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CANONICAL ISOMETRY
ON WEIGHTED BERGMAN SPACES

ToMAasz MAZUR

We consider the spectral properties of a unitary operator called
canonical isometry in the space of all holomorphic functions which
are square integrable with respect to some measure on a domain in
CV. Particularly, the correspondence of its eigenfunctions and fixed
points of holomorphic automerphism is investigated.

1. Introduction. In the study of biholomorphic mappings the Hilbert
space methods are very useful and fruitful. It was discovered by S.
Bergman [1, 2] that in this area an important role is played by the space
L2H (D), consisting of all functions which are holomorphic and square
integrable with respect to Lebesgue measure on a domain D C CV,
with scalar product

(1) f. g) = /D f(2)g@dm(z),  f,g € L*H(D).

Every biholomorphic automorphism ¢: D — D induces a unitary op-
erator, called canonical isometry U,: L?H(D) — L2H (D) given by
the formula

@ (Up)(2) = F(9(2) 2.

Here 0¢/0z denotes the complex Jacobian of ¢. By Aut(D) we denote
a group of biholomorphic automorphisms of a domain D.
In [10] the following spectral property of U, was established:

THEOREM 1. Assume that D C CV is a domain for which L2H (D) #
{0}. If p € Aut(D) has a fixed point, then there exists a linearly dense
orthonormal system of eigenfunctions of U,.

We are inspired by paper [6] with studying the more general situa-
tion, which has connections with theory of group representation [8],
mathematical physics (see [6]) and ergodic theory (see [3]).

Let u be a measure on a domain D c CV, absolutely continuous
and having strictly positive, continuous Radon-Nikodym derivative
with respect to the Lebesgue measure. Consider the Hilbert space
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L2H (D, u), consisting of all holomorphic functions on D which are
square integrable with respect to u, with scalar product

3 (feh= /D f(2)g@du(z),  fgeLH(D u).

Consider a biholomorphic automorphism ¢ of D, such that the map-
ping ¥ : D — C, in the following expression

(4) u(p(D") =/ lw|?du  for all domains D' c D
DI

is nonzero and holomorphic. In fact the set of such automorphisms
is a subgroup in Aut(D), with natural group law: ¢; o ¢, and ¢!
correspond to y;(¢2)y, and 1/y respectively. In the literature (see
[6], p. 21) it is called a subgroup of maps which leave u invariant
modulo holomorphic change of gauge and denoted by G(u).

In this context we obtain a unitary representation of G(u) given by
Vy: L2H(D,u) — L*H(D, u), ¢ € G(u), defined as follows

(5) (Vo f)(2) = f(p(2))w(2)
ExAMPLE. Case of Fock space—F, 3 Let u,, o > 0, be a measure
on CV, for which
(g)Ne‘alzlz
n

is the Radon-Nikodym derivative with respect to Lebesgue measure.
F2? := L?H(CM,u,). Let G be a group of translations in CV. If
9 €G, ¢(z) =z —w, then

_ (M2 sz m)—alw])2

(6) v(x)=(3)" e :
The purpose of the present paper is to prove the following results:
THEOREM 2. Assume that L?H(D,u) # {0}, D c CN. If ¢ € G(u)

has a fixed point, then there exists a linearly dense, orthogonal system
of eigenfunctions of V.

THEOREM 3. Let D be a bounded simply connected domain in CN.
Assume that D is complete and has nonpositive sectional curvature with
respect to the Bergman metric. If V,, has any eigenfunction then ¢ €
G(u) has a fixed point.

2. Evaluation functional and reproducing kernel. An evaluation func-
tional (see [13, 14])

x;: L2H(D,u) - C, x:(f)=f(z), z€D,
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is linear and continuous. It implies that L2H (D, u) has a reproducing
kernel. Let x, € L2H(D,u) be an element which represents x} in
terms of scalar product. The reproducing kernel is given by

(7) Ky(w, z) = (Xz, X2)u,  w,z€D.
LemMA 1. For arbitrary orthonormal bases {e,}, n = 1,2,..., in
L?H(D,u)

o]
K,(w,z)= Z en(w)en(z).
n=1
This sum converges absolutely.

