree n over
F. Given M = (£5) € MSp(n;F) we always assume 4,B,C D €

Mat(n; F). Clearly M € MSp(n;F) is equivalent to M e MSp(n;F) as
well as to

(1.1) AB' + B4 =CD'+DC =0, AD' +BC =1.
In this case one has

(1.2) M 1'=QMQ-= (g: gﬁ).
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The definition contains one trivial case, namely

(1.3) MSp(1;R) = {(g 2_1);0¢aen}

0 b
U ;0#beRy.
(GG o)i0rser)
Again in the general situation we want to describe special elements.
Therefore we need the real vector space
Alt(n;F) := {X € Mat(n;F); X = —X}
of all skew-Hermitian matrices, which has the dimension %rn(n +1)—
n. Then the matrices

(1.4) Q=<? é) (é f) S € Alt(n;F),

—
(g ‘2]_1 ) ., UeGL(n:F),

belong to MSp(n; F) in view of (1.1).
Moreover consider the subgroup

MSp(n; F)o := {M = (é g) € MSp(n; F); C = O}.

Then (1.1) immediately yields
U 0 I S
1.5 . 0o = ;
(1.5) MSp(n;F) {(0 U‘l) <0 I)
U e GL(n;F),S € Alt(n;F)} .

Given 0 < j < n we define the usual embedding

MSp(j;F) x MSp(n — j;F) — MSp(n; F), (M, M3) — My x M,

4, 0 B 0

(1.6) (Al Bl)x(Az Bz):z 0 4 0 B
¢ D C, D, Ci 0 D 0

0 G 0 D

(cf. [16], p. 44). If M = (£ 8) € MSp(n; F) with rank C = j, one can
proceed as in the classical situation (cf. [4], 3.12, [16], II.1.4) in order
to obtain K, L € MSp(n;F) such that

(1.7) M =K(Q®) xI)L,

where j = 0, n can be interpreted unmistakably.
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LEmMMA 1.1. () The group MSp(n; F) is generated by the matrices

0@ x 1, (é f) S € Alt(n; F),

—
(g (l’]_l ) ., UeGL(n;F).

(b) Let F =R, n odd, or ¥ = CH, n > 1. Then MSp(n;F) is also
generated by the matrices (1.4).

Proof . (a) Apply (1.7).
(b) If F = C, H, compute

oxr=((5 $) (0 0 (5 $)(T a),

where S = (20) € Alt(n;F), U = (%9) e GL(m;F). f F=R, n = 1
use (1.3). Inthecase F=R, n =2m + 1, m > 1, compute

3
@7 ((I S)(O 1)) (U’ 0 )
QXI(<OI 1 0)) \o vt)
where S = (§9) € Alt(n;R), U = (}9) € GL(m;R), J = J@m), o

The case F = R has to be treated in a different way. Note that
Sp(n;R) C SL(2n;R), whereas (1.5) and (1.7) yield the surprising for-
mula
(1.8) detM = (-1)/, j=rankC
whenever M = (2 5) € MSp(n;R). Thus MSp(n;R) N SL(2n;R) be-
comes a normal subgroup of MSp(n;R) of index 2. If n is even, this
subgroup is generated by the matrices (1.4).

Combining (0.2) and (0.3) with Siegel’s procedure [30], it becomes
obvious how the attached half-space has to be defined. Consider the
real vector space

Sym(n;F) := {X € Mat(n;F); X = X}
of the dimension n + %rn(n — 1) as well as the open subset Pos(#n;F)
consisting of all positive definite matrices in Sym(n;F). Then set
#(n;F) = Alt(n; F) + Pos(n; F)
= {Z € Mat(n;F); Z + Z € Pos(n;F)}.
We always assume that each Z € #(n;F) is given in the form
Z=X+Y XeAlt(nF), Y ePos(nF).
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DEeFINITION. #(n;F) is called the real, complex, resp. quaternionic
half-space of degree n, whenever F = R, C, resp. H.
The definition especially yields
Z(,R)=R"={y eR;y> 0},

4
Z(L,H) = {Z=ZZjej;Zj€R,Z] >O}.

J=1

Note that in the cases F = R, H there is a decisive difference between
#(n;F) and the half-space H(n;F) defined in [16], p. 46. But there
are also close relations, namely

(1.9) H(n;C) =i -#(n;C) =Sym(n;C) + i Pos(n;C).
Given a = 3_3_, aje; € H define
b= ( ae; +ae, asze + 0462) € Mat(2;C)
—asze) +asey ae; —arep

and 4 = (4) € Mat(2n;C) for 4 = (ay) € Mat(n;H) (cf. [16],
p. 14,15, 46). Then (1.9) leads to

(1.10) iZ=iX+iY € H(2n;C), whenever Z = X +Y € #(n;H).

Note that i and e, may be identified for F = C. Furthermore (0.2)
implies

(1.11) (’é (I)> {M;MeMSp(n;H)}(iOI ?)-1 c Sp(2n;C),

where I = I(2"), Moreover we have the obvious relations

(1.12) #(n;R) Cc #Z(n;C) c Z(n; H),
MSp(n; R) c MSp(n;C) C MSp(n; H).

We need the abbreviation A[B] := B AB, whenever 4 is an n X n
and B an n x m matrix, as well as |det 4| := |det 4|!/2, whenever
A € Mat(n; H) (cf. [16], p. 15, 1.3.4, L3.5).

PROPOSITION 1.2. The half-space # (n;F) is an open convex subset of
Mat(n; F), which is contained in GL(n; F). Given Z = X+Y € #(n;F),
one has

|det Z|? = det Y - det(Y + Y~![X]).
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Proof .

|det Z|2 = |det Z| |detZ | = det Y - |det(X + Y)| - |det(—Y "X + I)|
=detY - det(Y — XY~ 1x).

The remaining parts are obvious. o

Next we consider the action of the modified symplectic group on
the attached half-space.

THEOREM 1.3. Let L M = (éf,) e MSp(m;F) and Z = X +Y €
#(n;F). Then the following hold:

(a) M{Z} .= CZ + D € GL(n;F).

(b) M(Z) := (AZ + B)(CZ + D)~! = Xy + Yps € #(n;F).

(¢) Yar = Y[IM{Z}~']Y;;' =Y [X'C + D1+ Y[C]

(d) (LM){Z} = L{M(Z)} - M{Z}.
The group MSp(n; F) acts transitively on # (n; F). Two transformations
Z — M(Z) and Z — L(Z) coincide if and only if

L =pM, where p € centerF,|p|=1.
Proof'. (a) Apply (1.5), (1.7) and Proposition 1.2.

(b), (c) According to (a) we obtain X, € Alt(n; F), Y3, € Sym(n;F)
satisfying M(Z) = X)s + Y, € Mat(n; F). Thus we gain

2Yy = M(Z) + M(Z) = 2Y[(M{Z})7']
in view of (1.1). Hence Y, € Pos(n;F) follows. The remaining parts
can be derived by easy calculations. O
Clearly the definition yields
(1.13) Zex#(nF)=>Z e€#(n;F).
In the cases F =C, n > 2, and F = H, n = 2, additionally
Z e #(n;F) = Z' € #(n;F)

holds. Now we are going to describe the combination of (1.13) with
the action of MSp(n;F) on #(n;F). Given M = ({5) € MSp(n; F)
one easily verifies

M:=M [(6 —OI>] = (—AC f) € MSp(n; F).
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Then a calculation using (1.1) and Theorem 1.3 implies

ProrosITION 1.4. Given Z W € #(n;F) and M € MSp(n;F), one
has

() M(Z) =M(Z).
(b) M(Z)+ DMWY =MWy (Z+W)(M{Z})".
(© M{Z)-M(W)=NM{F} (Z-W)(M{Z})"

= M(ZY (Z- WM.

