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SPACES OF CONSTANT PARA-HOLOMORPHIC
SECTIONAL CURVATURE

P. M. GADEA AND A. MONTESINOS AMILIBIA

We consider the sectional curvatures for metric (J4 = 1)-manifolds,
and study particularly the general expression of the metric and almost-
product structure in normal coordinates for para-Kaehlerian manifolds
of constant para-holomorphic sectional curvature. We also introduce
models of such spaces.

1. Introduction. A metric (J4 = \)-manifold (cfr. [3], [11]) is a
pseudo-Riemannian manifold (Mn,g) together with a (1,1) tensor
field / such that J4 = 1 and whose characteristic polynomial is
(x - iYι{x + lY2(x2 + l)s with rx + r2 + 2s = n\ also, the tensor fields
g and / are related by one of the following relations:

(i) g(JX, Y)+g(X, JY) = 0 (then g is necessarily pseudo-Riemann-
ian and r\ = r2)\

(ii) g is Riemannian and g(JXfJY) = g(X, Y).
In the first case it is said that g is an aem (adapted in the electromag-

netic sense metric), because this situation generalizes in a sense that of
Mishra [8] and Hlavaty [4]; in the second one, g is called arm (adapted
Riemannian metric).

In this note we consider, g being an aem, the /-Kaehler manifolds,
that is (J4 = l)-manifolds such that VJ = 0, where V is the Levi-
Civita connection of g, and study the /-sectional curvature which
generalizes the usual holomorphic-type sectional curvatures. We de-
fine the spaces of constant /-sectional curvature, and prove a lemma
of Schur type. Also, we obtain explicitly the models corresponding to
the situation of an aem g and J2 = 1.

2. Terminology. We shall use the following terminology:

(J4 = \)-manifold: the pair (Mn,J), where / is a (1,1) tensor
field such that J4 = 1 and whose characteristic polynomial is
{x - \Yι(x + l)r2(x2 + I)3 with rx+r2 + 2s = n.

e-metric {J4 = \)-manifold: a (J4 = l)-manifold (Mn,J) together
with an aem, that is a pseudo-Riemannian metric g such that g(JX, Y)
+ g(X,JY) = 0.
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Riemannian {J4 = \)-manifold: a {J4 = l)-manifold (Mn,J) with
an arm, i.e., a Riemannian metric g such that g(JX,JY) = g(X, Y).

The remaining cases have already their own names:
almost para-Hermitian manifold (see Libermann ([7]): it is an e-

metric (J4 = l)-manifold such that J2 — 1, or in other terms, s = 0
(see also Legrand [6]).

Riemannian almost-product manifold: a Riemannian {J4 = ^-man-
ifold with J2 = 1, or equivalently s = 0.

almost-Hermitian manifold: it is the case of J2 = - 1 or equivalently
T\ = 7*2 = 0. In this case there is no distinction between aem and arm.

3. /-sectional curvature. We consider first that (M,J,g) is an e-
metric {J4 = l)-manifold. We have g{JX, Y) + g(X,JY) = 0. Then
necessarily rx = r2 = r (see [3]). Let V be the Levi-Civita connection
of g. The curvature operator R{X, Y) : Γ«g) TM) -• Γ(® TM) is
defined by

and we use the following convention for the Riemann-Christoίfel ten-
sor field

R(X, Y, Z, W) = g(R(X, Y)Z, W).

We shall denote also by R the value of R at a generic point x eM.
Then, if X, Y e TXM, we put

K(X,Y)=R(X,Y,X,Y).

A subspace E of TXM is said to be non-degenerate if g\E is non-
degenerate. If {X, Y} is a basis of a plane E of TXM, then £ is
non-degenerate if and only if

g{X,X)g{Y,Y)-g(X,Y)2φ0.

For any non-degenerate plane E of TXM we define the sectional
curvature as

K(X, Y) =

where {X, Γ} is any basis of E\ K(X, Y) only depends on E.
Since g(JX, Y) + g(X, JY) = 0, then g(X, JX) = 0. If X, JX e TXM

are linearly independent, they determine a plane of TXM that we call
the J-section defined by X. The sectional curvature of {X, JX} is only
defined if g(lXf IX)2 φ g(l3X, /3X)2, where
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are, respectively, the projectors upon the almost-product and the
almost-complex subbundles of TM defined by /. In that case we put

Ή(X) = K{X, JX), H{X) = K{X, JX),

and say that H(X) is the J-sectional curvature determined by X.
If VJ = 0 we say that (M, g, J) is an e-(J4 = \)-Kaehler manifold.