Since V,, is a unitary operator, from Lemma 1 we obtain a trans-
formation rule for reproducing kernel.

LEMMA 2. Let ¢ € G(u) and y: D — C be a holomorphic function
related to ¢ as in (4). Then

(8) Ku(w, 2) = Ku(p(w), p(2))y (w)y (2).

Proof. Let {e,},n=1,2,..., be an orthonormal base in L2H (D, u).
Since V,(ey) is also an orthonormal base, we have

K,(w,z)= Z Vo(en(w))Vy(en(2))

n=1
=3 enp()W(W)e @)W (Z)
n=1

w(w)y(2)Ku(p(w), 9(2)). O

Formula (8) can be written as
9) Xz = (V(ax(p(z))‘//—(z—)'
x:(w) = Ku(w, 2) = Kulp(w) oW )o@
= (Xp(z)> Xp(w)) u W (W)W (2) = Xp(z) (@(w)) Y (W)y(2)
= (VpXp() (W)Y (2).
Let us consider an operator V;: L2H(D,u)* — L>H(D, u)* adjoint
to V,.
B)(: definition for every f € L2H (D, u)
(Vox2)(N) =x;(Vo ) = (Vo f)(2) = f(p(2))w(2)
= W(Z)x;(z)f:
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Hence, we obtain the following formula for x}
(10) Vox: = w(2)x,,)

3. The proof of Theorem 2. The mapping
z—x:e€L*HD,u)*, zeD,
is holomorphic, and
fO&x) =xi(f)=f(z) forall feL*H(D,u).

Hence, for every ¢ € D, x; can be developed for z close to ¢ as a series
(see [12], Def. 3.30 and exercise 26)
(11) xt= ). giai—t)(z-0)*(ay )

k=(k| ,kz,...,k/v)
for some g} € L2H (D, u)*.

Denote by HY, s = 0,1,2,..., the subspace of L2H(D, u)* gener-
ated by elements g, |k| =k; + ks +--- +ky <.

Substituting (11) and the developments of y and ¢ = (¢;,...,¢n)
in a power series about fixed point of ¢ into (10), we can see (similarly
as in [10]) that for every s =0, 1, 2,...,
(12) V,H = H;.
Consider the mapping P: L2H(D,u)* — L?H(D,u) defined as fol-
lows: P(g*) = g, where g represents g* in terms of scalar product. P
maps H; onto the subspace H; ¢ L2H(D, u), generated by g, = P(g),
k| < s.

It turns out that for every s =0, 1,2,..., [10].
(13) V¢Hs = Hs.
Denote by H;, s = 1,2,..., the orthogonal complement of H,_; in
H;. Foreverys=1,2,...,
(14) V,H, = H;.
Every H; has finite dimension and L2H (D, u) is an orthogonal sum of
H;.

There exist§ the orthogonal system E, s = 1, 2,..., of eigenfunc-
tions of V,: H; — H,. If Hy = {0}, set E; = &. Define

&0 .
= if 0,
Eo= {ngon} g #
%)

otherwise.

Finally E = |32, Es; composes the complete orthonormal system in
L2H(D, u).
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4. The proof of Theorem 3. Let now D be a bounded domain in
CN.

Denote by Kp the Bergman function of D [1, 13, 14] (Kp is a
reproducing kernel in L2H(D)).

A riemannian structure on D is given by the Bergman metric tensor
(see [1, 7, 14])

N 2 K
T(z)= Z <6 10882.8D2(‘Zr z) dZi®de
(15) i.j=1 o

+6210gKD(2, z)
0z;0z j
The Bergman and Euclidean distances generate the same topology.
The orbit of ¢ € Aut(D) in z € D we will call the set

(16) Orby(z):={weD:w=9¢"(z),n=0,£1,£2,...}.

We shall need the following classical result:

d?i®d2j).

THEOREM 4 (HopF-RINOV). Let M be a connected riemannian man-
ifold. The following conditions are equivalent:

1°. M is complete metric space,

2°. every closed and bounded subset of M is compact.

