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INVARIANT SUBSPACES OF ^ 2

OF AN ANNULUS

D. HITT

Fully invariant subspaces of the Hardy class <%*2(G) on a multiply
connected domain G C C, are those JC such that

for all rational functions Q whose poles are in the complement of G.
Simply invariant subspaces are those JC such that

Although the structure of the fully invariant subspaces is well known
as a result of the work of Sarason, Hasumi, and Voichick, little work
has been done on subspaces simply invariant but not fully invariant.
In this paper we consider the special case G = A, where A denotes
the annulus {z eC: I < \z\ < R}. We classify the simply invariant
(closed) subspaces Jί of 2

0. Introduction and statement of results. The fully invariant sub-
spaces of the Hardy class ^ 2 ( G ) on a multiply connected domain
G c C, as well as some of the simply invariant ones, have been classi-
fied (cf., [12], [23], [25], and [27]). Fully invariant subspaces are those
Jΐ such that

for all rational functions Q whose poles are in the complement of G.
Simply invariant subspaces are those Jt such that

In this paper we consider the special case G = A, where A denotes the
annulus {z eC: 1 < \z\ < R}. We extend the results of Royden [23]
by classifying the simply invariant subspaces Jt of ^ 2 ( A ) . Here and
throughout this paper "subspace" means "closed subspace". If we also
have z~ 1/(z) e Jt for all / e Jt, we say that Jl is doubly invariant
or fully invariant. Note that this use of "fully invariant" is consistent
with the use above.

Sarason [25], Hasumi [12], and Voichick [27, 28] were the original
investiagators of fully invariant subspaces of ^ 2 ( A ) . They character-
ized them, as well as the subspaces of J? 2 (d A) which are invariant
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under multiplication by both z and l/z. They showed that the fully
invariant subspaces of ^ 2 (A) have the form Φ^2(A) (cf., Theorem
1 of [23]). Here Φ is an inner function on A. We say that a bounded
analytic function Φ on A is inner provided its boundary values on
the two components of the boundary have constant absolute value al-
most everywhere, although not necessarily the same constant on both
circles.

In the course of our proofs we need to classify a certain kind of space
which we call weakly invariant under the backwards shift. This is done
in Propositions 2 and 3. In his classification of kernels of Toeplitz
operators on β?1 of the unit desk, Hayashi [16] has independently
developed ideas similar to those used here to prove these propositions.
This suggests that these methods may be useful for further kinds of
problems.

We recall that if / e ^ 2 (A), then / = ΦF, with Φ inner, F outer,
and the factors are unique up to units. Units are powers of z. A
function F e X2(A) is said to be outer provided

for every z e A. A consequence is that F e ^ 2 ( A ) is outer provided
the integral definition above holds for a single z e A, and in this case,
it holds for every z e A.

It is fundamental to the theory that any set on inner functions has
a greatest common divisor. That is, if S is a set of inner functions on
the annulus A, then there is an inner function Φ defined on A, which
is a divisor of S in the sense that Ψ/Φ bounded for all Ψ e S. Further,
if Φ' is any other divisor of £, then Φ'/Φ is bounded.

We define the greatest common divisor of a set of functions to be
the greatest common divisor of their inner parts. Hence there is no
loss of generality in searching only for the simply invariant subspaces
of ^ 2 ( A ) which have greatest common divisor 1. A simply invariant
subspace of ^ 2 ( A ) whose greatest common divisor Φ is not 1 can be
reduced to the other case by dividing by Φ.

Before stating our results we should mention the concept of analytic
pseudocontinuation [6], [23]. Let Δ = {z e C: \z\ < 1} and E = {z e
C: \z\ > 1}. If / G ^ 2 ( Δ ) and g e ^ 2 ( E ) , then / and g have
boundary values almost everywhere o n { z e C : | z | = l}. If their
boundary values are equal almost everywhere, then they are said to be
pseudocontinuations of each other. (By the way, in this case, they are
both constants.) If Φ is an inner function on E, and / e ^ 2 ( Δ ) , then
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the statement Φ / e ^ 2 ( E ) (respectively, Φ / e ^ 2 ( A ) ) is to mean that
Φ / is a pseudocontinuation of a function g e β?2{E) (respectively, a
pseudocontinuation of a function # e ^ 2 ( A ) ) .