The characterization of these manifolds is given through the following
results, where we put

F{X, Y) = g{X, JY) = -F(Y, X).

3.1. LEMMA. Let (M, g,J) be an e-metric (J4 = 1)-manifold. Then:

4g({VxJ)Y, Z)= - 2dF{X, Y, Z) + 2dF(X, J2Y, J2Z)

+ 2dF(JX, JY, J2Z) + 2dF(JX, J2Y, JZ)

- g(N(Y, Z),J3X) + g(N(JY, JZ),JX)

+ g(N(X, JY), J2Z) + g(N(JZ, X), J2Y),

where N(X, Y) = 2{[JX, JY] + J2[X, Y] - J[JX, Y] - J[X, JY]} defines
the Nijenhuis tensor of J.

Proof We have

4g((VxJ)Y, Z) = 4g(Vx(JY), Z) + 4g(VxY, JZ);

2g{VxY, Z) = X(g(Y, Z)) + Y(g(Z, X)) - Z(g(X, Y)) + g([X, Y]Z)

dF(x, y, z) = x(g(Yf jz)) - γ(g(x, jz)) + z(g(x, JY))
- g([X, Y], JZ) + g([X, Z], JY) - g([Y, Z], JX),

and our claim is obtained directly by application of these formu-
lae. D

3.2. COROLLARY. In an e-metric (J4 = l)-manifold (M,J,g), the
condition V/ = 0 is equivalent to the simultaneous verification of the
following conditions:

(a) N = 0;
(b) dF = 0.

Proof. If N = 0 and dF = 0, it is obvious by 3.1 that VJ = 0.
If VJ = 0, then dF = 0, because V# = 0; also, N = 0 as it is
easily checked from the expression of N, having in mind that V is
torsionless. D
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If (M, g, J) is an almost para-Hermitian manifold and V/ = 0, we
then have a hyperbolic Kaehler manifold (Rasevski [10]), also called
para-Kaehler manifold (Libermann [7]). See also Prvanovic [9] and
references therein. We adopt Libermann's terminology. The preced-
ing result implies that an e-(J4 = 1)-Kaehler manifold is locally the
product of a para-Kaehler manifold and a Kaehler manifold.

3.3. PROPOSITION. On an e-(J4 = \)-Kaehler manifold we have

R(X, Y, Z, JW) + R(X, Y, JZ, W) = 0.

Proof By applying the operator R{X, Y), we have

R(X, Y)(g(Z, JW)) = 0 = g(R(X, Y)Z, JW) + g(Z, R(X, Y)JW)

= R(X, Y, Z, JW) - g(JZ, R(X, Y) W)

= R(X, Y, Z, JW) + R(X, Y9 JZ, W). D

3.4. PROPOSITION. Let (M, /, g) be an e-(J4 = \)-Kaehler manifold.
Then, ifΉ(X) = Ofor all X e TM, we have R = 0.

Proof We consider the following (0,4) tensor field Q which gener-
alizes that of the Kaehler case (see [5]):

Q(X, Y, Z, W) = R(X, JYf Z, JW)+R(X, JZ, Y, JW)+R(X, JW, Y, JZ).

From 3.3 and the usual symmetries of R we obtain that Q is totally
symmetric. But Q(X,X,X,X) = 3H(X); whence Q = 0. Now, since
VJ = 0, it is immediate to prove that

R(X, Y, X, Y) = R(IX, IY9IX, IY) + R(13X, 13Y, 13X, 13Y).