Following C. L. Siegel [30] we obtain a bijection between the half-
space and the set of positive definite modified symplectic matrices.

Put
P(n;F) := MSp(n; F) N Pos(2n; F).

THEOREM 1.5. The map

k: #(n;F) - 2(n;F), Z=X-i-Y'—+((}),—l (}),> [(é -)5)]

is bijective and satisfies
(%) K(M(Z)) =k(Z)[M™"]
for all M € MSp(n;F) and Z € #(n;F).

Proof . k(Z) € #(n;F) follows from (1.1). The surjectivity of k is
obtained by the method of completing squares (cf. [16], 1.3.2). Since
K is obviously injective, the first part is proved.

In order to demonstrate (x) we may confine ourselves to F = H and

to the generators (1.4) of MSp(n; H). An explicit calculation using
Theorem 1.3 completes the proof. O

There also exists a bounded domain, which is birationally equivalent
to the half-space. Consider the generalized unit disc

2(n;F) := {W € Mat(n;F);I — WWwe Pos(n; F)}.
The generalized Cayley transformation yields that the maps
ZnF)->omF), Z—(Z-1NZ+I)"},
I(mF) - #mF), WeW+DH(=W+D)7}

are bijective and inverse to each other.
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As a consequence one obtains a good description of the stabilizer
Stab(Z) := {M € MSp(n;F); M(Z) = Z}, Z € #(n;F).
We need the unitary group
#(n;F) := {U e Mat(n;F);UU = UU =1}.

Then an explicit calculation yields

PROPOSITION 1.6.
Stab(/) = MSp(n; F) NZ (2n;F)

= {(g ﬁ) . 4, B € Mat(n;F), AB + BA =0,AZ’+B‘E’=1}

()G 0 1 )urennn).

REMARK 1.7. Consider the three-dimensional hyperbolic space

3
= {z:szej;zjeR,23>0}

J=1

investigated in [6]. Clearly # becomes a real submanifold of

4
e;- Z(;H) = {Z:ZZjéj;ZjER,Z3>O}.

j=1
In view of (0.3) one easily verifies that the group
-1
T= (9 0) MSp(1; H (e3 0)
(o 1) MSPLE {7y
contains SL(2;C) as a subgroup. Now one can show that
{MeZ;M{(#)=2}=SL(2;C)U (e3]) - SL(2;C).

The right-hand side proves to be a group by virtue of (e3/) - M -
(es])~! = M for M € Mat(2;C). Moreover, note that z = z;e; +
Z,6e5 + z3e3 € Z implies

(e3l)(z) = z1e1 — zpe5 + z3e3.

2. The half-space as a symmetric space. One can proceed in the
same way, as C. L. Siegel [29] did in the classical situation, in order
to turn the half-space into a symmetric space.
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Given Z W € Mat(n;F), Z = (z11). 21 = Yoz, 2 € R,
set ©(Z, W) = itrace(ZW + WZ') and let dZ denote the matrix of

differentials .
dZ = (Z dz,(c{)ej)
j=1

Now consider the quadratic differential form
ds? :=t(Y~'dzZy~',dz),

whenever Z = X + Y € #Z(n;F). The case F = C of the following
assertion is due to H. Braun [3].

1<k i<n

LEMMA 2.1. The quadratic differential form ds?* is positive definite
in # (n;F) and invariant under the maps Z — M(Z), M € MSp(n;F),
aswellas Z — Z .

Proof. (4, B) = (4, B') yields the invariance under Z — Z . Let
M € MSp(n;F), Z € #(n;F) and set Z, = M(Z). Then (1.1) and
Proposition 1.4 lead to

4z, = M(Z}  dz(M{Z})-".

—t ~ =t =
Next Y, = (M{Z})Y"'M{Z} = (M{Z})Y"'M{Z} follows from
Theorem 1.3 and Proposition 1.4. Finally, the use of [16], IV.1.1,
yields
(Y7 'dz, Y[, dZz)) = 1(Y~'dzY !, d2).
ds? is obviously positive definite in the point Z = I. Since MSp(n; F)
acts transitively, the assertion follows. O

In Helgason’s notation [8] we obtain

THEOREM 2.2. #(n;F) endowed with the metric ds? is a Riemann-
ian globally symmetric space of the noncompact type, which is irre-
ducible except for the cases F =R, n=1,2.

Proof. The map Z — Q(Z) = Z~! becomes an involutive isometry,
which possesses I as an isolated fixed point.

With the aid of Proposition 1.6 we determine the associated Lie
algebras, namely

Lie MSp(n;F) = {M € Mat(2n;F); M Q + QM = 0}

- {(2{ .%,) ; 4 € Mat(n; F), B,CeAlt(n;F)},

Lie Stab(I) = Lie MSp(n; F) n Alt(2n; F).
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Now one easily checks

-1 .
I I)\,. I 1 so(n,n) ifF=R,
Lie MSp(n; F < > ={
(-1 1) PRI 1 1 uw(mn) fF=C

( I I) Lie Stab(I) ( ! 1)_1 = { so(n) xsoln) IF=R,
-1 1 -1 1 u(n) x u(n) ifF=C,
(cf. [8], p. 341). In the case F = H a similar map yields an isomor-
phism between Lie MSp(n; H) and sp(n, n) as well as between Lie
Stab(7) and sp(n) xsp(n). Now the assertion follows from Helgason’s
classification (cf. [8], IX,§4). O

REMARK 2.3. (a) #Z(n;F) corresponds to BDI for F = R, to AIII for
F = C and to CII for F = H in Helgason’s classification (cf. [8], p. 354),
where in every case p = g = n. Note that the spaces Z(n;R), n # 2,
and #(n;H), n > 1, fail to be Hermitian (cf. [8], p. 354).

(b) In view of [8], p. 353, (x), the space #(2;R) is isomorphic to
the direct product of two copies of the upper half-plane # = {z =
x +iy € C;y > 0} in C. Each Z € #(2;R) is uniquely representable

as
Z=xJ+Y=<y1 y+x).
y—x »m

Now define the map

X2 Z(2,R) > F x ¥, Zw— (x+ivdetY, yi(—y +ivdetY)).
1
Clearly x, becomes a bijection. If x»(Z) = (z,w) and U € GL(2;R)
one easily verifies

02Z+J)=(z+1,w),

22(U'ZU) = { (detU -z, U-'(w)) if detU>0,
2 (detU-z U-1(w)) if detU<0O,
1 1
_l _ _+r 1
XZ(Z )_' ( Z’ W) »

2@ xI)(Z)) = (w,z), where Q=Q@, 1=,

(c) In view of [8], p. 352, (iv), the space #(3;R) is isomorphic
to the space SPos(4;R) = Pos(4;R) N SL(4;R) (cf. [32]). Given x =
(x1, X2, x3)' € R3 we define

0 —X3 X2
adx = ( x3 0 _xl) € Alt(3;R),
—X; X 0
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which comes from the vector product (cf. [15], p. 205). Now set

x3: Z(3;R) — SPos(4; R),

(5 ata) (6 )
adx +Y — (detY) (0 det Y o 1/1°

Given s € R3, U € GL(3;R) one easily verifies

v+ =u@|(1 1),

U'ZU) = 1:(Z)[U*],  where U* = dtU"l/Z(U 0 )
x3( )= x3(Z)[U*], where |det U| 0 detlU
x(Z7Y = (s(2)

Now we are going to describe the associated invariant volume el-
ement and the Laplace-Beltrami-operator, which was determined by
H. MaaB [21] in the case of the Siegel half-space. Therefore define the
vector

dy = (dz\),...,dz{},dz{y,...,dz{}),dz{Y), ..., dz{)Y

of the length rn2. Given Y € Pos(n;F) there exists Sy € Pos(rn?;R)
satisfying

(2.1) ds* = (Y 'dZY "', dZ) = Sy[d3)

in view of Lemma 2.1.