We are now in a position to state

THEOREM A. Let A = {z e C: I < \z\ < R} and let JT be a proper
closed subspace ofβ?2(A) which is invariant under multiplication by z
and which has greatest common divisor 1. Then

jy τWo f jy

ΛZ — Z JooΛZψo'

where
jrψo = {fe ZP\A): ψo{eiϋ)f{eiϋ) e ^F2(Δ)},

ψo is an inner function on Δ, m^ is an integer, and /<*> is an outer
function in

(As above, *ψo(eiϋ)f{eiϋ) e %f\Aγ means "ψo(eiϋ)f(eiϋ) form the
boundary values a.e. of a function in

REMARKS. A couple of observations are in order here: (1) This
is an existence theorem. Given an arbitrary inner function ψ on Δ,
if ψ is not a finite Blaschke product, then Jtψ will contain functions
unbounded on dA. Hence for / e ^ 2 ( E ) , fjtψ will not in general
even be a subset of ^ 2 ( A ) . Theorem A asserts that there exists an f^
and a ψ0 such that foo ̂ ψo is a subspace of J^2(A) having the desired
properties. (2) If the greatest common divisor of an J[ is ΨQ, and Jί
otherwise meets the conditions of Theorem A, then Jί = Ψoz"* 0 /^*^.
(3) We can also make a uniqueness statement (Theorem B below).

DEFINITION. Let Jt be as in Theorem A. A normalized decomposi-
tion of J! with respect to a point p e Δ is a factoring

where /<*> is outer in ^ 2 ( E ) with normalization

and ψo is an inner function on Δ such that ψo{p) > 0.

THEOREM B. Let Jt be as in Theorem A. We can choose mo, f<χ»
and ψo so that
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is a normalized decomposition ofJT with respect to a point p e Δ and

if

is another normalized decomposition ofJT with respect to p, then

with equality holding iff foo = goo and ψ0 = φ0.

The normalization that for some p, ψo(p) > 0, <Po{p) > 0, is in-
tended to rule out the possibility that ψo = eiaφo for some eia not
equal to 1.

1. Outline of Proof. We will first define and characterize the sub-
spaces which are weakly invariant under the backwards shift operator
on ^ 2 ( Δ ) (see Propositions 2 and 3). Then we will show that the prob-
lem of classifying the simply invariant subspaces Jt of ^2(A) reduces
to classifying the spaces weakly invariant under the backwards shift
operator. For future reference, we will adopt the standard notation
AR = {zeC:\z\<R}.

A backwards shift invariant subspace & of ^ 2 ( Δ ) is a subspace
such that

Note that a backwards shift invariant space is the orthogonal comple-
ment of an invariant (under multiplication by z) space.

A subspace & of ^ 2 ( Δ ) which is weakly invariant under the back-
wards shift operator is a subspace such that

(1) fer, f(θ) = o=>Δ*le^.
s

If J? is a simply invariant subspace of ^ 2 ( A ) , then we can form

It may very well be that <g" = {0}. This will be the case if Jί =
Z^2(\R). In any event, <§* will have the property that

(2) geZ, g(oo) = 0 => zg(z) e 9.

By switching dummy variables to

(3) s = p

we see that any W = J( n ^ 2 ( E ) corresponds to a subspace & c
^ 2 ( Δ ) which is weakly invariant under the backwards shift operator.
Knowing the possibilities for & and appropriately modifying % will
allow us to push through to a solution for what ^# can be.
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2. Spaces weakly invariant under the backwards shift operator, Part
I. Let & be a subspace of ^ 2 (Δ) such that

(1) fer, ^

We will call spaces satisfying (1) weakly invariant under the backwards
shift operator. This name is chosen because their distinguishing prop-
erty is weaker than the property of being invariant under the back-
wards shift B. By B we refer to the adjoint of the shift. For / e

Let us now suppose that in addition to being weakly invariant under
the backwards shift operator, the greatest common divisor of 9~ is
1. This involves no important loss of generality. The Szegό kernel
function for & is defined by

00

(4) kr(s,σ) = ΣvΛs)vjW'

where {φj}JLx is any orthonormal basis for &. It is well-defined and
has the reproducing property:

(5)

for all fef. Thus

(6)

Let

(7)

so that /o has unit norm. An arbitrary / € & may be written in the
form

(8)

where /i J. /0 . Hence

(9)

Since f\ is perpendicular to fo, it is peφendicular to k$r(s, 0). Thus
their inner product is zero and the reproducing property (5) implies

(10)
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We note that f\ (s)/s is in &, since this space is weakly invariant under
the backwards shift operator. Thus we may repreat this process for
/i {s)/s, getting

with

Continuing recursively, we get

with

(12)

Linking these equations together gives

(13) f(s) = (α0 + axs + - + ajSJ)f0(s) + sJfj+ι{s)

and

(14) ||/||2 = | α o |2 + 2 2

Since Taylor series are unique,

Also

(16) | | £
II Jo 7=0

with equality holding iff \\fj\\2 -»• 0.
This shows that yό is outer, because

Jo

and by assumption the greatest common divisor of y is 1.
Let

J:

be the map defined by

J{f) - τ
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Then \\Jf\\ < 11/11. Further

S = {feΓ:\\Jf\\ = 11/11}
is a subspace of 9r. Indeed, if

f(s) = {a0 + aιs + + ajSj)fo(s)+sjfj+1{s)

and

with | |/) | | —• 0, \\gj\\ —> 0, then similar statements can be made about
f+g. Consequently, f is a linear manifold. Because / is an isometry
when restricted to f, / is complete and hence closed.

PROPOSITION 1. Let & be a closed, non-trivial, subspace of
weakly invariant under the backwards shift operator, with greatest com-
mon divisor 1. Then fo, the function of unit norm in & maximizing
9t/(0), is outer. IfJ is defined by

%•

then J is a bounded linear operator

with \\J\\op = 1, that is, \\Jf\\ < \\f\\. The set

f = {fsf-:\\Jf\\ = \\f\\},

is a closed linear subspace of&~.

3. Spaces weakly invariant under the backwards shift operator, Part
II. Proposition 1 leads to the question of whether J' is ever all of
^ , and we shall prove that in fact it always is. In any event, it is
immediate that J{f) is a backwards shift invariant closed subspace
of ^ 2 ( Δ ) . That is, J{^) is invariant under the backwards shift map

We also have 1 e J{f). It follows from Theorem 2 of [23] that

(17a) J{f)=^Ψ,

where ψ is either an inner function on Δ or ψ = 0, and

(17b) yrΨ = {feβT2(A): f(eiϋ)ψ(eiη e

Here ψ = 0 represents the case that /(/ ') =
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Our tool in this section is the Szegό kernel function, so we compute
it for Jfψ.

Since JVΨ is backwards shift invariant, it is the orthogonal com-
plement of an invariant space. By Beurling's theorem, an invariant
subspace of ^ 2 ( Δ ) must have the form <^ 2 (Δ), where ζ is an inner
function on Δ. Since l G X , w e have

Thus ζ(0) = 0. That is, we must have ζ(s) = sφ(s), where φ is also an
inner function on Δ. For any polynomial P(s),

I sφ(s)ψ(s)P{s)\ds\ = 0
J\s\=l

because ψ is orthogonal to sφ(s)^2(Δ). Hence φψ is the boundary
value of an analytic function, i.e., φ is a multiple of ψ. On the other
hand, φ Έ Λfψ, SO ψ is a multiple of φ. Hence,

(18) J^

j}%\ i s a nY orthonormal basis for ^ 2 ( Δ ) , then {sψ(s)φj(s)}JLι

is an orthonormal basis for sψ(s)^2(A). Thus

(19) ksψ{s)jriW(s, σ) = ΣsΨ(s)φ j(s)σψ{σ)φ

7=1

= s9ψ(s)ψ(σ)kjr2W{s, 9).