Since J2l = /, /2/3 = -/3, the same technique of the Kaehler case
(see [5]) leads to

R(IX, IY, IX, IY) = 0,

Thus, R(X, Y, X, Y) = 0, whence R = 0. D

3.5. COROLLARY. Let (M,J, g) be an e-{J4 = \)-Kaehler manifold.
If R is a (0,4) tensor field having the usual symmetries ofR and also
the one given in 3.3, and if

R(X,JX,X,JX)=Ή(X)

for all X e TM, then R = R.
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We now define the (0,4) tensor field R' on M by

R'(X, Y, Z, W) = \{g{X, lZ)g{Y, IW) - g(X, lW)g{Y, IZ)

- g(X, JlZ)g(Y, JIW) + g(X, JlW)g{Y, JIZ)

- 2g{X, JlY)g(Z, JIW) + g(X, l3Z)g(Y, hW)

- g(X, l3W)g(Y, hZ) + g(X, JhZ)g{Y, J13W)

-g(X,Jl3W)g(Y,Jl3Z)

+ 2g(X,Jl3Y)g(Z,Jl3W)},

whose properties are given in the following

3.6. PROPOSITION. The field R' has the usual symmetries of the
Riemann-Christoffel tensor and also the symmetry of Proposition 3.3.
The following relations hold:

R'{X,Y,X,Y)

= \{g(X, lX)g(Y, IY) - g(X, IY)1 - 3g(X, JIY)1

+ g(X,l3X)g(Y 13Y) - g(X, 13Y)2 + 3g(X, J13Y)2};

R'{X, JX, X, JX) = g(X, 13X)2 - g(X, IX)2.

Proof. Immediate.

From this, we deduce the

3.7. PROPOSITION. Let (M,J, g) be an e-(J4 = \)-Kaehler manifold
such that for each x e M, there exists cx e R satisfying H(X) = cx

for every X e TXM such that g(X, X)g{JX, JX) φ 0. Then R = cR',
where c is the function defined by x —• cx. And conversely.

Proof. Since g(X, X)g{JX, JX) = g{X, l3X)2-g(X, IX)2, we deduce
from 3.6 that

Ή{X) = cR'(X, JX, X, JX).

Hence (R - cR')(X, JX, X, JX) = 0 for all X such that

g(X,X)g(JX,JX)φO.

Now, if X verifies g(X, X)g(JX, JX) = 0, then we can choose a se-
quence {Xm} such that Xm —• X and

g(Xm,Xm)g(JXm,JXm)φ0.

In fact, g(X, X)g(JX.JX) is a polynomial in the components of
X whose set of zeros does not contain any open subset. Since
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(R - cR')(Xm, JXm, Xm, JXm) = 0 for each index m, we have by conti-
nuity that (R-cR')(X, JX, X, JX) = 0. Then, by 3.5 we have R = cR'.
The converse is obvious. D

If the e-(J4 = 1)-Kaehler manifold (Λf, /, g) satisfies the conditions
of the above proposition, we say that it is of constant J-sectional cur-
vature c. We have the following result of Schur type.

3.8. THEOREM. Let (M,J, g) be an e-(J4 = \)-Kaehler manifold of
constant J-sectional curvature c. If r,s > 0, or if r = 0, s > 1, or if
r> 1, s = 0, then c is a constant function.

Proof We first choose an orthogonal basis of TXM, {£//, Vit Wjf

JWj) (i = l,...,r;j = 1 , . . . , J ) such that {£//, F/} is a basis of
ITXM, {WjJWj} is a bas i s o f 13TXM, g(Uif Uj) = -δij9 g(Vh Vj) =
g(Wi,Wj) = g(JWi,JWj) = δij9(i>J= 1,...,r or i,j= l,...,s). If
S is the Ricci tensor field, we have

S(X,Y)= -
i=\ i=\

s s

i=\ ι=l

From this, and applying 3.7, we obtain after a calculation

(1) S(X, Y) = l{g{X, Y) + rg(X, IY) + sg(Xf

Since R = cR' and VR' = 0, we have VXR = X{c)Rr. Now, if {*>;}
is any orthonormal basis of TXM in the sense that g{ei,ej) = α/ίy
with α, G {-1,1}, we have by direct application of the second Bianchi
identity

(2) Σ{X{c)S{aiei, et) - 2βi(c)S(X, a^)} = 0.

Now,

( iei)ei = | ( ^ + r l X

i

because of (1). Therefore, from (2):

(r2 + s2 + r + s - 1 )X{c2) - rlX{c2) - j/3ΛΓ(c2) = 0.