PROPOSITION 2.4. The volume element
n r
dv = (detY)™"™ H H H dz,(j)
k=11=1 j=1

of #(n;F) is invariant under the modified symplectic transformations
Z— M(Z), M e MSp(n;F), as well as Z — Z .

Proof. Define d := detSy; then dv = d'/*[],,;dz}} has the de-
sired invariance property due to Lemma 2.1. One calculates d =
(detY)—2m, O

We compute the effect of differential operators on determinants.
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PROPOSITION 2.5. Let Y € Pos(n;F), Y~ = (J;) and s € C. Given
1<klil<n 1< j<r, onehas

O _(detY) = s(det Y) 5.

Bz,(é)
Proof . Due to the method of completing squares (cf. [16], 1.3.2), we

may confine ourselves to the case n = 2. Then an explicit calculation
completes the proof. O

In order to get an explicit description of the Laplace-Beltrami-opera-
tor, let 9/0Z denote the matrix differential operator

d S

THEOREM 2.6. The Laplace-Beltrami-operator A is invariant under
the maps Z — M{Z), M € MSp(n;F), as well as Z — Z and is given

by
o ., 0 1 5}
A=1 (Yﬁxﬁ) - <§r(n + 1) — 1) T (Ka—z'> .

Proof . The invariance follows from Lemma 2.1 and [8], X.2.1. Us-
ing (2.1) an elementary but lengthy calculation yields (Sy)~! = Sy-.
Then the definition of A leads to

0 _ _m O
A= E (detY)™ 550 Re(y ke Yimeu)(detY)™™ P

1<jiklm<n jm
1<yu<r

Now one can use Proposition 2.5 and another lengthy calculation
shows that A has the form given above. o

Theorem 2.6 combined with Proposition 2.5 yields

COROLLARY 2.7. Let Z € #(n;F), M € MSp(n;F) and s € C. Then
one has

A(det Yar)* = ns (s +1- %r(n + 1)) (det Yay ).
REMARK 2.8. One can proceed in the same way as C. L. Siegel [29],

resp. H. Klingen [12], in order to derive normal forms for pairs of
points under modified symplectic transformations. As a result one
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obtains that the geodesics in #(n;F) are given by the images of the

curves
e'r 0
Z(u) =
0 eupn

under the transformations Z — M(Z), M € MSp(n;F). Here
Pi,...,pp satisfy 0 < py < --- < pyaswellas Y 7_, p} =1and u
runs through the interval [0, p], where p denotes the geodesic distance
of the points. On the other hand the geodesics in #(n;F) coincide
with the solutions of the differential equation

Z=7Y 7.
Thus in the relations
Z(n;R) c #Z(n;C) C Z(n;H)

every half-space becomes a totally geodesic submanifold of the follow-
ing one.

3. The modified modular group. We proceed in the same way as in
[16]. Thus we obtain integral elements by the choice of a special order
@ = &(F), namely

OR)=Z, O(C)=1Ze, =2Ze,, OH)=Zey+Ze, +Ze, + Zes,

where ¢y = %(el + e, + e3 + e4). Here @(C) of course denotes the
Gaussian integers and & (H) the quaternions of Hurwitz (cf. [9] or [5],
§91). Then the set of integral modified symplectic matrices

I'(n; @) := MSp(n; F) N Mat(2n; )
becomes a subgroup of MSp(n;F), which acts discontinuously on the
half-space Z(n; F).

DEFINITION. I'(n;#) is called the modified modular group of degree
n.

Clearly, we include the trivial case
(3.1) I'(1;Z) = {£I, 0}
in view of (1.3). In the case F = C (0.2) implies that

-1
eyl O) X (eZI 0)
(3.2) (0 7 I'(n;Ze, + Zey) o I
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equals the Hermitian modular group with respect to the Gaussian
number field (cf. [3]).

Let Alt(n;#) denote the lattice of all integral skew-Hermitian n x n
matrices. GL(n; ) stands for the group of units in the ring Mat(n;#).
Thus (1.5) yields

(3.3) I'(n;@)oo: = MSp(n;F)o N Mat(2n;2)

77 77
B {(([)J gi);UEGL(n;@’),SeAIt(n;é’)}.

Set N(a) := aa € Rfor a € F. Hence one easily verifies the property:

(3.4) Given a € Alt(1; F) then g € Alt(1;#) exists such that
N(a-g)< L

Hence the Euclidean algorithm is valid in & as well as in Alt(1;2).
Thus we can derive a result of L. Kronecker [18]—often cited as Witt’s
Theorem [33]—on the generators of the modified modular group. The
proofs in [16], I1.2.2 and I1.2.3, can be adapted by the use of (1.1) and
(3.4) in order to obtain

THEOREM 3.1. The modified modular group I'(n; @) is generated by
the matrices

—t
0«1, ({) f) S € Alt(n; @), (g ‘g]_l), U € GL(n;2).

The same arguments that were applied in the proof of Lemma 1.1b
yield that I'(n;#) can also be generated by the matrices

07 0o U-!

except for the case @ = Z, n even.

Combining this with (1.8) it becomes clear that the group A}, con-
sidered by H. Maa83 in [23] equals I'(n;Z), whenever n is odd, and
I'(n; Z) N SL(2n;Z), whenever n is even.

Now we are going to determine a suitable fundamental domain.
Therefore let #(n; &) denote the fundamental parallelotope of the lat-
tice Alt(n;#) in Alt(n;F), which consists of the matrices X = (xy) €
Alt(n; F) such that

(0) (I S), S € Alt(n; @), (U’ 0 ) U € GL(n;0),

r
. 1 .
xg = xe, -5 < xi) <
j=1
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where x{}) > 0 in the case F = H. Moreover, #Z(n;F) stands for the
set of reduced matrices in Pos(n;F) (cf. [16], p. 29). Now let & (n; &)
consist of all matrices Z = X + Y € #Z(n;F), which satisfy
(i) X e &(n;0),
(ii) Y € Z(n;F),
(iii) |det M{Z}| > 1, i.e. detYy, < detY, for all M € I'(n;2).
Clearly, one has

(3.5) F(L,Z)={yeR;y 21},
(3.6) iF (n;Ze, + Zey) = F (n;C),

where ¥ (n; C) denotes the fundamental domain in [3] resp. [16], p. 58.
At first we derive some properties of the domain % (n;2).

PROPOSITION 3.2. There exists a constant p = p(n;F) such that
Y >pl holds forall Z=X +Y € ¥ (n;0).

Proof. 1 < |det(Q® x I{Z}|> = N(zy1) = y3 + N(x1;) holds
in view of (iii). The definition of #(n;&#) yields N(x;;) < %, hence
yi1 > 1. Now [16], 1.4.7 and 1.5.1, combined with (ii) imply ¥ > 18I,
where f only depends on n. O

Let dv again denote the invariant volume element (cf. Proposition
2.4). One can apply nearly the same arguments, which were used for
the proof of [16], 11.3.2, I1.3.9, in order to obtain

LeEmMA 3.3. (a) Al € ¥ (n;@) for all A > 1.

(b) GivenZ = X+Y € F(n;&@), then Z; := X +AY € & (n;&) holds
for A > 1.

(c) & (n;@) is arcwise connected.

(d) vol(¥ (n;@)) := fy(w) dv <ooexceptforn=1, 0 =1Z.