Taking {sn}^=0 to be our orthonormal basis for ^"2(Δ) gives

, σ) = — —.
1 (J

The union of orthonormal bases for JVΨ and yy^- = sψ{s)β^2{ίi) is an

orthonormal basis forX 2(Δ). Hence

(21) kjrψ [s, 9) + ksψ{s)^(\) {s, 9) = Λ>2(Δ) (ί, σ),

and so

(s, σ) =
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Recall that fo is the normalized maximal function for ^\ Propo-
sition 1 says that dividing elements of / by fo is an isometry. We
can use this fact to perform a calculation of kjr(0,0)/M°> σ). Our
method is similar to the one used above, with fo playing a role analo-
gous to that of an inner function. Take any orthonormal basis for f'.
Divide each element of this basis by fo to get an orthonormal basis
for J/ψ. Comparing the Szegό kernels computed with these bases gives

Then it follows from (22) that

=

 l -sψ{s)σψ{σ)

Rearranging this equation gives

(24) ~

, 0) - ft>(0, Q)k7{s9 ff)(l - sσ)

sσ
Knowing the kernel function tells us everything, and so we examine
the right-hand side of (24) with f C SF replaced by the space &.

Let

(25) f(s,,) = Mft»)M*0)-Mα(>)M*») + M f t 0 ) k Λ S : s l

Since & is a space weakly invariant under the backwards shift opera-
tor, f(s, σ) e Sr. If we had formed f(s, σ) for f instead of ^ , then
changing σ would just change it by a multiplicative complex constant.
We shall see that the same is true for f{s,σ). That is, we shall see
that changing σ will just scale f(s, σ) by a complex constant. This fact
will essentially finish our work with spaces weakly invariant under the
backwards shift operator. We begin by computing the inner product
of f(s, σ) with f(s, τ), for two arbitrary non-zero points σ and τ in Δ.

The inner product (f(s, σ), f(s, τ)) consists of four terms, since each
factor consists of two terms. Remembering that division by s is an
isometry on dΔ, we see the first term of the inner product is

± (MO, σ), kr(τ, 0)M0,0) - MO, 0)Mτ, 0)M0,9)

-MO, °)M0,9)kr(τ, 0) + (MO, 0))2Mτ, ff)) .

The next two terms are each equal to
, σ)k<?(τ, 0) - M 0 ,

α Q )
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and the final term is

Of the nine summands in the inner product, six cancel, and the
three remaining combine to give

(26) (f(s, σ), f(s, τ)) = k<?(0,0)/(τ, σ).

Equation (26) represents the reproducing property, so f(s, τ) /kgr (0,0)
is the Szegδ kernel function for the closure S? of the linear space
spanned by {f(s, ϋ)} as σ ranges over Δ.

Thus, for ge&,

(27)
\g(σ)\2 f(σ,σ)

\\g\\2 - M 0 . 0 )

Hence,

(28)

M2M0,0)

< JMOσ)|^

g{o)

k(σ,<

U\\
σ\y/kr(0,0y

for all σ € Δ. The maximum principle then gives

and so

(30) \8{σ)\ <

Equation (30) holds for all σ in the unit disk. Thus we let \σ\ —•
1, and see that (30) holds for all σ on the boundary dA = {σ e
C: \σ\ = 1}. If strict inequality held on a set of positive measure on
the boundary, we could integrate and obtain ||g||2 < \\g\\2. Hence

a.e. on <9Δ.
1OV " v M o o )

We may conclude that

(31) g(σ) = φ(σ)k^r(σy 0) c,

where φ is an inner function and c is a constant.
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This representation holds for all g e £?. If ψ\ and φ2 can occur in
(31), then because £? is closed under addition, some non-trivial linear
combination of ψ\ and φ2 is also inner. Thus φ\ is a multiple of φ2,
and hence & is one dimensional. Further,

because division by fo doesn't affect the norm of anything in «£*. Hence
φ divides ψ.

Putting (25) into (31) gives

fry(0,0) kr(s,9) = 1 -sφ(s)σc(σ)
K > ks?{0,σ)ks?(s,0) l-sσ

Because of the symmetry properties of the Szegό kernel, we conclude

where C\ is a constant. To establish c\ = 1, we have to be just a little
bit fussy. We already have

l-sφ(s)σφ(σ)

l-sσ

because φ divides ψ. Thus, if c\ ψ 1, we take a linear combination of

1 - sφ(s)σφ(σ)

1 -sσ

and
1 — sφ(s)c\σφ(σ)

1 -sσ
to get 1/(1 - sσ) in J(Jt). The uniform closure of {1/(1 - sσ)}\σ\κι
includes the polynomials. The kernel function fry (5,0) is outer.
Beurling's theorem then would give & = ^ 2 ( Δ ) , and we have the
trivial case.