HX = IX, then
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If X = 13X9 then

Then, if r, s > 0, or if s = 0, r > 1, or if s > 1, r = 0, we obtain

X(c2) = /X(c2) + /3X(c2) = 0.

Thus c2, and therefore c, are constants. D

In the conditions of the preceding Theorem, the scalar curvature is
given by the function

p = c{r(r + l)+s(s+ 1)}.

Thus, if r = s = 1, we have p = 4c.

3.9. THEOREM. Let (M,J, g) be an e-(J4 = \)-Kaehler manifold of
constant J-sectional curvature c. Then:

(i) ifX,Yel3TxM we have

c/4 < K(X, Y) < c, ifc > 0;

c < K{Xf Y) < c/4, ifc < 0;

(ii) Let us denote by KL the restriction ofK to the planes oflTM.
Then:

KL(X,Y) = c ι / r = l ;
KL is unbounded ifr> 1, c Φ 0.

Proof (i) The restriction of g to /β TM is Riemannian. Then if we
choose {X, Y} orthonormal, we have:

K(X, r ) = £(1 + 3g(X,JY)2) = £(1 + 3cos2α),

where α is the angle between the plane {X, Y} and the plane {JX, JY},
and the claim is obvious;

(ii) If r = 1 we can choose a basis {XJX} of ITXM thus K(X, JX) =
H(X) = c. Now assume that c ψ 0, r > 1. Let (t/i, Vx) e l\TxM,
(U2, Vi) e l2TxMbc such that g(U{, U2) = ^ ( ^ , F2) = 1, g(UΪ9V2) =
^(^2^1) = 0. Here, /1 and /2 are the projectors on ITXM given by
the eigenvalues +1 and -1 of J\ITXM. We take first

~
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Then g(XyX) = - 1 , g(Yf Y) = 1, g(X,JY) = -(1+A), g(JΓ, Γ) = 0.
Hence # ( Z Y) = (c/4)(l + 3(1 + A)2).

Now, we take

Y = X-Ux + (λ2 - λ + \)VX - λU2 +

Then g(X,X) = g(Y,Y) = l, g(X, Y) = 0, g(X,JY) = λ-l. Hence
K{X, Y) = (c/4)(l - 3(λ - I)2), and this proves our claim. α

3.10. DEFINITION. We say that two metric (J4 = l)-manifolds
(M,J,g) and (M',J',g') are J-isometric if there exists an isometry
f:M-+M' such that /* o / = JΌ /*.

It is clear that in the case of almost Hermitian manifolds this defi-
nition is the usual one for holomorphically isometric manifolds. Also
we can generalize Theorem 7.9 of [5], Vol. II to obtain

3.11. PROPOSITION. TWO complete, connected and simply connected
e-(J4 = \yKaehler manifolds of constant and equal J sectional curva-
ture c are J-isometric (we assume that c is a constant function).

Proof It is enough to apply Proposition 2.5 which furnishes the
expression of R in terms of / and g in the case of spaces of constant
/-sectional curvature. D

4. The models of constant /-sectional curvature. Let (Af, /, g) be an
e-(J4 = 1)-Kaehler manifold; then it is locally the product of a para-
Kaehler manifold and a Kaehler manifold. Since the latter, in the case
of constant holomorphic sectional curvature, is well known (see [5]),
we are interested in the para-Kaehler case.

Thus, let (Af, /, g) be a para-Kaehler space of constant /-sectional
curvature c, and assume r > 1. Then c is a constant function. We
have J2 = 1 and g(X, JY) + g(JX, Y) = 0.

Let Xo e M, and {^, e, +Γ} be an orthonormal basis of TXoM, i.e.:

g(eifej) = -δij, g(ei+r, ej+r) = δu, g{eifej+r) = 0,

If we put RABCD = R{eA^B>eCίeD), A,B,C,D e {l,...,2r}, then
Q

= J(SACSBD - gADSBC - gAC±rgBD±r

+ gAD±rgBC±r "
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where
(E + r iΐl<E<r,

E ± r = <
{ E if r + 1 < £ < 2r.