Hence the domain % (n;#) fails to be compact. Given a > 0 the
subset & (n; F)[a] of Pos(n;F) consists of the matrices

|

where 0 < d; < adj, for1 < j<nand N(by) <o?for1 <k<l<n
(cf. [16], p. 33). Then we define the Siegel set

F(m;Fa):={Z e #Z(n;F); N(xy)) < o® Y € &(n;F)[a), 1 < ayiy},
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confer [7], p. 90, in the case of the Siegel half-space. Recall the defi-
nition of k¥ from Theorem 1.5 and consider the matrices

0 1
=( . |eGLme) ama wo= (1 )ecLome)
1 0 0 1

LEMMA 3.4. (a) There exists o = a(n;F) > 0 such that

Z (n;0) Cc & (n;F)[a]
(b) Given a compact subset € in # (n;F), there exists p = (%) >0

satisfying
& c L (n;F)[B].
(c) Given y > 0 one can find 6 > 0 such that
k(& (m; F)[yD[Wol € &(2n; F)[0].

(d) Let y > 0O, then there are only finitely many M € I'(n;?) satisfy-

ing
M{(&Z(n;F)ly]) N (n; F)[y] # @.

Proof . (a) and (b) The proof is settled in analogy with [16], II. 3.6,
where Proposition 3.2 is applied.

(c) Proceed in the same way as in [16], 11.3.7.

(d) The assertion follows from part (c) combined with [16], 1.4.10. O

We take the definition of a fundamental domain from [16], p. 6.

THEOREM 3.5. ¥ (n;@) is a fundamental domain of % (n;F) with
respect to the action of I'(n;@) except for F = H, n = 1. The do-
main & (n;@) is arcwise connected and closed in Mat(n;F). Moreover
vol(¥ (n;@)) < oo holds except for F =R, n = 1.

Proof . Given Z € #(n;F) we can show in the same way as in [16],
I1.3.3, that there exists M € I'(n; @) satisfying

detYy < detY,, forall K €I'(n;®).

We may replace M by KM, where K € I'(n;#)«, in order to map Z
into % (n;@) by a modified modular transformation.

In view of the definition ¥ (n;@) is relatively closed in #(n;F).
Now # (n;@) proves to be closed in Mat(n; F) according to Proposition
3.2. By virtue of

UM (F (n;0)) =#(n;F),
M
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where M runs through I'(n; @), clearly # (n;#) contains interior points.

Let M €I'(n;#) and Z € ¥ (n;@) such that Z and W := M(Z) are
interior points of 7 (n;#). We obtain (M{Z})~! = M~{W} from
Theorem 1.3. Thus |det M{Z}| = |det M~ '{W}| = 1 follows. Since
Z and W are interior points, we conclude C = 0. Then (3.3) implies

W = Z[U]+ S

for appropriate U € GL(n;#) and S € Alt(n;#). Since Y is an interior
point of #(n;F), whenever Z = X + Y, we conclude U = &, where
€ is a unit in & and belongs to the center of F, if n > 1. Finally we
obtain S = 0, because X lies in the open kernel of & (n;#).

The remaining assertions follow from Lemma 3.3 and 3.4. O

In the case F = H, n = 1 we observe that the matrices M = eI,
where ¢ € & = {g € @;N(g) = 1}, induce the identity map on
Pos(1; H) = R*. Using [16], 1.1.3, and the considerations above, we
obtain a fundamental domain % * of #(1; H) with respect to the ac-
tion of I'(1;#), where

4
F* = {z=x+y€<7(l;@’);x=2xjej,x2 >x320,x, > IX4|}.
j=2

But we can simplify the condition (iii) and gain

COROLLARY 3.6. A fundamental domain of # (1, H) with respect to
the action of T'(1;€) is given by

4

5"*-_-{z=z:zjej eH;z > 0,-;—2 23>232>0,2y > |24, N(2) 2 1}.
j=1

Moreover, besides the obvious casesn = 1, F=R, C (cf (3.5), (3.6))

the domain & (2;Z) can be described easily.

ExampLE 3.7. The fundamental domain % (2;Z) consists of the

matrices
z=(~"1 y+x)eMm@R)
y—Xx »n
where
1 1
1<y1<y2 0LZ2y<y1, - SXSE.

2
detZ =y, — y>+x2>1.
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REMARK 3.8. Let us replace I'(n;Z) by I'*(n;Z) := I'(n;Z) N
SL(2n;Z). In the corresponding fundamental domain % *(n;Z) the
condition (iii) is only valid for M € I'*(n;Z). However & *(n;Z) pos-
sesses more than one cusp. As an example observe that

F*(1;Z) = #(1;R) = R*,

F*2Z) = {z: (3’1 y”) € #(2;R);

y—x »n
032y3y13y2,~55xs%,}
detZ >1 )

In general the diagonal matrix [i, A, ...,A] belongs to ¥ *(n; Z), when-
ever A > 1.

In this special case we can compute the volume of the fundamental
domain explicitly.

PROPOSITION 3.9. vol(¥ (2;Z)) = n2/9.

Proof . In view of Example 3.7 and Remark 3.8 one has

vol(# (2;Z)) / dv,

where

.@:{z:(yl y““x)e;/(z;k);
y=x »

0< |2yl < <Y2,|xl<—- detZ > 1}

Remark 2.3 yields
X022)=FxF, F={x+iyeCy>0|x|<i|z|>1}

Change of variables leads to

vol(F(2;Z)) = (/y y‘za’xa’y)2 = %2 w

4. Eisenstein-series. We are going to define non-analytic Eisenstein-
series in analogy with the classical case, cf. [19], [20]. Special attention
is devoted to the behavior of convergence, which is investigated after
the model of Eisenstein-series on the Siegel half-space.
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DEeFINITION. Given ¢ > 0 the set
74 F) ={Z=X+Y e#Z(mF);Y >ele 2] > X X}
is called a vertical strip of height ¢.

Using (1.9), (1.10), (1.12) as well as the definition of a vertical strip
7;(n;F) in H(n;F) (cf. [16], p. 148), we obtain

(4.1) 7% (n;R) C 7%(n;C) C 7% (n; H),
(4.2) 177(n; C) = Z(n; C),
(4.3) {iZ;Z € 7%(n;H)} C 7 (2n;C).

ProrosITION 4.1. Given & > 0 there exists ¢ = c(n;€) > 0 such that
|det M{Z}| > c|det M {I}|
holds for all Z € 7%, (n;F) and M € MSp(n; F).

Proof . In view of (4.1) and (1.12) we may restrict to the case F = H.
Now apply (4.3), (1.11) and [16], V.2.5. O

Analogous arguments using [16], V.2.7, and Theorem 1.3 yield

PROPOSITION 4.2. Given a compact subset & in Z (n;F) there exists
a constant ¢ = c(%) such thatall Z = X + Y W =U+V € & and
M € MSp(n; F) satisfy

det Yy, < c-detVy,.

We use the abbreviations
I'n:=I'(n;¢) and I :=1(n;0)c.

LEMMA 4.3. Lete€R, e>0and ke R, k>r(n+1)—2. Then the
series
> |detM{Z}|*
M: Te\T,
converges uniformly for Z € 7% (n;F).

Proof . In view of (3.3) the definition does not depend on the choice
of the representatives. Hence let % denote a fixed set of representa-
tives. According to Proposition 4.1 the series is uniformly majorized
by

> |det M{I} k.

Mex
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Observe that |det M{I}|~2 = detY, whenever M(I) = X + Y. Let
dv denote the invariant volume element quoted in Proposition 2.4.
Moreover set

={Z=X+Y eF(n;@);,detY <c}

for sufficiently large ¢ > 1. Then % becomes a compact subset with
positive volume. Hence the series is majorized by

in view of Proposition 4.2. Let / denote the number of neighbors of
F (n;@) and set % = ;e M(Z). Thus we obtain

G <l / (det Y)¥/2 db.
74

Now Z 1is contained in a fundamental domain of #(n; F) with respect
to the action of I'(n;@)«. Every Z = X + Y € % satisfies detY < ¢
in virtue of @ C ¥ (n;&). According to (3.3) it suffices to check the
convergence of the integral

/ (det Y)*/2 .