The above theorem and the fact that biholomorphic mappings are
isometries of the Bergman metric yield:

LEMMA 3. Let D c CV be a domain complete with respect to the
Bergman metric. For every y € Aut(D) and z,w € D:

Orb,(z) cc D ifand only if Orb,(w) CcC D.
The fundamental observation is contained in the following:

LEMMA 4. Let D cC CV be a domain complete with respect to the
Bergman metric. For every ¢ € G(u) if there exists z € D, such that
Orb, (z) is not relatively compact in D, then V, has no eigenfunction.

Proof. Suppose, that for some / € C and 0 # f € L2H(D, u),

Vof =1f orequivalently f(¢(z))w(z)=I1f(z), zeD.

Since |/| = 1, we have | f(¢(2))|*|w(2)|> = | f(2)|?. Let B(z°,1) c D
be a ball with center z° and radius 1.
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Integrating by change of variables yields

[ @raue = [ @R du)
B(z°,1) B(z9,1)
=[S @Pdu)
9(B(2°,1))

From Lemma 3, Orb¢(z°) is not relatively compact. Since the clo-

sure B(z%, 1) is compact, there exists z! € Orb,(z°) such that
B(z°, 1)nB(z',1)=@.

For the closure of B(z% 1) U B(z!,1) is also compact, there exists
z% € Orb,(z%), for which

(B(z°, )UB(z',1))NnB(z%,1) = 2.

In this way we are able to construct an infinite sequence of balls B,
n=1,2,..., which do not intersect each other and

/ |f(z)?du(z) =const >0 foralln=1,2,....
B,

But -

[1r@Pauz >y [ 1@ duz) = oo,

D n=1 B,
contrary to the assumption. O
Let us now consider ¢ € G(u) with relatively compact orbits. De-

note by A a group

A:={yeAut(D):y=9¢", n=0,£1,£2,...}
and by A its closure in a topology of locally uniform convergence. Our

aim is to show that A is a compact subgroup of Aut(D).

LEMMA 5. Let & € Aut(D) and for some z° € D, Orbg(z°) be rela-
tively compact. Then

(a) £€"(Orbg(29)) C Orbg(2°), n=0,+£1,%2,..., and

(b) if ym, m = 1,2,..., is an arbitrary subsequence in A, locally
uniformly convergent to y, then y(Orbg(z°)) C Orbe(20).

Proof. (a) It is obvious.
(b) Set y,, = £k. From continuity of y,, and (a) we have

ym(2) € Orbg(20)  for every z € Orbg(2?).
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Hence
7(z) = lim y,,(z) € Orbg(z29). O
m-—0o0o

THEOREM 5 (H. CARTAN), [11]. Let D c CV be a bounded domain.
For every sequence (y,) C Aut(D), n = 1,2,..., which is locally uni-
formly convergent to a mapping y: D — CV the following conditions
are equivalent:

(a) y € Aut(D),

(b) y(D) ¢ 8D (boundary of D)

In view of Theorem 5, we see, that A is a group of automorphisms.
Since D is bounded, the compactness of A follows from:

THEOREM 6 (MONTEL). Every family of commonly bounded holo-
morphic mappings y,: D — CVN is compact in the topology of locally
uniform convergence.

The topology of locally uniform convergence in Aut(D) is the same
as topology induced by the Bergman metric. Hence, A is a compact
group of isometries of D as a riemannian manifold. The statement of

Theorem 3 is a consequence of:

THEOREM 7 (E. CARTAN). Every compact group of isometries of sim-
ply connected, complete riemannian manifolds with nonpositive sec-
tional curvature has a common fixed point.

5. Remark. Very fine characterization of domain with nonpositive
sectional curvature with respect to the Bergman metric is given in
paper [4]. Namely, if D ¢ CV is a bounded, homogeneous domain,
then the following conditions are equivalent:

(a) D has nonpositive sectional curvature with respect to the Berg-
man metric;

(b) D is symmetric domain.
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