(E + r

{ E-r
Prvanovic [9] obtains this expression in a different way.
Now, we apply the structural equations in polar coordinates in order

to obtain g and / in these coordinates (see [1], [12]).
For doing that, let / be an interval of R containing 0 and 1, U

a neighbourhood of 0 in TXoM and V a neighbourhood of XQ in M
such that exp: U —> V is a diffeomorphism and such that the map
Φ: / x U -> M given by Φ{t,X) = cxp(tX) is well defined. If {γA}
is the dual of {eA}, we have coordinates (t,tA) on / x U given by

By parallel transport of {eA} along the geodesies starting at XQ we
obtain a frame {eA} on V with dual {γA}. If we define the 1-forms
ϋA on / x U by

ϋA = φ*γA - tA dt,

then i(d/dί)ϋA = 0, and we have the conditions

A dύA,

92$A _ (RA

Qt2 — \ΛBCD

Thus

-^{tJ(tW - tj& - ti+rϋj+r + tj+rϋi+r)

+ tJ+r(tJ+rϋi - tiϋj+r + tί+rϋj - tjϋi+r)

+ 2ti+r(tj+rϋj -

(Ri+rBCD o Φ)tBtCϋD

ti+rϋj - tjϋi+r)

To simplify this, we introduce on / x U new coordinates {a',b'}
and new 1-forms μ\ u' by:

a1 = pr—, b' = -=—, μ' = y=—, vι = -=—.
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Then

^ ^ ι + aιbJμJ - 2aιaJvJ),

1 + Pah* - iΨ^ =
όtL 4

By putting (a, b) = aJbj, etc., this can be written

= c-((a,b)v + (a,u)b -2(b,μ)a).

If we put p2 = -\c{a, b), these equations read

2 ^

If we multiply (3) by b and (4) by a, we obtain

(5)

(6)

By adding and subtracting (5) and (6), we get

(7) ^(Φ,μ) + {a,u)) = θ,

(8) ^((b, μ) - (a, v)) + 4p2((b, μ) - {a, v)) = 0,

with the initial conditions

(9) /ί(0) = i/(0) = 0, -£\0 = da, -£\0 = db.

The solution of the system (7), (8), (9) is obviously

(b.μ) ={b'da);p

{a>db)sm2pt + l((b,da) + (a,db))t,

(a,u) ={a'db)-p

{b'da)sin2pt + ^(b,da) + (a,db))t.
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By substitution in (3), we get

(a,b)""'

' 2(a,b)κχ"

It we call

= μ- 2ifcb)Ub'da) + {a'db)) ta

then this equation reads

+ p 2 η =

We seek a particular solution of the type η = (D/p(a, b))(sin2pt)a.
Then we get the condition

D = \((b,da)-(a,db)).

Thus the solution is

μ=vh){{b'da)+{a> db))ta+(O>sHpt)

(b,da}-(a,db) . ,. .
+ "—A i \\— sm(2ρt)a.

4p(a,b)

And the initial conditions imply

{a,b)da-{b,da)a . (φ.da) - {a,db))a . .
^ = x ' A J L s m p f + " y A ' ! s ι n 2 ρ t(a,b)p y 4(a,b)ρ

φ,da) + (a,db)
0/ A\ Wί,

φ,da) + (a,db)
2(a,b) Ot

Now, we define 1-forms a\ βι (i = 1,..., r) on U by

α<=//'(l), ^ = ^(1),

and also define a metric on t/, £, by

^ = -αl'®jffl'-jίI'®αl",

and a tensor field / on U by

/ = Ui®aι -Vi ® βι,
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where {w, , Vi) is the dual of {a1, β1}. Then, the map exp: U —> V is a
/-isometry as it is easily checked. Thus, we compute g and / . First
we have

. sin/? , . sin 2/? — 4sinp + 2p, k . , k 2p-ύn2p k . „*
a1 = — - da1 + ί- r,—^-ί- -bkaι dak + - ^ — τ τ - ^ - a k a ι dbk\

p 4(a,b)p 4(a,b)ρ

nI sin/? ,,, sin2/? - 4sin/? + 2p k,ij,k 2p - sin2p ,kui , kβι = — - dbι + Ϊ-Γ-.—ΓΓ1- -akbι dbk + -~-.—rτ-^^b1 dak.
p 4(a,b)p 4(a,b)p

Therefore, by substitution

g = -\ ^-^-(da1 ® dbι + dbι ® da1)

S{a,b)p2

4p2 + sin2 2/7 - 8 sin2 /? i,k/^i j k j k iuΛ
+— ——~-^ -aιbk(dbι ® ̂  + ώ Λ (8) rfft1) > .