Xe#(n;@),YeZ (n;F)
detY<c

In view of dv = 2™"=D/2(detY)~™ dX dY it suffices to estimate the
integral

/ (det Y)*/2-rm dy
Ye#(n;F),detY<c

According to [16], 1.5.10, this integral exists, whenever k > r(n+1) —
2. o

Thus we can easily derive

THEOREM 4.4. The series
EN(Zs):= ) (detYy)*
M: Te\T,

converges absolutely and uniformly, whenever Z belongs to a compact
subset of #(n;F) and s € C satisfies Re(s) > k, k > jr(n+1) — 1.
Given Z € # (n;F) the function

{seC;Re(s) > %r(n-i— 1) - 1} —C, s—ENZs),
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becomes holomorphic. Let s € C, Re(s) > 1r(n+1) -1, be fixed. Then
(4.4) EN(M(Z).5) = E}(Z,5) = E}(Z.5)

holds for all Z € #(n;F¥) and M € I'(n;@). Given ¢ > 0O there exists
¢ > 0 such that

(4.5) |EF(Z 5)| < c(det Y)Re®
holds for all Z € # (n;F) satisfying Y > el.

Proof . The definition does not depend on the choice of the repre-
sentatives in view of (3.3). Using det Y, = (detY)-|det M{Z}|2 the
properties of convergence follow from the previous lemma.

The uniform convergence implies that the function s — E¥(Z s) be-
comes holomorphic. If K then also KM, where M € I'(n; &), resp. K
(cf. Proposition 1.4), run through sets of representatives of I'3°\I,.
Hence (4.4) follows by a rearrangement. In order to prove (4.5), we
may assume Z € %% (n;F) in virtue of E¥(Z + S,5s) = EF(Z ) for
S € Alt(n;#). Then Lemma 4.3 completes the proof. O

DEFINITION. E¥(Z s) is called Eisenstein-series in Z and s.

In virtue of (3.1) the case F = R, n = 1 becomes trivial, namely
(4.6) ER(y,5)=y*+y~5, whenever y € #(1;R) = R*.
Consider the classical non-analytic Eisenstein-series
(4.7) E(z,5) = % ) (l?erLdP)s’

(c.d)€Z>coprime

where s € C, Re(s) > 1, z=x+1iy € C, y > 0 (cf. [19], [20]). Then
(3.2) and [16], I1.2.6, imply

(4.8) Ef(z,s) =E(izs9), ze XZ(1;C).

Consider the Laplace-Beltrami-operator A in Theorem 2.6. Corol-
lary 2.7 immediately leads to

COROLLARY 4.5. The Eisenstein-series is an eigenfunction of the
Laplace-Beltrami-operator. More precisely, if s € C, Re(s) > %r(n +1)
— 1, then

AE¥(Z s)=ns(s — ir(n+ 1) + VEF(Z ).
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According to the classical procedure by H. Braun [2], we can show
that the abscissa of absolute convergence is given by Re(s) =
%r(n + 1) — 1 except for the trivial case (4.6), of course. Therefore
some preliminaries are necessary.

A matrix G € Mat(n, m;&), where m > n (resp. n > m), is called
primitive if there exists U € GL(m;@) such that U = (%) (resp. U €
GL(n;@) such that U = (G, *)). Clearly if m > n

(4.9) G is primitive if and only if H € Mat(m, n;@) exists
such that GH = 1.
In the cases @ = Z, Ze, + Ze, the matrix G proves to be primitive if
and only if the n-rowed subdeterminants of G are coprime.
Given M = (£ 2) € MSp(n; F) then (C D) is called the second row
of M.

PROPOSITION 4.6. The second rows of the matrices in I'(n; &) coin-
cide with the primitive pairs (C, D) € Mat(n, 2n;@) satisfying CD +
DC =0.

Proof. If M belongs to I'(n;&), apply (1.1) and use I'(n;#) C
GL(2n;#). Conversely, let such a pair (C D) be given. According
to (4.9) E G € Mat(n; @) exist such that CF + DG = I. Now set

M=(‘é g), A:=G -FGC B:=F —-FGD

and verify M € I'(n; @). O

Next we consider I'(1;#(H)) and compute the number of d’s, when-
ever an odd c is given.

PROPOSITION 4.7. Let ¢ € @(H) such that N(c) is odd and set | :=
max{m € N; Lc € #}. Then there exist | - N(c) cosets d + cAlt(1;0)
such that cd + dc = 0.

Proof. We can replace c by ec, e € & = {g € @; N(g) = 1}, and may
assume ¢ = Z‘}zl cjej, ¢cj € Z. Thus | = g.c.d.(c;, ¢z, c3,¢4) holds. Let
g = N(c), then there are exactly /g3 tuples (d, d5, d3,d;)' in Z* mod g
such that

ady +cpdy +c3ds +c4dy =0 modg
holds. Hence there are lg* cosets d; + g& such that 2Re(d;c) =
0 mod g. Observe that each coset c# decomposes into g2 cosets d+q&
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(cf. [17]). After renumbering we therefore may assume that

lq Ig?
@) +co)=Jd; +4q0).
Jj=1 Jj=1

Since ¢ is odd, we can choose the representatives such that Re(d;¢c) =0
holds for 1 < j < lg. Hence d; + cAlt(1;#), 1 < j < g, are the cosets
with the desired property. o

Next it is necessary to compute an integral. The same arguments,
which were used by H. Braun in [2], [3] resp. in [16], V.1.2, yield

LEMMA 4.8. Inthecase F=Rletn>1,s€C, Re(s) >n—3/2. If
F=CH,letn>1,s€C,Re(s) >rn—1. GivenZ = X+Y € #(n;F)
the integral

ne(Z) = [ |det(Z + T)[~° dT
Alt(n;F)
exists and satisfies
(4.10) 15(Z) = (det Y)r(r+D/2=1=syF |
where

”F — nrn(n+1)/4—n/2 ﬁ r(s +1- %r(n + ])) F(%(S +1- r]))
" Lis+1-rj) T((s+r-rj)

j=1

Note that in the case F = R, i.e. r = 1, several factors on the right-
hand side can be reduced such that the reduced product even exists
for Re(s) > n — 3/2. Here I'(s) denotes the gamma-function, since
confusion with the modular group is not possible.

The existence of the integral implies the convergence of a series.

COROLLARY 4.9. Let k € Rand k > n—-3/2,n > 1 for F = R
resp. k >rn—1,n>1 for F = C,H. Given ¢ > 0 there exists ¢ > 0
such that

cHrm(z)< Y |det(Z+ 7)™ < Fmi(2)
TeAlt(n;0)
holds for all Z = X +Y € #(n;F) satisfying Y > el.

Proof. The assertion follows from an estimation between
|det(Z + T)| % and

/ |det(Z + T + H)| ™ dH.
#(n;?)
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This estimation can be derived by (1.10), (1.11), (1.12) and [16],
V.1.4. m]

Now we follow H. Braun [2] in order to determine the abscissa
of convergence of the Eisenstein-series. Hereby the result on real
Eisenstein-series quoted by H. Maal3 [23] can even be strengthened.

THEOREM 4.10. Letn> 1 forF=Rand n > 1 for F = C,H. Then
the Eisenstein-series EX(Z,s) does not converge absolutely, whenever
Re(s) = jr(n+1)— 1.