So we write C\ = 1, and this means that the maximal function for
^ is in the linear span of the maximal function for /, since φ divides
ψ. In either case

We summarize this as a proposition:

PROPOSITION 2. Let & be a closed subspace of^2(A) which is weakly
invariant under the backwards shift operator, and has greatest common
divisor 1. Then
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where

e J
ψ(s) is inner on Δ, and fo is an outer function in ^ 2 ( Δ ) . We may take
/o to be the function of norm 1 in SΓ maximizing 9ΐ/(0); in this case,
the map

given by Fo(g) = fog is an isometry.

If we relax the requirement that the greatest common divisor of &
be 1, we then have the following proposition.

PROPOSITION 3. If& is a closed subspace of<%*2(&) which is weakly
invariant under the backwards shift operator, then

where ψ(s) is inner on Δ, and φ is the greatest common divisor of&.
We may take φfo to be the function of norm 1 inSF maximizing 9Kf(O);
in this casef the map

given by Fo(g) = fog is an isometry.

4. Simply invariant subspaces of β^2(A). We are now in a position
to classify the simply invariant subspaces Jί of ^ 2 ( A ) , having clas-
sified the subspaces of ^ 2 ( Δ ) which are weakly invariant under the
backwards shift operator.

We do this in two steps. First we consider g7 = Jt Π <^2(E). As
we've mentioned, possibly % = {0} (e.g., if Jί = z^2(\R)), but % has
the property that

(2) g e r, g{oo) = 0=> zg{z) e r.

We see from preceding work (by letting s = 1/z), that % = foo%ψ,
where /» is the function of norm 1 in % maximizing ίH/(oo), ψ(s) is
inner on Δ, and

Wψ = {/e ^ 2 ( E ) : f{eiϋ)ψ{eiϋ) e ^

Let W = foo%ψ9 and let # be the smallest closed simply invariant
subspace of ^ 2 ( A ) containing g\

We will show that % is foo^ψ, where

: ψ(eiϋ)f(eiϋ) e ^
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(Also, of course foo is the maximal function of I?, normalized to have
norm 1.) Thus, if we knew that Jΐ — I? for some <g% we would be
done. This however is not true in general, but our second step will be
to show that z~mJ!f is £? for some integer m and some I? satisfying

(2) g e V, g{oo) = 0 => zg{z) e %.

5. Related subspaces of ^F2(E). Let % be a given subspace of «T2(E)
satisfying (2), and let f^ be as above. We note first that if / e Jfψ,
then / = g + h, where g e ^2(AR) and h e %ψ, say normalized so
that g(0) = 0. Thus foo^ψ is certainly in # . We must prove foo^ψ is
closed to get foo^fψ — %.

If

where gn e ^2(λR), gn{0) = 0, and hne^ψ9 then

so that

since f^ is nice on
The functions ^Λ and hn lie in orthogonal subspaces of

since ^ has Fourier coefficients equal to zero for the nonpositive in-
tegers and hn has Fourier coefficients equal to zero for the positive
integers. Thus, for some g €

This means
Sn —> S uniformly on dA.

Hence foohn converges in Jϊ?2(dA). Since multiplication by f^ is an
isometry on g^,

This implies h e %ψ, and so

foo{gn + hn) -> foo{g + h) G foo^ψ.

We summarize this more formally:

PROPOSITION 3. Let £ be a closed subspace of^2(E), such that

ge£, g{oo) = 0^ zg(z) e %.
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Then
QP f QP

& — JOO&ψ>

where ψ is inner on Δ, foo is the function of norm 1 in & maximizing
9t/oo(<x>). Further, ifg is the smallest closed subspace of<%"2(A) which
contains % and for which

then

Now we want to show that given a simply invariant subspace Jΐ of
^ 2 ( A ) , then z~mJί = # for some I?. Our principal tool will be the
Szegδ kernel function kjr(z, £).