8(α,6)/?2 J

Note that even in the case of p2 < 0, the above result is a real tensor
field, and it is C°° also in the points where p = 0.

As for the dual base, we have

Uj =J sin pdaJ 2(afb)sin2p dbι

sin p sin 2p + 2p sin p - 2p sin

2(a, b)sinpsin2p

p d sin 2/7-2/7 , / <9

sin /? sin 2/? + 2p sin p -2p sin 2/?, 7 / 9

2(α, b) sin /? sin 2/? da1'

J sin p dbJ 2(a,b)sin2p da1

sin p sin 2/? + 2p sin /? - 2/? sin 2p } { d

2{a, b) sin p sin2/? dbι

Therefore, we have by substitution

4/72 - sin2 2/7

4(α, b)p sin2p

The expression of g and j give the space form in normal coordinates
for the para-Kaehler manifolds of constant /-sectional curvature and
r > 1. If r = 1, we have automatically N = 0, dF = 0, V/ = 0, (cfr.



CONSTANT PARA-HOLOMORPHIC CURVATURE 97

3.1) and the space is of constant /-sectional curvature c, but c may not
be a constant. However if c were a constant, the above formulae for
normal coordinates are also valid. Thus, we will say in the following
that an almost para-Hermitian manifold with r = 1 is a para-Kaehler
manifold of constant J-sectional curvature if the above function c is
constant.

Now, let B be the vector space R2 with the product {a, b)(a', b') =
(aaf, bbf); then B is a commutative algebra. If we define the conjugate
w of an element w = (a, b) G B by w = (b, a), then an element w eB
is real if w =ΉJ, and is invertible if wW φ 0. We put B+ — {(a, b) G
B\a > 0, b > 0}; then JS+ is a Lie group. Let

Br

0+
ι = {z = (z°) G 5 r + 1 |<z,z) > 0},

where

α=0

We denote by gί{B;r + 1) the algebra of (r + 1) x (r + l)-matrices
with elements in B. Then gί(5;r + 1) = gl(R;r + 1) xgl(R;r+ 1). We
have the Lie group

+ l) |(Zz,Zz) = (z,z) for all z G Br+X}.

Let Pr(B) be the quotient of 5 Q + 1 under the equivalence given by
(za) = (qza), q G B+. Then, if π: B^1 -+ P r(5) is the natural pro-
jection, we can identify π(z) with the unique element w — qz such
that {w,W) — 1, (w,w) = (W,W)9 where q = (a,b) G B+. Indeed, if
z = (za) = ((ua, va)), we have

(w,w) = (ab(u,v),ab(u,v)), (w,w) = (a2(u,u),b2(v,v))t

(vJ, vJ) = (b (v, v), a {u, u)).

Then

a ~" (w, u ) ι / 4 ( u , v ) 1 / 2 ' ~ Tv~,

Thus

Since Z(gz) = qZ{z) for all Z e C/(5;r + 1), z € ^ + 1 , ήr e 5 + , it
is clear that the action of U(B;r + 1) pass to the quotient Pr{B).
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4.1. PROPOSITION. Pr (B) is diffeomorphic to TSr; therefore it is
connected and ifr>\ it is simply connected. The group U(B\r + 1)
acts transitively on Pr{B).