Proof . According to Proposition 4.2 it suffices to show that the series
Ef(Lk)= Y |detM{I}|™%*,  k=ir(n+1)-1,
M: Te\T,
diverges. Therefore we take second rows (C D) of matrices M €
I'(n;&) such that the cosets I'PM ({7).S € Alt(n;#), are mutually
disjoint. In view of
Ex(Lk)> Y |detM{I}|~%*
M(;3)

= Y |detC|7**|det(I + C™'D + §)|*
CD,S

and Corollary 4.9 it suffices to estimate
Ep =) |detC|™%.
CD
In the case F =R, n > 2 choose

cI® 0 dJ —dJG’) (o 1)
= D= ’ = ’
¢ ( G 1)’ (o 0 7 -1 0

where c €N, d, 1 <d < ¢, is relatively prime to ¢ and G runs through
a set of representatives of Mat(n — 2,2;Z)/cMat(n — 2,2;Z), which
consists of ¢2"~* elements. (C D) has the desired property. If ¢
denotes Euler’s p-function, we obtain k = §(n — 1) and

Ex=) ¢ ?= i p(c)c™2
cd c=1

But this series diverges.
In the case F = C apply [3], Theorem II.
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In the case F = H let ¢ run through a system of representatives of
&\{x €e@;N(x) = p},

where & = {g € @; N(g) = 1} and p runs through all odd primes. For
every prime p we have p+ 1 possibilities for ¢ according to [9]. Given
¢ choose dj, ..., d, according to Proposition 4.7 and assume d, = 0.
Hence we may suppose pt N(d;) for 1 < j< p. Set x = (c3,...,¢n)
and let each c¢; run through a set of representatives of #/&c, which
consists of N(c)? = p? elements (cf. [17]). Now set

c= (1 9) 2=(5 ¢) amtresen

and observe that (C D) has the desired property. Now we obtain
k=2n+1 and
Ex= Y (p-D@+1p>
p>2prime

This series diverges. o

Just as in the case of Siegel modular forms we can define a modified
¢-operator. Given a function f: #(n;F) — C and s € C, we set

fls¢: #(n—1;F) = C, Z'—*}ggl“f((g g))

if this limit exists. f|;¢ has to be regarded as a constant, if n = 1.
Then ¢ is called the modified Siegel ¢-operator.

Finally we show that the modified Siegel ¢-operator can be applied
to Eisenstein-series just as in the classical case.

THEOREM 4.11. Given s € C, Re(s) > 3r(n+ 1) — 1, then one has
Ey(.s)|s¢p=Er_i(~s) for n>2,
E{(n9)|s¢ =1

Proof . According to Lemma 4.3 the limit may be distributed through
the infinite series. The case n = 1 becomes clear in view of

, P L _[N@ ifc=0,
JHm |M{A}™ = lim N(ci +d) {o if ¢ #0.

Let n > 2 and let I';, denote the set of matrices M € I', such that
the elements m;, ;, 1 < j < 2n, vanish. I7, proves to be a subgroup
and one easily verifies that the map

T \Faot — T NTPNT, T2, M o (T NTR)(M x 19)),
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becomes a bijection. Let Z; := (49). Given M € I’} then | det M{Z,}|
does not depend on 4. Hence we obtain
Y (detY)|det M{Z;}|"¥ = E}_,(Z5).
M: (CGNCP\T;
Given M € I'(n;#) such that I'°’M NI = & one checks that
lim;_, |[M{Z;}| = co holds. m]

The isomorphisms y, and x3; in Remark 2.3 between symmetric
spaces correspond to identities between the associated Eisenstein-
series. Therefore the Eisenstein-series (4.7) and Eisenstein-series for
GL(4;Z), which were investigated by A. Terras [31], appear. Note that
the action of I'(3; Z), corresponds to the action of the parabolic sub-
group P;, of GL(4;Z) via x3. Consider the attached Eisenstein-series
of the second type in [31]

Eo(Y):= > (det Y[P])™S,
P: Pr(4,3,2)/GL(3;Z)
where Y € SPos(4; R) and Pr(4, 3, Z) denotes the set of primitive 4 x 3
matrices over Z. Thus an explicit computation yields

LEMMA 4.12. (a) Given
Z=xJ+Y = (yl y+x> € #(%R)
y—x »n
and s € C with Re(s) > % one has

EX(Z s) = E(x +iVdetY,2s) + E (%(—y + iVdetY), 2s) .
1

(b) Given Z € #(3;R) and s € C with Re(s) > 1 one has
EX(Z ) = Ex50(x3(2)) + Ezs0(x3(2)71).

5. Fourier-expansion of Eisenstein-series. The Fourier-expansion of
non-analytic Eisenstein-series on the Siegel half-space was investigated
by H. MaaB [22], §18. G. Shimura [27] dealt with the case F = C,
if we regard (0.2) and (1.9). Some of the following results on real
Eisenstein-series were already obtained by H. MaaB [23].

Throughout this paragraph let s € C be fixed such that Re(s) >
%r(n + 1) —1 holds. In order to describe the Fourier-development, we
have to determine the dual lattice. Therefore set

6*(F)=0(F), F=RC,
ﬁ#(H) =Z2e+Z(ey+e) +Z(ey + e3) + Z(e; + e4)
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(cf. [16], p. 12). Using the definition of 7 in §2 we derive
Alt*(n;@) .= {T € Alt(n;F);7(T, S) € Z for all S € Alt(n; )}
={T = (tyy) € Alt(n;F); t} € @, 2ty € &* for k #1}.
Since the Eisenstein-series is invariant under the transformations
Z— Z+S, S € Alt(n;@), we obtain
EX(Zs)= Y. cY;T)e? XD, Z=X+Ye#(mF).
TeAlt' (n;®)
The use of EF(Z[U],s) = EF(Z,s) = EF(Z s5) according to (4.4) as
well as the uniqueness of the Fourier-coefficients yield
c(YIULT)=c(Y;T[T]), c(¥;T)=c(Y;-T)

for all U € GL(n;®).
It is convenient to decompose the Eisenstein-series into n+ 1 partial
series. Given 0 < j < n we set

EF(Zs)= D (detYy)'

M: Te\T,
rank C=j

The definition leads to the obvious relations
(5.1) EN(Zs) = ZEF (Zs),

(5.2) ,,,O(Z, s) = (det Y)S.
Set Pr(n,m;#) = {G € Mat(n, m;#);G primitive}. Following
H. Maa8 [22], §11, the same arguments yield

LEMMA 5.1. Given 0 < j < n let P run through a set of repre-
sentatives of Pr(n, j;&@)/GL(j;&). Each P is completed to a matrix
= (B*) € GL(n;®) in exactly one way. Let M; run through
the subset of representatives of T §°\1"j, where |detCy| # 0. Then

(M x I )( 0 U~ 9.) runs through the subset of representatives of T°\I'y,
where rank C = j.

Thus we easily compute

COROLLARY 5.2. Given 0 < j < n one has

EF(Zs)= 3 (det Y)*(det Y[P])~SE¥ ,(Z[P].s).
P: Pr(n, j#)/GL(j:®)
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Given S € Pos(n;R),0 < j < n, and w € C satisfying Re(w) > 3n,
we can define the Dirichlet-series
i(S w) = > (det S[P])~°.
P: Pr(n, j;Z)/GL(J;Z)

A related series was investigated by M. Koecher [13]. (S, w) proves
to be the quotient of the corresponding Epstein-zeta-function over
the Riemann-zeta-function 2{(2w). In view of (5.1), (5.2), (4.6) and
Corollary 5.2 we gain

(5.3) ER(Zs) = (detY)S¢1 (X 2s),

whenever n > 2.

In view of the corollary the problem is reduced to the investigation
of EF (Zs). Set Fg = Qe; + --- + Qe,. The matrices in Mat(n; Fq)
are called rational.

LEMMA 5.3. Let M = (ég) run through the subset of representatives
of T\, where rank C = n. Then each R € Ali(n;Fq) is represented
in the form R = C~1D exactly once. Moreover

V(R) = |detC|
becomes well-defined and satisfies
V(R+S)=v(R) for SeAlt(n;?).