6. Boundary smoothness of extremals. First, we obtain an expres-
sion for Λ>2(A)(z, C) F ° r A it is convenient to use the rotationally
invariant norm

(33) ||/||2 = ̂ ~ [2π\f(eiϋ)\2dϋ + ±- f * \f(Reiϋ)\2 dϋ.
^7t Jo Jo

This is equivalent, but not isometric, to norming via least harmonic
majorants. The norm (33) leads to the usual class ^ 2 ( A ) , viz., sums
of functions form ^ 2 ( E ) and ^ 2 ( Δ Λ ) . With the norm given by (33),
{zn}nZ^oo i s orthogonal and linearly spans ^ 2 ( A ) . We have

(34) \\zm\\2=l+R2m,

so that
m=oo m pm

(35)

Equation (35) shows k^2^(z, ζ) to be analytic in z on
Let Jt be a simply invariant subspace of ^2(A) with greatest com-

mon divisor 1. We will use a technique of Roy den [23, Theorem 1]
to prove that k^{zf ζ) is analytic on a neighborhood of d\R.

We norm Jt by (33). We let JtL be the orthogonal complement of
Jί in ^ 2 ( A ) . Letting kj?± be the kernel function for ^# J- 3 we have

(36) krz(A){z, ζ) = kjr(z, C) + Λ > 4 ^ 0>

because we can take as a complete orthonormal basis for ^ 2 ( A ) the
union of orthonormal bases for Jί and L
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We fix a Co € A and for each / e Jf we form

(37)

Here, the inner product is taken on z. Simple invariance gives

(38) li*Lejr, if\ω\>R,

so by orthogonality

(39) (Γ/)(ω) = 0, VωeER = {zeCu{oo}:\z\>R}.

Now,

1*1=1
(40) , 1

ji * - co

= Fι{ω) + F2{ω),

where

(41)

(42)

Because F\ and F 2 are Cauchy integrals of Jϊ?1 functions, our general
theory (see Royden [23] or Duren [7]) tells us that

(43) F ! € X

for all r e (0,1). Moreover, F2 has boundary values

(44) F2{ω) = f(ω)k^(ωfζ~o)^ Fx(ω) on d\R.

The function F\ is analytic on dΔjs, and so

(45) /(ω)^rχ(ω, Co) = Ψ/ίωJ^ίω) on d\R,

where Ψ/(ω) is inner on A and Kf(ω) is outer on A. This is because
(45) gives the boundary values of F\ + F2, which is a function in
^ Γ (A), for all r < 1, and hence a function in yr+(A). Here yΓ+(A) is
the subset of the Nevanlinna class of the annulus consisting of those
functions which have only trivial inner part in their denominators in
their canonical factorings.
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We can express (45) in the form

(46, ^ ( t t a

Then we let / range over Jΐ (which has greatest common divisor 1),
to see that k^±(ωf Co) has the boundary values on dAR of an JV +(A)
function. But then k^±(ω, Co) is the boundary values_of a function in
JV+{R < \ω\ < R2). Being in 3*1, this makes k^± (ω, Co) the boundary
values of a function in β?2{R < \ω\ < R2 - ε). Hence, A>±(z, Co) is
analytic somewhat beyond dA^. Because

(36) ***(A)(2' 0 = k^(z> ® + k^^ 0
and

m—oo mFm

m=-oo

we see that Λ>(z, ζ) also is analytic a little beyond <9Δ .̂ We then have
the following proposition.

PROPOSITION 4. ifJί is a closed simply invariant subspace of^2

with greatest common divisor 1, then the maximal function kj?(z, ζ)for
Jί, normed by

ll/ll2 = ~ f^ \f(eiϋ)\2 dϋ + ± ζ* \f(Re*)\2dϋ,

can be analytically continued across {z eC: \z\ = R}.

7. Outer and kernel functions in Jt. We now make an observation
about the closed linear span of Λ>(z, ζ) as ζ varies.

PROPOSITION 5. Let Jί be a closed simply invariant subspace of
with greatest common divisor 1, where <%*2(A) is normed by

= ^ [π \f(eiϋ)\2 dϋ + ± f*π \f(Reiϋ)\2 dϋ.