Proof We consider the map φ: Pr(B) —• TSr given by φ(u,v) =
(\\u + vll""1 (M + v),u - v). Since (u,u) = {n,υ), we have that
(\\u + v\\~{(u + v), u - v) = 0, then u — v can be considered as a
vector tangent to Sr at the point \\u + v\\~x{u + v). It is immediate to
prove that φ is a diffeomorphism. Now, let (u,v) E Pr(B); if {ea} is
the canonical basis of R r + 1 and {ϋa} its dual, let γi (i = 1,..., r) be a
linearly independent set of 1-forms such that γi(u) = 0. If γi = γι

aϋ
a,

and υ = vaea, we define P e Gl(r + l R) by putting ϋ°(Pea) = υa,
&(Pea) = yί. Then

,ft/ = M«ftα = u

aϋ°(Pea)e0 + ua^{Pea)ei = uavae0 + uaγι

Qei = eo;

tpe0 = ϋaCPe0)ea = d o ( A α y α = υaea = υ.

Therefore (P, <p-ι)(u,υ) = (eo,eo) and since (P, ' P " 1 ) € t / ( 5 ; r+ 1),
it is clear that U(B;r + 1) acts transitively on Pr(B). D

We consider on 5Q + 1 the co variant tensor field

g = , 2
 v { β?wα ® Jϊ;α + rfva ® dua

c(u,v) {

Then g is invariant by U(B; r +1) as it is easily proved. If /: Pr (B) —•
5 Q + 1 is the inclusion, we have by direct computation that (i-π)*g = g.
Hence, the tensor field g = i*g, which is a pseudo-Riemannian met-
ric on Pr(B), is also invariant by U(B\r + 1). We have for Pr(B) the
charts (φa, U^), where

α > 0, Va > 0},

U- = {(w, v)} G Pr(B)\ua <0,va< 0},

and

α / N /u° ua ur υ° ϋa υr\
φ a ( u , v ) = — , . . . , — , . . . , — — , . . . , — , . . . , — .

\ua ua ua va υa υa)

If we call (xι, yι) to the coordinates of any one of these charts, say
xι = uι/u°, yι = υι/υ°, then by direct computation or well by an
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argument similar to the one used in [5, vol. II, p. 160], we have that

IϊxyHdyi ® dxj + dxj ® dy
l + {χ,y)

Also, we have on BQ+1 the almost-product structure given by

7

j = ® d u ^ ® d υ ,
dua dυa

and it defines an almost-product structure on Pr(B), J, by the relation
π* o / = J o π*, which in the same chart is given by

Then

4.2. THEOREM. Pr(B) admits a para-Kaehler structure of constant
J-sectional curvature c / 0 given by (10) and (11). Then Pr(B) is
connected and complete, and ifr> 1, it is also simply connected.

Proof The 2-form F(X, Y) = g(X, JY) is given by

2 ί 1
)ι Λ dxι - - : rXJdyJ Λ

Then dF = 0. Since evidently N = 0, we have that P r(#) is a
para-Kaehler manifold. Since VJ = 0, we have Vd/dx,{d/dyj) = 0.

Also
/ d d \ _ 2 d xj

S [dx1' dyJJ ~ cdx'l + ix.y)'
Hence

/ _d_ _d_\ _ _d_ ίd_ _d_\ _ 2 d2 xk

8 V d/9x' dxJ' dyk ) ~ dxι8 \dxi' dyk)~ c dxldxi 1 {x, y)

2xkyiyJ \
c \ (\ 4- (x v))2 (I 4- (x

Therefore
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And if 0 is the point of Pr(B) with coordinates xι = yι = 0, we
have

v^ _ a \ Λ d . . d

Therefore

/ d

{dx'
d

dyJ

d

dXk
(

A,
°k

2
c

d N

\Vkj{

\

f d

£ r 1
"i/ *

(x

d

d y l

ό^ιόκ

1 d/d)

/o

vJ v d/d.

d

( dw

d

d

'dyi

Rl ( έ ^7 £t'w) = h{-δaδ*k ~δaδjk ~2δijδkl)

= --jS^kfiil + 4/^/7 )•

Hence R = cR at 0. Since R and i?' are invariant by U{B;r + 1)
we conclude that the /-sectional curvature is c, and that (Pr(B), g) is
complete. D

As for the problem of finding a complete, connected and simply
connected para-Kaehler manifold of constant /-sectional curvature in
the case r — 1, it is enough to extend the above structure on P\(B) up
to the universal covering of P\{B) = Sι x R, which is R2.

We shall study the spaces Pr(B) as symmetric spaces in a forthcom-
ing paper.
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