If @ = Z, Ze, + ZLe,, then v(R) coincides with the absolute value of the
product of the denominators of the reduced elementary divisors of R.

Proof . Given R € Alt(n;Fq) choose U V' € GL(n;#) such that
URV =1q,,..., dnl, q;€Fq. gj41 €94,

according to [16], 1.2.3. Each g; possesses a representation g; =
cj”d j»¢j#0,cj,d;j €@, where c; and d; are relatively left-prime. De-
fine Cy = [cy,..., cnl, Do = [dy, ..., dy], then (Cy, Dy) becomes prim-
itive (cf. [16], 1.1.11). Hence (C D) := (CoU DoV 1) proves to be
primitive and satisfies rank C = n as well as

C'D=Uq,....qn]V"' =R

Now (C D) turns out to be the second row of a matrix in I'(n;#)
according to Proposition 4.6. If & = Z, Ze, + Ze,, moreover | det C|
equals the absolute value of the product of the denominators of the
reduced elementary divisors of R.
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Clearly, the representation R = C~!D and |det C| do not depend
on the choice of the representative in the coset I'%°Mf in view of (3.3).
Now suppose that M = (¢ }) and M; = (&' 5!) belong to I'(n;#) and
fulfill rank C = rank C) = n as well as C~'D = C{'D; = R. Then
R = —R yields CD; + DC; = 0. Hence (1.2) implies MM € TP,
ie. I'°M = I's°M,. Replacing M by M({)f)S € Alt(n;@), yields
V(R+S)=r(R). O

In the case # = Z we obtain information about the elementary
divisor normal form of the C-block in a matrix M € I'(n; Z).

COROLLARY 5.4. Given M = (£ 8) € T'(n; Z) then the elementary
divisor matrix of C has the form
[er,c1,¢2.€20 0o csCmyCmy 0, ..., 0], if rankC = 2m,
[1,c1,¢1,¢2.€2, -, Cmy €M, 0,...,0], if rankC =2m + 1,

where cy,...,c,m € N such that ¢j|cjyy.

Proof. We may assume rank C = n. Then a combination of [25],
Theorem IV.1, with Lemma 5.3 yields the assertion. o

Replacing M by a product of M and Q a corresponding result is
true for each other block of the matrix M € I'(n; Z).
Furthermore, Lemma 5.3 immediately yields

(54)  E¥(Zs)=(detY) > v(R)"*|det(Z+ R)|™>.
ReAlt(n;Fq)

In view of V(R + §) = v(R) for § € Alt(n;#), the partial series
E,f' ;(Z.s) possesses a Fourier-expansion, too. Let R mod1 indicate
that R runs through a set of representatives of Alt(n;Fq)/Alt(n;2).
Given T € Alt*'(n;#) and Y € Pos(n;F), we define

as(T) = Z V(R)—ZseZni‘r(R,T)’
R mod1

BUYiT)i= [ [der(¥ + ) B2 gx
Alt(n;F)

Given U € GL(n;#) we immediately obtain
(5.5) as(T[U]) = as(=T) = os(T),
B(Y; TIUY) = B(Y[ULT), Bs(Y;T) = Bs(Y;~T).
Hence Lemma 5.3 and the definition of the Fourier-coefficients imply
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LEMMA 5.5.

EF(Zs)=(volZ(m;@)™! Y (detY)*os(T)Bs(Y; T)e? XD,
TeAlt'(n;2)

Combining this result with (5.1) and Corollary 5.2, we gain

COROLLARY 35.6.
E,‘,‘“ (Zs) = (det Y)' + (detY)*

% Z el Z Z as(T) Bs(Y[P]; T)eZnit(X.T[F'])’

j=1 P TeAlt(j:o)
where cj = vol & (j;&) and P: Pr(n, j;&)/GL(j;2).

As a consequence we observe that in the Fourier-expansion of
EF ;(Zs) all the coefficients of matrices T € Alt*(n; &) vanish, when-
ever rank 7> j.

Lemma 4.8 yields

(5.6) Bs(Y;0) = (det Y)r(n+/2=1=2spF

REMARK 5.7. It is possible to reduce the computation of Ss(Y;T)
to the case |det T'| # 0 by aid of (5.5). Therefore let

(T O T (N = )
T= (0 O) eAlt'(n;@), Y = ( i *> € Pos(n; F),
T, =T, Y, =Y.

Then one obtains

Bs(Y; T) = Bs—y(nmyj2(Y1; Ty)(det Y) (¥ 1)/2=2
. (det Yl)2s+l+r(m—l—2n)/2”§‘ nrm(n—m)/Z

."ﬁ” I(2s+1-4r(n+j))
o T@s+1=3r(n—m+ j))

In general the evaluation of the integral f,(Y; T) leads to general-
ized confluent hypergeometric functions, where the case F = C was
treated by G. Shimura [26]. On the other hand it might be possible
to investigate (7)) in analogy with Y. Kitaoka’s procedure [11] in
the case of the Siegel half-space. But it seems to be plausible that the
Fourier-coefficients of the Eisenstein-series can only be expressed by
well-known functions, whenever the degree » is “sufficiently small”.
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Therefore let us consider the case # = 1. Now F = R becomes trivial
in view of (4.6). Dealing with F = C we observe the connection (4.8)
with the classical Eisenstein-series and obtain the Fourier-expansion
from [19], p. 46, or [20].

In order to deal with the case F = H, it is more convenient to
introduce the subring A := Ze, + Ze, + Zey + Zey of #(H). Given
0 # ¢ € A define the greatest rational divisor of ¢ in A by

plc) :=max{l{ e N;["lc e A}
and set p(0) := 0. Note that Alt(1;#) = Alt*(1;7) = Zey+Zez+Zey C
A.
Given S € Pos(n;R) and s € C with Re(s) > 1n, the Epstein-zeta-
function associated with S is defined by

((S;8) =Y (S[e)~*

0#g€Zn
Especially one has for I = I and s € C with Re(s) > 2
(I;s)= > N(e)™ =8(1-22"2)(s){(s - 1),
0#ceA

where { denotes the Riemann-zeta-function. Given ¢, t* € Alt(1;2)
the Fourier-expansion involves the function

as(t, t*) ZNC)’

O#ceA
ct=t*c

Clearly ay(t, t*) = 0 unless N(¢) = N(¢*). The structure of a;(¢,t*) is
elucidated by

ProrosiTION 5.8. Let t,t* € Alt(1;#) with N(t) = N(t*) # 0 and
s € C with Re(s) > 1. Then there exists S € Pos(2;Z) such that
4N (1)
[ged(p(t +1*), p(t — 1%))1?

os(t,t*)=((S;s) and detS =

Proof . Let

Then ¢ = 3}, cje; satisfies ¢t = ¢*c if and only if (c1, ¢z, 3, ¢4)
belongs to the kernel of the matrix

Iy—1; 0 ta+t; —t3-13
0 Zz—t; [3—1; t4—lz
ta—ty L3+t —hLH—1 0

—t3+1t3 4+ 0 -t -1t
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which has the rank 2. Hence o,(¢, ¢t) = {(S;s) holds for an appropri-

ate S € Pos(2;Z). If t, # t; the kernel over Q is spanned by a =

(ta+ 1ty t3—15, -1, +13,0) and b = (t3+ 13, —t4+1;,0,1, — t3)'. Hence

we have

_ det(G'G)
[02(G)1*°

where J,(G) denotes the second determinantal divisor of G (cf. [25],
p. 25). An elementary computation yields det(G'G) = 4(t, — t;)*> N (¢)
and 9,(G) = (f, — t3)ged(p(t + t*), p(t — t*)). In the case 1, = &3
analogous arguments complete the proof. o

detS G = (a,b) e Mat(4,2;Z),

If K; denotes the modified Bessel-function, the Fourier-expansion
is given by

THEOREM 5.9.