Let kjg{z, ζ) be the Szega reproducing kernel. IfS is any subset of A
that has a limit point interior to the annulus, then the closed linear span
of

{*>(*.£)}
as ζ ranges over S is Jt. Consequently

has greatest common divisor 1.
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Proof. Any function in Jt which is orthogonal to

vanishes on S and hence vanishes identically. D

8. The relation of Jt to ̂ 2 ( E ) . In order to carry out the analysis
of this section, we first need to factor A> (z, ζ) (Jt as above). We let
/#(z, ζ) be the inner function on E having the zeros of Λ>(z, ζ) which
have modulus in (1, R]. We then write

where Kj?(z, ζ) is a zero free function in ^ 2 (A). Thus logA!>(z, C)
can be expressed as the sum of a Laurent series and a multiple of log z.
Hence

kjt(z, C) = *"</.#(*, ζ)FΛz. ζ)GΛ*. O

where /^(z, f) is a zero-free function in ^ 2 ( E ) and ̂ ( z , C) is an
outer function in <%"2(AR).

There are only countably many niζ but uncountably many ζ. Thus
at least one of the countably many sets

S{m) = {ζ e A: rriζ = m}

is uncountable and hence has an interior limit point. Fix one such
uncountable set S = S(m).

We set

By Beurling's theorem,

for all ζ e 5, so % has greatest common divisor 1, considered as a
subset of ;F2(E). We also have

(2) / 6 ? , /(oo) = 0 =• z/(z) e r .

Thus our previous work concerning subspaces weakly invariant under
the backwards shift operator (and related topics) applies.

We have
jtγ = zmi c ^r,

and
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for all ζ e S. Now S is uncountable. By for example dividing the
annulus into countably many disjoint sub-annuli, we see that one such
sub-annulus contains uncountably many points of S. Hence S contains
an interior limit point, and Proposition 5 gives

and so
jy jy

Since we know # = foo^ψ (where f<χ> and ψ have their usual mean-
ings), we have established Theorem A. An examination of our proofs
establishes the uniqueness statement also.

9. Open questions and directions for further research. It is an open
problem to determine the simply invariant subspaces of ^P(A) for
p Φ 2. Beyond this, there are at least three directions for further
investigation. One of these is to replace the annulus A with some other
domain G, possibly of a different connectivity. The question would
be to determine the subspaces invariant under multiplication by z.
On a related note, perhaps one would try to determine the subspaces
invariant under multiplication by a subgroup of the group of units for
that domain. Already with the annulus, if both boundary curves are
slightly perturbed, it is not clear what the invariant subspaces under
multiplication by z are.

If we keep the same domain A then it would be interesting to know
exactly which functions /<*> can occur in our factor decomposition.
If we do not know exactly which /<*> can occur, it would be good to
determine sufficient conditions for a function / to be foo in some
decomposition.

Finally, we note that Beurling's theorem for ^ 2 (Δ) can be for-
mulated as a statement about square-summable sequences, namely,
a characterization of the subspaces of /2(N) invariant under the shift.
This is because ^ 2 (Δ) is isometric to /2(N), where each n e N is
given unit mass. Under this isometry, multiplication by z in ^ 2 (Δ)
corresponds to shifting sequences in /2(N).

Professor Sarnak has pointed out that our theorem is a characteri-
zation of the subspaces of /2(Z, μ) which are invariant under the shift,
where μ is a measure of Z making /2(Z) isometric to ^ 2 (A) . He asks
the interesting question of how to determine the shift invariant sub-
spaces of /2(Z, A) for a different measure λ on Z. That is, one would
look for a domain G and a space of functions on G—perhaps ^ 2 ( G ) .
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One would hope to have a map from ^ 2 ( G ) to itself, perhaps multi-
plication by some fixed function, that would be isometric to shifting
l2(Z,λ). Function theoretic means would then be used to determine
the invariant subspaces. This appears to be difficult to do in general.

10. Acknowledgments. This paper contains the contents of Chapter
3 of the author's doctoral dissertation, written under the supervision
of Professor Royden, to whom the author is grateful for the suggestion
of the problem, as well as for encouragement and discussion during
the course of the investigation.

The author also would like to acknowledge several long and fruitful
discussions with Professor Katznelson, who suggested and encouraged
many simplifications.

Finally the author would like to thank Professor Sarason for direct-
ing his attention to the work of Hayashi.

Added in proof. Since submission of this paper, Professor Sarason
has written Nearly Invariant Subspaces of the Backward Shift, which
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