Ef(zs)= 3 c(yn)etmRE,
teZe,+Zes+Ze,

where z = x +y € #(1;H) and with I = 1
T(s —3/2)¢(I;s — 1){(2s = 3) 5_
;0)=y° 3/2 3—s
c(y;0)=y"+n OIS 35,
s 2201 (1) 3% 2 reAlt(1y) Os—1(8, 1 + 21t*)
T(s)¢(I;5)¢(2s - 2)
’ Itls_3/2y3/2Ks_3/2(27t|t|y)

Jor 0 #t € Zey + Zes + Ze,,.

c(y;t) =2m

Proof . At first (5.6) yields

Bily;0) =¥ S o2

Given 0 # t € Ze, + Ze; + Ze, we use an orthogonal transformation
and apply [24], p. 85, in the following calculation

Bs(vst) = / |y + x| ¥ 2mRG dx
Alt(1;
+00 p+o0  p+00 .
_ ys—zs/oo /oo / (14 x2 + X3 + x2)~Se~2m% g dx, dxcs
— - —00

1 _ -
=2ﬂsmy3/2 S|t|S=32 K35 (27]t]y).
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Next observe that the representatives of I';°\I'; may be chosen in
Mat(2;A). Given 0 # ¢ € A let #(c) denote a set of representatives
of the cosets d + cAlt(1;#), d € A, satisfying cd + d¢ = 0. In analogy
with Proposition 4.7 one can show that #(c) consists of p(c)N(c)
elements. Moreover we use the abbreviation

(e t) == Z e2miRe(c™'di)

de#(c)
for t € Ze, + Ze; + Zey and obtain
as(t) = Z V(w)—ZseZniRe(d)t)
w€Qe,+Qe3+Qes mod 1
1 -5
Ty o NOTe,
0#ceA

where I = I4). Especially we have

1 I 1){(2s—-3)
%)= 775y 2 POV = Tt — g

0#ceA
Now let ¢ # 0. A standard argument (cf. [6], 4.5) shows that
¢)N(c) if Re(c~'df)eZ foralld € #(c),
” y(c,,)z{pu (c) (c1dn) (c)
0 otherwise.
Given ¢ = ¢yc;, where ¢y, ¢; € A, N(cy) = 2™, m € Ny, N(c;) odd, we
gain

(e t) = y(ca t)y(cr, B).
Using the isomorphism between A//A and Mat(2;Z//Z) forodd/ € N
(cf. [9], Vorlesung 8, resp. [17]) and a direct computation for c,, one
can show that Re(c~!d7) € Z holds for all d € #(c) if and only if

p()lp(t) and ctc™! et +2p(c)Alt(1;0).
Thus we calculate

os(t) = Z_(_I_l’_s)_ Z E 32 Z N(c)l-s

leN,]|p(t) t*€Alt(1;0) 0sceA, p(c)=1
cit=(3t4+2t")c

1 _2s .
=c(1;s)C(2s—2)Zl“ Y ot +20r).

1lp(t) t*€Alt(1;0)

Hence the assertion follows from Lemma 5.5. o

Note that the sum over ¢* in the formula above is finite.
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In the case F = R we are able to give the Fourier-expansions explic-
itly for n =2,3. Given t € N and 5 € C let

= Z I
leN,I|t

denote the divisor sum. Then the application of Remark 2.3 and [19],
p. 46, resp. [20] leads to

COROLLARY 5.10. One has
EX(Zs)=) c(Y;ne?™™,  Z=xJ+Y€e#(2;R)
teZ
where
¢(Y;0) = (det Y)* + (det Y)*¢ (¥, 25)
N ﬁr(zs —1/2) ((4s-1) (det ¥)1/25,

T(2s)  (4s)
o(Y3t) = 2n2s|t|25*'/2§%(det Y)4Kas_y 5 (2mt|Vdet Y)

forO#tel

Note that the Fourier-coefficients c¢(Y;¢) for ¢ # 0 only depend on
detY and s.

Let n > 3 and fix a set of representatives P: Pr(n, 2;Z)/GL(2;Z).
Then each T € Alt*(n;Z) with rank T = 2 possesses a unique repre-

sentation
0 1
T=1L1gp1, J= )
stJ[P] (_1 0

where 0 # ¢t € Z and where ¢(27T) = |t| is the greatest common divisor
of the entries of 2T € Alt(n; Z). Now observe that

12 . det(Y[P]) = 2¢(T'YTY)
holds. Hence we can combine the Corollaries 5.2 and 5.10 in order to
gain

(57) ERy(Zs) = ya B~ 1/2) s -

D (detvye, (){Zs - %)

I'(2s)  {(4s)
25 94s—1(&(27)) s ) 1
+T %‘ , 21 510 (detY)*(2t(T'YT Y))
gnktTnZ)

Koy 1222V 2(T'YTY) ).
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Now let n = 3. We compute

Bs(Y;0) = (det Y)“%ﬁﬂw

in view of (5.6) and Lemma 4.8. Let 0 # T € Alt"(3;Z) and Y €
Pos(3;R). We choose V' € GL(3;R) such that Y = V'V. Change of
variables yields

Bs(Y;T) = / (det(Y + X))~ 2201 (XT) gy
Alt(3;R)

= (detY)~% /

(det(I + X[V 17)) B~ 2mit(XT) gx
Alt(3;R)

= (det Y)l‘zs/ (det(] + X)) e~ 2t (XTIV') gx
Alt(3;R)
0 foo o0 '

= (det Y)l—zs/ / / (1 + x12 + X22 + x32)e—27tzwx, dxl de d)C3
—00 J—00 J—00

by the use of an orthogonal transformation, where
w= 2t(T[V'], TIV')/? = 2¢(T'YT, Y)) /2.

The same calculations as in the proof of Theorem 5.9 show that

Bs(Y;T) = ZnZSﬁ(ZT(T'YT Y))*~3/4(det Y)!1-2s
Kps-32(2nV21(T'YT Y)).

Given 0 # R € Alt(3;Q) note that v(R) = [?, where / € N, if and
only if R = [7!T, where T € Alt(3;Z) and &(T) = 1. Denoting the
number of elements of a set . by #, we calculate

as(O)'—' }: V(R)~2S

Rmod 1

=) I #{geZ}1<g;<lgcdg=1}
=1
_$és-3)
{(4s) -

Given 0 # T € Alt*(3;Z) we may restrict to the case

([0 0
T=§(-t 0 o), = ¢(2T),
0 0O
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in view of (5.5). Hence we calculate
as(T) — Z V(R)—ZseZnir(R,T)

— ((41],3) i i i |45 g2mitg/1

- z(—isi"w(”'

A combination of (5.2), (5.3), (5.7) and Lemma 5.5 yields the final

COROLLARY 5.11.
EXNZs)= Y c(y;T)e XD, Z=X+Ye#(3R),
TeAlt’(3;2)
where
c(Y;0) =(detY)® + (det Y)°{; (X 2s)

T(2s — 1/2) {(4s — 1)
G ey 7Ty
s T(25 - 3/2) {(4s - 3)
T2 C(ds)

c(Y;T) =2n% ——";f(—z‘s ()£C((24€))) (det Y)*(2e(T'YT, Y))/*~*
X Kys—1722nV/21(T'YT Y))
+ ZnZSM(det Y)!' =5 (27(T'YT, Y))*~3/4

I'(25){(4s)
X Kps—3/2(2nv/2t(T'YT Y))

(det Y)* (o (X 25 — 1/2)

(detY)!-,

Jor T #0.
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